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Outline

Most machine learning methods can (ultimately) be cast as optimization
problems.

I Convex Optimization

I Recap: Gradients, Hessians

I Gradient Descent

I Stochastic Gradient Descent

I Constrained Optimization

Most machine learning packages such as scikit-learn, tensorflow, octave,
torch etc., will have optimization methods implemented. But you will have
to understand the basics of optimization to use them effectively.
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Convex Sets

A set C ⊆ RD is convex if for any x,y ∈ C and λ ∈ [0, 1],

λ · x + (1− λ) · y ∈ C
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Examples of Convex Sets

I The entire set RD : since λ · x + (1− λ) · y ∈ RD for all x,y ∈ RD

I Intersections of convex sets: Given convex sets C1, . . . , Cn, the set⋂n
i=1 Ci is obviously convex

I Norm balls: For any L-norm || · ||, the setB = {x ∈ RD : ||x|| ≤ 1} is
convex, since for x,y ∈ B we have

||λ ·x+ (1−λ) · y|| ≤ ||λ ·x||+ ||(1−λ) ·y|| = λ · ||x||+ (1−λ) · ||y|| ≤ 1

I Polyhedra: Given anA ∈ Rm×n and b ∈ Rm, a polyhedron is the set
P = {x ∈ Rn : A · x ≤ b}, since for x,y ∈ P we have

A · (λ ·x+ (1−λ) ·y) = λ ·A ·x+ (1−λ) ·A ·y ≤ λ ·b+ (1−λ) ·b = b
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Examples of Convex Sets

The set of positive semi-definite matrices is convex:

I Recall thatA ∈ RD is positive semi-definite ifA = AT and
xT ·A · x ≥ 0 for all x ∈ RD

I Set SD
+ of all such matrices is called the positive semidefinite cone

I SD
+ is convex, as forA,B ∈ SD

+ , we have

xT · (λ ·A + (1− λ) ·B) · x = λ · xT ·A · x + (1− λ) · xT ·B · x ≥ 0
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Convex Functions

A function f : Rn → R defined on a convex domain is convex if for all
x,y ∈ RD where f is defined and 0 ≤ λ ≤ 1,

f(λ · x + (1− λ) · y) ≤ λ · f(x) + (1− λ) · f(y)

Examples:

I Affine functions: f(x) = bT · x + c

I Quadratic functions: f(x) = 1/2 · xT ·A · x + bT · x + c, whereA is
symmetric positive semidefinite

I Norms: In particular Lp-norms, but any norm will be convex

I Nonnegative weighted sums of convex functions: Given convex
functions f1, . . . , fn and w1, . . . , wn ∈ R≥0, the following is a convex
function

f(x) =

k∑
i=1

wi · fi(x)

5



Convex Optimization

Given convex functions f(x), g1(x), . . . , gm(x) and affine functions
h1(x), . . . hn , a convex optimization problem is of the form:

minimize f(x)

subject to gi(x) ≤ 0 i ∈ {1, . . . ,m}
hj(x) = 0 j ∈ {1, . . . , n}

Goal is to find an optimal value of a convex optimization problem:

v∗ = min{f(x) : gi(x) ≤ 0, i ∈ {1, . . . ,m}, hi(x) = 0, j ∈ {0, . . . , n}}

Whenever f(x∗) = v∗ then x∗ is an optimal point, which does not need to
be unique, and can take values +∞ (in infeasible instances) or−∞ (in
unbounded instances)
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Classes of Convex Optimization Problems

Linear Programming:

minimize cT · x + d

subject toA · x ≤ e

B · x = f

Quadratically Constrained Quadratic Programming:

minimize
1

2
xT ·B · x + cT · x + d

subject to
1

2
xT ·Qi · x + rTi · x + si ≤ 0 i ∈ {1, . . . ,m}

A · x = b

Semidefinite Programming:

minimize tr(C ·X)

subject to tr(Ai ·X) = bi i ∈ {1, . . . ,m}
X positive semidefinite

Here, tr(A) is the trace of the matrixA
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Local Optima are Global Optima

Call x locally optimal if it is feasible and there isB > 0 such that
f(x) ≤ f(y) for all feasible y such that ||x− y||2 ≤ B.

Call feasible x globally optimal if f(x) ≤ f(y) for all feasible y.

Theorem
For a convex optimization problem, all locally optimal points are globally
optimal.

I Suppose x is locally optimal and y 6= x is such that f(y) < f(x)

I Now f(z) < f(x) does not hold for any z such that ||x− z||2 ≤ B
I Set z = λ · y + (1− λ) · xwith λ = B

2·||x−y||2
I We have ||x− z||2 ≤ B, since

||x− z||2 = ||x− (λ · y + (1− λ) · x)||2 = ||λ · (x− y)||2 = B/2

I Convexity of f gives the desired contradiction f(z) < f(x):

f(z) = f(λ · y + (1− λ) · x) ≤ λ · f(y) + (1− λ) · f(x) < f(x)
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Linear Programming

Looking for solutions x ∈ Rn to the following optimization problem

minimize cTx

subject to:

aT
i x ≤ bi, i = 1, . . . ,m

āT
i x = b̄i, i = 1, . . . , l

I No analytic solution

I Efficient algorithms exist, both in theory and practice
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Linear Model with Absolute Loss

Suppose we have data 〈(xi, yi)〉Ni=1 and that we want to minimise the
objective:

L(w) =
N∑
i=1

|xT
i w − yi|

Let us introduce ζi one for each datapoint

Consider the linear program in theD +N variables w1, . . . , wD, ζ1, . . . , ζN

minimize
N∑
i=1

ζi

subject to:

wTxi − yi ≤ ζi, i = 1, . . . , N

yi −wTxi ≤ ζi, i = 1, . . . , N
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Minimising the Lasso Objective

For the Lasso objective, i.e., linear model with `1-regularisation, we have

Llasso(w) =
N∑
i=1

(wTxi − yi)2 + λ
D∑
i=1

|wi|

I Quadratic part of the loss function can’t be framed as linear
programming

I Lasso regularization does not allow for closed form solutions

I Can be rephrased as quadratic programming problem

I Alternatively resort to general optimisation methods
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