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Outline

Most machine learning methods can (ultimately) be cast as optimization
problems.

v

Convex Optimization

v

Recap: Gradients, Hessians

v

Gradient Descent

Stochastic Gradient Descent

v

v

Constrained Optimization

Most machine learning packages such as scikit-learn, tensorflow, octave,
torch etc., will have optimization methods implemented. But you will have
to understand the basics of optimization to use them effectively.



Convex Sets

Aset C C R” is convex if forany x,y € C'and A € [0,1],

Ax+(1=XN)-yeC



Examples of Convex Sets

» The entire set RP:since A - x+ (1 — \) -y € RP forall x,y € R”

» Intersections of convex sets: Given convex sets C1, ..., C,, the set
N, C; is obviously convex

» Norm balls: For any L-norm || - ||, the set B = {x € R” : ||x|| < 1} is
convex, since for x,y € B we have

[A-x+ (@ =2) -yl < {A-x[[+][I(1=2) -yl = A [x[[+ (AT =2)-[lyl| <1

» Polyhedra: Givenan A € R™*™ and b € R™, a polyhedron is the set
P={xeR": A -x<b},sinceforx,y € Pwe have

A Ax+(1=2)y)=AAx+(1-XN)-A-y<A-b+(1-))b=b



Examples of Convex Sets

The set of positive semi-definite matrices is convex:

» Recall that A € RP is positive semi-definite if A = AT and
x'-A-x>0forallx e RP

» Set S? of all such matrices is called the positive semidefinite cone

» SPis convex, as for A, B € S¥, we have

X' A-A+(1-X)B)-x=XA-x-A-x+(1-X)-x" -B-x>0



Convex Functions

A function f : R™ — R defined on a convex domain is convex if for all
x,y € RP where fis definedand 0 < A < 1,

FOUx+ (1= -y) <X f(x)+ (1 =) fy)
Examples:

» Affine Functions: f(x) =b' -x + ¢

» Quadratic functions: f(x) =1/2-x" -A-x+b' -x + ¢, where A is
symmetric positive semidefinite

» Norms: In particular L”-norms, but any norm will be convex
» Nonnegative weighted sums of convex functions: Given convex

functions f1,..., fn and w1, ..., w, € R>o, the following is a convex
function

fx) = Zw - fi(x)



Convex Optimization

Given convex functions f(x), g1(x), . .., gm(x) and affine functions
hi(x),...h, ,aconvex optimization problem is of the form:

minimize f(x)
subject to g;(x) <0 ie{l,...,m}
hj(x) =0 jed{l,...,n}

Goal is to find an optimal value of a convex optimization problem:
v* =min{f(x) : gi(x) <0, € {1,...,m} hi(x) =0,5 € {0,...,n}}

Whenever f(x*) = v* then x* is an optimal point, which does not need to
be unique, and can take values +oo (in infeasible instances) or —oo (in
unbounded instances)



Classes of Convex Optimization Problems
Linear Programming:

minimize ¢’ - x + d
subjectto A - x<e
B-x=f

Quadratically Constrained Quadratic Programming:
minimize %xT~B~x+cT~x+d
SUbjECttO%XT-QrX-i-I‘iT‘X-i-SiSO 1e{l,...,m}
A-x=b
Semidefinite Programming:

minimize tr(C - X)
subjectto tr(A; - X) =b; 1e€{l,...,m}
X positive semidefinite

Here, tr(A) is the trace of the matrix A



Local Optima are Global Optima

Call x locally optimal if it is feasible and there is B > 0 such that
f(x) < f(y) for all Feasible y such that ||x — y||» < B.

Call feasible x globally optimalif f(x) < f(y) for all feasible y.

Theorem
For a convex optimization problem, all locally optimal points are globally
optimal.

» Suppose x is locally optimal and y # x is such that f(y) < f(x)
Now f(z) < f(x) does not hold for any z such that ||x — z||» < B
Setz=XA-y+ (1—-X) -xwith) =
We have ||x — z||2 < B, since

v

v

__B
2:[lx—yll2

v

Ix—zllz =lx=A-y+ @ =2 -x)ll2=[]A- (x=y)ll2 = B/2

v

Convexity of f gives the desired contradiction f(z) < f(x):

f@)=fAy+0=X2) %) <A fly) + (1= f(x) < f(x)



Linear Programming

Looking for solutions x € R™ to the following optimization problem

minimize c¢'x
subject to:

aix<b, i=1,...

» No analytic solution

a;x=b, i=1,...

7

Optimum

» Efficient algorithms exist, both in theory and practice




Linear Model with Absolute Loss

Suppose we have data ((x;, %))~ and that we want to minimise the
objective:

N
L(w) = [xiw —yil
i=1

Let us introduce ¢; one for each datapoint

Consider the linear program in the D + N variables w1, ..., wp,(1,...,(N

N
minimize > ¢
i=1
subject to:
w'xi —yi < G, i=1,...,N
yi —w'x; < G, i=1,...,N



Minimising the Lasso Objective

For the Lasso objective, i.e, linear model with ¢;-regularisation, we have

N D

ﬁlasso(w) = Z(WTxi - yi)2 + )‘Z |wl‘

=1 i=1

v

Quadratic part of the loss function can’t be framed as linear
programming

\{

Lasso regularization does not allow for closed form solutions

v

Can be rephrased as quadratic programming problem

v

Alternatively resort to general optimisation methods



