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Calculus Background: Gradients
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» Gradient vectors are orthogonal to contour curves

» Gradient points in the direction of steepest increase



Calculus Background: Hessians
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» As long as all second derivates exist, the Hessian H is symmetric

» Hessian captures the curvature of the surface



Calculus Background: Chain Rule

z = f(wi(61,02), w2(61,62))
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We will use this a lot when we study neural networks and back propagation



General Form for Gradient and Hessian
Supposew € RP and f : RP - R

The gradient vector contains all first order
partial derivatives
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Hessian matrix of f contains all second order partial derivatives.
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Gradient Descent Algorithm

Gradient descent is one of the simplest, but very general algorithm for
optimization

It is an iterative algorithm, producing a new w1 at each iteration as
Wit1 = Wi — M8t = Wi — ntvf(wt)
We will denote the gradients by g;

n: > 0is the learning rate or step size

(i
i
.
it
g
el




Gradient Descent for Least Squares Regression

L(w) = (Xw —y) (Xw —y) = > (x/w — )’

=1

We can compute the gradient of £ with respect to w

Vwl =2 (XTXW - XTy)

» Why would you want to use gradient descent instead of directly plugging
in the formula?

» If N and D are both very large
» Computational complexity of matrix formula O (min{NzD, ND2})

» Each gradient calculation O(N D)



Choosing a Step Size

» Choosing a good step-size is important
» It step size is too large, algorithm may never converge

» If step size is too small, convergence may be very slow

» May want a time-varying step size




Newton’s Method (Second Order Method)
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» Newton's method uses second

» Gradient descent uses only the A
derivatives

first derivative

» Degree 2 Taylor approximation

» Local linear approximation around current point



Newton’s Method in High Dimensions

The updates depend on the gradient g; and the Hessian H; at point w;
wipr =we — H; 'gy
Approximate f around w; using second order Taylor approximation
Fana(W) = J(we) + g1 (w = we) + 5 (w = we) THi(w = we)
We move directly to the (unique) stationary point of fqu.q
The gradient of f,.q is given by:
Vw fouad = 8t + He(Ww — wy)
Setting Vi fauad = 0, to get w41, we have

-1
w1 =wy — H; gy



Newton’s Method gives Stationary Points
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H has positive eigenvalues H has negative eigenvalues H has mixed eigenvalues

Hessian will tell you which kind of stationary point is found

Newton's method can be computationally expensive in high dimensions.
Need to compute and invert a Hessian at each iteration
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Minimising the Lasso Objective

For the Lasso objective, i.e, linear model with ¢;-regularisation, we have

N D

Luso(w) =Y (W'xi — i) + A |wi

i=1 1=1

v

Quadratic part of the loss function can’t be framed as linear
programming

v

Lasso regularization does not allow for closed form solutions

v

Must resort to general optimisation methods

v

We still have the problem that the objective function is not
differentiable!



Sub-gradient Descent

Focus on the case when f is convex,

flaz+ (1 —a)y) < af(z)+ (1 —a)f(y) forallz,y, a € [0,1]

f(z) > f(zo) + g(x —z0) where g is a sub-derivative
f(x) > f(x0) +g'(x —x0) where gisasub-gradient
Any g satisfying the above inequality will be called a sub-gradient at x,



Sub-gradient Descent

J(w) = |wi| + |wa| + |ws| + ws| For w € R*

What is a sub-gradient at the point w = [2, —3,0,1]"?

2

forany v € [-1,1]

2

The sub-derivative of f(x) = max(z, 0)
atz = 0is [0, 1].



Optimization Algorithms for Machine Learning

We have data D = ((x:,y:))~_,. We are minimizing the objective function:

N
Z (wW;xi,9i) + AR(w)

Regularisation Term

The gradient of the objective function is
1 N
Vol = N ; Vwl(W; Xi,yi) + AVwR(w)
For Ridge Regression we have

ﬁridge (W) = (WTXi — y,-)2 + )\WTW
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Stochastic Gradient Descent

As part of the learning algorithm, we calculate the following gradient:

N

1
Vwl = 5 > Vel(wixi, yi) + R(w)

1=1

Suppose we pick a random datapoint (x;, y;) and evaluate
g = Vwl(w;xi,y:)

What is E[g;]?

E[gz = va W Xz:yz)

Instead of computing the entire gradient, we can compute the gradient at
just a single datapoint!

In expectation g; points in the same direction as the entire gradient
(except For the regularisation term)



Online Learning: Stochastic Gradient Descent
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» Using stochastic gradient descent it is possible to learn “online”, i.e., we
get data little at a time

» Cost of computing the gradient in ‘Stochastic Gradient Descent (SGD)' is
significantly less compared to the gradient on the full dataset

» Learning rates should be chosen by (cross-)validation



Batch/Offline Learning

N
W1 = W — % Z Vwl(w;Xi,yi) — AVwR(w)

i=1

Online Learning

W41 = Wt — nvwf(w; Xi, yl) — )\VWR(W)

Minibatch Online Learning

b
W1 = Wy — % ; Vwl(w;xi,yi) — AVwR(wW)




Many Optimisation Techniques (Tricks)

First Order Methods/(Sub) Gradient Methods

» Nesterov's Accelerated Gradient

v

Line-Search to Find Step-Size
» Momentum-based Methods
AdaGrad, AdaDelta, Adam, RMSProp

v

Second Order/Newton/Quasinewton Methods

» Conjugate Gradient Method
» BGFS and L-BGFS



Adagrad: Example Application for Text Data

z X1 T2 T3 T4
Heathrow: Will Boris Johnson lie down in front of 111 0 0 1
the bulldozers? He was happy to lie down the side of 11110 0
abus. 101110
On his part, Johnson has already sought to clarify the 111100
comments, telling Sky News that what he in fact said 1/1000
was not that he would lie down in front of the 11110
bulldozers, but that he would lie down the side. And he T|1100
never actually said bulldozers, he said bus. 1 1 1 8 (1)

Adagrad Update

n
Wi41,5 $ Wt,i — —F———————Gt,i

t
Zs:l gg,l

Rare features (which are 0 in most datapoints) can be most predictive



Constrained Convex Optimization

Often we want to look for a solution in a constrained set (not all of RP)

For example, minimise (Xw — y)"(Xw — y) inthe setsw'w < R, or
Sl lwil <R

Gradient step is followed by a projection step
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Summary

Convex Optimization
» Convex Optimization is ‘efficient’ (i.e., polynomial time)
» Try to cast learning problem as a convex optimization problem

» Many, many extensions exist: Adagrad, Momentum-based, BGFS,
L-BGFS, Adam, etc.

» Books: Boyd and Vandenberghe, Nesterov's Book

Non-Convex Optimization
» Encountered frequently in deep learning
» Stochastic Gradient Descent gives local minima

» Nonlinear Programming - Dimitri Bertsekas
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