Machine Learning - MT 2017 9. Optimisation II

Christoph Haase

University of Oxford
October 27, 2017

Calculus Background: Gradients

$$
\begin{aligned}
z=f\left(w_{1}, w_{2}\right) & =\frac{w_{1}^{2}}{a^{2}}+\frac{w_{2}^{2}}{b^{2}} \\
\frac{\partial f}{\partial w_{1}} & =\frac{2 w_{1}}{a^{2}} \\
\frac{\partial f}{\partial w_{2}} & =\frac{2 w_{2}}{b^{2}} \\
\nabla_{\mathbf{w}} f & =\left[\begin{array}{l}
\frac{\partial f}{\partial w_{1}} \\
\frac{\partial f}{\partial w_{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{2 w_{1}}{a^{2}} \\
\frac{2 w_{2}}{b^{2}}
\end{array}\right]
\end{aligned}
$$

- Gradient vectors are orthogonal to contour curves
- Gradient points in the direction of steepest increase

Calculus Background: Hessians

$$
\begin{aligned}
z & =f\left(w_{1}, w_{2}\right)=\frac{w_{1}^{2}}{a^{2}}+\frac{w_{2}^{2}}{b^{2}} \\
\nabla_{\mathbf{w}} f & =\left[\begin{array}{l}
\frac{\partial f}{\partial w_{f}} \\
\frac{\partial f}{\partial w_{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{2 w_{1}}{a^{2}} \\
\frac{2 w_{2}}{b^{2}}
\end{array}\right] \\
\mathbf{H} & =\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial w_{1}^{2}} & \frac{\partial^{2} f}{\partial w_{1} \partial w_{2}} \\
\frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} & \frac{\partial^{2} f}{\partial w_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{a^{2}} & 0 \\
0 & \frac{2}{b^{2}}
\end{array}\right]
\end{aligned}
$$

- As long as all second derivates exist, the Hessian H is symmetric
- Hessian captures the curvature of the surface

Calculus Background: Chain Rule

$$
z=f\left(w_{1}\left(\theta_{1}, \theta_{2}\right), w_{2}\left(\theta_{1}, \theta_{2}\right)\right)
$$

$$
\frac{\partial f}{\partial \theta_{1}}=\frac{\partial f}{\partial w_{1}} \cdot \frac{\partial w_{1}}{\partial \theta_{1}}+\frac{\partial f}{\partial w_{2}} \cdot \frac{\partial w_{2}}{\partial \theta_{1}}
$$

We will use this a lot when we study neural networks and back propagation

General Form for Gradient and Hessian

Suppose $\mathbf{w} \in \mathbb{R}^{D}$ and $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$

The gradient vector contains all first order partial derivatives

$$
\nabla_{\mathbf{w}} f(\mathbf{w})=\left[\begin{array}{c}
\frac{\partial f}{\partial w_{1}} \\
\frac{\partial f}{\partial w_{2}} \\
\vdots \\
\frac{\partial f}{\partial w_{D}}
\end{array}\right]
$$

Hessian matrix of f contains all second order partial derivatives.

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial w_{1}^{2}} & \frac{\partial^{2} f}{\partial w_{1} \partial w_{2}} & \cdots & \frac{\partial^{2} f}{\partial w_{1} \partial w_{D}} \\
\frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} & \frac{\partial^{2} f}{\partial w_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial w_{2} \partial w_{D}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial w_{D} \partial w_{1}} & \frac{\partial^{2} f}{\partial w_{D} \partial w_{2}} & \cdots & \frac{\partial^{2} f}{\partial w_{D}^{2}}
\end{array}\right]
$$

Gradient Descent Algorithm

Gradient descent is one of the simplest, but very general algorithm for optimization

It is an iterative algorithm, producing a new \mathbf{w}_{t+1} at each iteration as

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \mathbf{g}_{t}=\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

We will denote the gradients by g_{t}
$\eta_{t}>0$ is the learning rate or step size

Gradient Descent for Least Squares Regression

$$
\mathcal{L}(\mathbf{w})=(\mathbf{X} \mathbf{w}-y)^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y})=\sum_{i=1}^{N}\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right)^{2}
$$

We can compute the gradient of \mathcal{L} with respect to w

$$
\nabla_{\mathbf{w}} \mathcal{L}=2\left(\mathbf{X}^{\top} \mathbf{X} \mathbf{w}-\mathbf{X}^{\top} \mathbf{y}\right)
$$

- Why would you want to use gradient descent instead of directly plugging in the formula?
- If N and D are both very large
- Computational complexity of matrix formula $O\left(\min \left\{N^{2} D, N D^{2}\right\}\right)$
- Each gradient calculation $O(N D)$

Choosing a Step Size

- Choosing a good step-size is important
- It step size is too large, algorithm may never converge
- If step size is too small, convergence may be very slow
- May want a time-varying step size

Newton's Method (Second Order Method)

- Gradient descent uses only the first derivative
- Local linear approximation

- Newton's method uses second derivatives
- Degree 2 Taylor approximation around current point

Newton's Method in High Dimensions

The updates depend on the gradient g_{t} and the Hessian \mathbf{H}_{t} at point \mathbf{w}_{t}

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\mathbf{H}_{t}^{-1} \mathbf{g}_{t}
$$

Approximate f around \mathbf{w}_{t} using second order Taylor approximation

$$
f_{\text {quad }}(\mathbf{w})=f\left(\mathbf{w}_{t}\right)+\mathbf{g}_{t}^{\top}\left(\mathbf{w}-\mathbf{w}_{t}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top} \mathbf{H}_{t}\left(\mathbf{w}-\mathbf{w}_{t}\right)
$$

We move directly to the (unique) stationary point of $f_{\text {quad }}$
The gradient of $f_{\text {quad }}$ is given by:

$$
\nabla_{\mathbf{w}} f_{\text {quad }}=\mathbf{g}_{t}+\mathbf{H}_{t}\left(\mathbf{w}-\mathbf{w}_{t}\right)
$$

Setting $\nabla_{\mathbf{w}} f_{\text {quad }}=0$, to get \mathbf{w}_{t+1}, we have

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\mathbf{H}_{t}^{-1} \mathbf{g}_{t}
$$

Newton's Method gives Stationary Points

\mathbf{H} has positive eigenvalues

\mathbf{H} has negative eigenvalues

\mathbf{H} has mixed eigenvalues

Hessian will tell you which kind of stationary point is found
Newton's method can be computationally expensive in high dimensions. Need to compute and invert a Hessian at each iteration

Minimising the Lasso Objective

For the Lasso objective, i.e., linear model with ℓ_{1}-regularisation, we have

$$
\mathcal{L}_{\text {lasso }}(\mathbf{w})=\sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}+\lambda \sum_{i=1}^{D}\left|w_{i}\right|
$$

- Quadratic part of the loss function can't be framed as linear programming
- Lasso regularization does not allow for closed form solutions
- Must resort to general optimisation methods
- We still have the problem that the objective function is not differentiable!

Sub-gradient Descent

Focus on the case when f is convex,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \quad \text { for all } x, y, \alpha \in[0,1]
$$

$$
\begin{aligned}
& f(x) \geq f\left(x_{0}\right)+g\left(x-x_{0}\right) \quad \text { where } g \text { is a sub-derivative } \\
& f(\mathbf{x}) \geq f\left(\mathbf{x}_{0}\right)+\mathbf{g}^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right) \quad \text { where } \mathbf{g} \text { is a sub-gradient }
\end{aligned}
$$

Any g satisfying the above inequality will be called a sub-gradient at \mathbf{x}_{0}

Sub-gradient Descent

$f(\mathbf{w})=\left|w_{1}\right|+\left|w_{2}\right|+\left|w_{3}\right|+\left|w_{4}\right|$ for $\mathbf{w} \in \mathbb{R}^{4}$
What is a sub-gradient at the point $\mathbf{w}=[2,-3,0,1]^{\top}$?

$$
\mathbf{g}=\nabla_{\mathbf{w}} f=\left[\begin{array}{c}
1 \\
-1 \\
\gamma \\
1
\end{array}\right]
$$

for any $\gamma \in[-1,1]$

The sub-derivative of $f(x)=\max (x, 0)$ at $x=0$ is $[0,1]$.

Optimization Algorithms for Machine Learning

We have data $\mathcal{D}=\left\langle\left(\mathbf{x}_{i}, y_{i}\right)\right\rangle_{i=1}^{N}$. We are minimizing the objective function:

$$
\mathcal{L}(\mathbf{w} ; \mathcal{D})=\frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)+\underbrace{\lambda \mathcal{R}(\mathbf{w})}_{\text {Regularisation Term }}
$$

The gradient of the objective function is

$$
\nabla_{\mathbf{w}} \mathcal{L}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)+\lambda \nabla_{\mathbf{w}} \mathcal{R}(\mathbf{w})
$$

For Ridge Regression we have

$$
\begin{aligned}
& \mathcal{L}_{\text {ridge }}(\mathbf{w})=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}+\lambda \mathbf{w}^{\top} \mathbf{w} \\
& \nabla_{\mathbf{w}} \mathcal{L}_{\text {ridge }}=\frac{1}{N} \sum_{i=1}^{N} 2\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right) \mathbf{x}_{i}+2 \lambda \mathbf{w}
\end{aligned}
$$

Stochastic Gradient Descent

As part of the learning algorithm, we calculate the following gradient:

$$
\nabla_{\mathbf{w}} \mathcal{L}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)+\mathcal{R}(\mathbf{w})
$$

Suppose we pick a random datapoint (\mathbf{x}_{i}, y_{i}) and evaluate $\mathbf{g}_{i}=\nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)$

What is $\mathbb{E}\left[\mathbf{g}_{i}\right]$?

$$
\mathbb{E}\left[\mathbf{g}_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)
$$

Instead of computing the entire gradient, we can compute the gradient at just a single datapoint!

In expectation g_{i} points in the same direction as the entire gradient (except for the regularisation term)

Online Learning: Stochastic Gradient Descent

- Using stochastic gradient descent it is possible to learn "online", i.e., we get data little at a time
- Cost of computing the gradient in 'Stochastic Gradient Descent (SGD)' is significantly less compared to the gradient on the full dataset
- Learning rates should be chosen by (cross-)validation

Batch/Offline Learning

$$
w_{t+1}=w_{t}-\frac{\eta}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)-\lambda \nabla_{\mathbf{w}} \mathcal{R}(\mathbf{w})
$$

Online Learning

$$
w_{t+1}=w_{t}-\eta \nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)-\lambda \nabla_{\mathbf{w}} \mathcal{R}(\mathbf{w})
$$

Minibatch Online Learning

$$
w_{t+1}=w_{t}-\frac{\eta}{b} \sum_{i=1}^{b} \nabla_{\mathbf{w}} \ell\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)-\lambda \nabla_{\mathbf{w}} \mathcal{R}(\mathbf{w})
$$

Many Optimisation Techniques (Tricks)

First Order Methods/(Sub) Gradient Methods

- Nesterov's Accelerated Gradient
- Line-Search to Find Step-Size
- Momentum-based Methods
- AdaGrad, AdaDelta, Adam, RMSProp

Second Order/Newton/Quasinewton Methods

- Conjugate Gradient Method
- BGFS and L-BGFS

Adagrad: Example Application for Text Data

Heathrow: Will Boris Johnson lie down in front of the bulldozers? He was happy to lie down the side of a bus.

On his part, Johnson has already sought to clarify the comments, telling Sky News that what he in fact said was not that he would lie down in front of the bulldozers, but that he would lie down the side. And he never actually said bulldozers, he said bus.

y	x_{1}	x_{2}	x_{3}	x_{4}
1	1	0	0	1
-1	1	1	0	0
-1	1	1	1	0
1	1	1	0	0
1	1	0	0	0
-1	1	1	1	0
1	1	1	0	0
1	1	1	0	1
1	1	1	0	0

Adagrad Update

$$
w_{t+1, i} \leftarrow w_{t, i}-\frac{\eta}{\sqrt{\sum_{s=1}^{t} g_{s, i}^{2}}} g_{t, i}
$$

Rare features (which are 0 in most datapoints) can be most predictive

Constrained Convex Optimization

Often we want to look for a solution in a constrained set (not all of \mathbb{R}^{D})
For example, minimise $(\mathbf{X w}-\mathbf{y})^{\top}(\mathbf{X w}-\mathbf{y})$ in the sets $\mathbf{w}^{\top} \mathbf{w}<R$, or $\sum_{i=1}^{D}\left|w_{i}\right|<R$
Gradient step is followed by a projection step

Summary

Convex Optimization

- Convex Optimization is 'efficient' (i.e., polynomial time)
- Try to cast learning problem as a convex optimization problem
- Many, many extensions exist: Adagrad, Momentum-based, BGFS, L-BGFS, Adam, etc.
- Books: Boyd and Vandenberghe, Nesterov's Book

Non-Convex Optimization

- Encountered frequently in deep learning
- Stochastic Gradient Descent gives local minima
- Nonlinear Programming - Dimitri Bertsekas

