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Calculus Background: Gradients
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I Gradient vectors are orthogonal to contour curves

I Gradient points in the direction of steepest increase
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Calculus Background: Hessians

z = f(w1, w2) =
w2

1

a2
+
w2

2

b2

∇wf =

 ∂f
∂w1
∂f
∂w2

 =

 2w1
a2

2w2
b2


H =

 ∂2f

∂w2
1

∂2f
∂w1∂w2

∂2f
∂w2∂w1

∂2f

∂w2
2

 =

 2
a2

0

0 2
b2



I As long as all second derivates exist, the HessianH is symmetric

I Hessian captures the curvature of the surface
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Calculus Background: Chain Rule

z = f(w1(θ1, θ2), w2(θ1, θ2))
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We will use this a lot when we study neural networks and back propagation
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General Form for Gradient and Hessian

Supposew ∈ RD and f : RD → R

The gradient vector contains all first order
partial derivatives
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Gradient Descent Algorithm

Gradient descent is one of the simplest, but very general algorithm for
optimization

It is an iterative algorithm, producing a newwt+1 at each iteration as

wt+1 = wt − ηtgt = wt − ηt∇f(wt)

We will denote the gradients by gt

ηt > 0 is the learning rate or step size
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Gradient Descent for Least Squares Regression

L(w) = (Xw − y)T(Xw − y) =
N∑
i=1

(xT
iw − yi)2

We can compute the gradient of Lwith respect tow

∇wL = 2
(
XTXw −XTy

)

I Why would you want to use gradient descent instead of directly plugging
in the formula?

I IfN andD are both very large

I Computational complexity of matrix formulaO
(
min{N2D,ND2}

)
I Each gradient calculationO(ND)
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Choosing a Step Size

I Choosing a good step-size is important

I It step size is too large, algorithm may never converge

I If step size is too small, convergence may be very slow

I May want a time-varying step size
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Newton’s Method (Second Order Method)

I Gradient descent uses only the
first derivative

I Local linear approximation

I Newton’s method uses second
derivatives

I Degree 2 Taylor approximation
around current point
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Newton’s Method in High Dimensions

The updates depend on the gradient gt and the HessianHt at pointwt

wt+1 = wt −H−1
t gt

Approximate f aroundwt using second order Taylor approximation

fquad(w) = f(wt) + gT
t (w −wt) +

1

2
(w −wt)

THt(w −wt)

Wemove directly to the (unique) stationary point of fquad

The gradient of fquad is given by:

∇wfquad = gt +Ht(w −wt)

Setting∇wfquad = 0, to getwt+1, we have

wt+1 = wt −H−1
t gt
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Newton’s Method gives Stationary Points

H has positive eigenvalues H has negative eigenvalues H has mixed eigenvalues

Hessian will tell you which kind of stationary point is found

Newton’s method can be computationally expensive in high dimensions.
Need to compute and invert a Hessian at each iteration

10



Minimising the Lasso Objective

For the Lasso objective, i.e., linear model with `1-regularisation, we have

Llasso(w) =

N∑
i=1

(wTxi − yi)2 + λ
D∑
i=1

|wi|

I Quadratic part of the loss function can’t be framed as linear
programming

I Lasso regularization does not allow for closed form solutions

I Must resort to general optimisation methods

I We still have the problem that the objective function is not
differentiable!
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Sub-gradient Descent

Focus on the case when f is convex,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all x, y, α ∈ [0, 1]

f(x) ≥ f(x0) + g(x− x0) where g is a sub-derivative

f(x) ≥ f(x0) + gT(x− x0) where g is a sub-gradient

Any g satisfying the above inequality will be called a sub-gradient at x0
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Sub-gradient Descent

f(w) = |w1|+ |w2|+ |w3|+ |w4| forw ∈ R4

What is a sub-gradient at the pointw = [2,−3, 0, 1]T?

g = ∇wf =
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The sub-derivative of f(x) = max(x, 0)

at x = 0 is [0, 1].
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Optimization Algorithms for Machine Learning

We have dataD = 〈(xi, yi)〉Ni=1. We are minimizing the objective function:

L(w;D) = 1

N

N∑
i=1

`(w;xi, yi) + λR(w)︸ ︷︷ ︸
Regularisation Term

The gradient of the objective function is

∇wL =
1

N

N∑
i=1

∇w`(w;xi, yi) + λ∇wR(w)

For Ridge Regression we have

Lridge(w) =
1

N

N∑
i=1

(wTxi − yi)2 + λwTw

∇wLridge =
1

N

N∑
i=1

2(wTxi − yi)xi + 2λw
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Stochastic Gradient Descent

As part of the learning algorithm, we calculate the following gradient:

∇wL =
1

N

N∑
i=1

∇w`(w;xi, yi) +R(w)

Suppose we pick a random datapoint (xi, yi) and evaluate
gi = ∇w`(w;xi, yi)

What is E[gi]?

E[gi] =
1

N

N∑
i=1

∇w`(w;xi, yi)

Instead of computing the entire gradient, we can compute the gradient at
just a single datapoint!

In expectation gi points in the same direction as the entire gradient
(except for the regularisation term)
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Online Learning: Stochastic Gradient Descent

I Using stochastic gradient descent it is possible to learn ‘‘online’’, i.e.,we
get data little at a time

I Cost of computing the gradient in ‘Stochastic Gradient Descent (SGD)’ is
significantly less compared to the gradient on the full dataset

I Learning rates should be chosen by (cross-)validation
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Batch/Offline Learning

wt+1 = wt −
η

N

N∑
i=1

∇w`(w;xi, yi)− λ∇wR(w)

Online Learning

wt+1 = wt − η∇w`(w;xi, yi)− λ∇wR(w)

Minibatch Online Learning

wt+1 = wt −
η

b

b∑
i=1

∇w`(w;xi, yi)− λ∇wR(w)
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Many Optimisation Techniques (Tricks)

First Order Methods/(Sub) Gradient Methods

I Nesterov’s Accelerated Gradient

I Line-Search to Find Step-Size

I Momentum-based Methods

I AdaGrad, AdaDelta, Adam, RMSProp

Second Order/Newton/Quasinewton Methods

I Conjugate Gradient Method

I BGFS and L-BGFS
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Adagrad: Example Application for Text Data

Heathrow: Will Boris Johnson lie down in front of
the bulldozers? He was happy to lie down the side of
a bus.
. . .
On his part, Johnson has already sought to clarify the
comments, telling Sky News that what he in fact said
was not that he would lie down in front of the
bulldozers, but that he would lie down the side. And he
never actually said bulldozers, he said bus.

y x1 x2 x3 x4
1 1 0 0 1
-1 1 1 0 0
-1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
-1 1 1 1 0
1 1 1 0 0
1 1 1 0 1
1 1 1 0 0

Adagrad Update

wt+1,i ← wt,i −
η√∑t
s=1 g

2
s,i

gt,i

Rare features (which are 0 in most datapoints) can be most predictive
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Constrained Convex Optimization

Often we want to look for a solution in a constrained set (not all of RD)

For example, minimise (Xw − y)T(Xw − y) in the setswTw < R, or∑D
i=1 |wi| < R

Gradient step is followed by a projection step
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Summary

Convex Optimization

I Convex Optimization is ‘efficient’ (i.e., polynomial time)

I Try to cast learning problem as a convex optimization problem

I Many, many extensions exist: Adagrad, Momentum-based, BGFS,
L-BGFS, Adam, etc.

I Books: Boyd and Vandenberghe, Nesterov’s Book

Non-Convex Optimization

I Encountered frequently in deep learning

I Stochastic Gradient Descent gives local minima

I Nonlinear Programming - Dimitri Bertsekas
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