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Logistic Regression

Logistic Regression is actually a classification method

In its simplest form it is a binary (two classes) classification method

I Today’s Lecture: We’ll denote these by 0 and 1

I Next Week: Sometimes it’s more convenient to call them−1 and+1

I Ultimately, the choice is just for mathematical convenience

It is a discriminative method. We only model:

p(y |w,x)
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Logistic Regression (LR)

I LR builds up on a linear model, composed with a sigmoid function

p(y |w,x) = Bernoulli(sigmoid(w · x))

I Z ∼ Bernoulli(θ)

Z =

{
1 with probability θ

0 with probability 1− θ

I Recall that the sigmoid function is defined by:

sigmoid(t) =
1

1 + e−t
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I As we did in the case of linear models, we assume x0 = 1 for all
datapoints, so we do not need to handle the bias term w0 separately
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Prediction Using Logistic Regression

Suppose we have estimated the model parametersw ∈ RD

For a new datapoint xnew, the model gives us the probability

p(ynew = 1 | xnew,w) = sigmoid(w · xnew) =
1

1 + exp(−xnew ·w)

In order to make a prediction we can simply use a threshold at 1
2

ŷnew = I(sigmoid(w · xnew)) ≥
1

2
) = I(w · xnew ≥ 0)

Class boundary is linear (separating hyperplane)
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Prediction Using Logistic Regression
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Likelihood of Logistic Regression

DataD = 〈(xi, yi)〉Ni=1, where xi ∈ RD and yi ∈ {0, 1}

Let us denote the sigmoid function by σ

We can write the likelihood for of observing the data given model
parametersw as:

p(y |X,w) =
N∏
i=1

σ(wTxi)
yi · (1− σ(wTxi))

1−yi

Let us denote µi = σ(wTxi)

We can write the negative log-likelihood as:

NLL(y |X,w) = −
N∑
i=1

(yi logµi + (1− yi) log(1− µi))
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Likelihood of Logistic Regression

Recall that µi = σ(wTxi) and the negative log-likelihood is

NLL(y |X,w) = −
N∑
i=1

(yi logµi + (1− yi) log(1− µi))

Let us focus on a single datapoint, the contribution to the negative
log-likelihood is

NLL(yi | xi,w) = −(yi logµi + (1− yi) log(1− µi))

This is called the cross-entropy between yi and µi

If yi = 1, then as

I As µi → 1,NLL(yi | xi,w)→ 0
I As µi → 0,NLL(yi | xi,w)→∞
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Maximum Likelihood Estimate for LR

Recall that µi = σ(wTxi) and the negative log-likelihood is

NLL(y |X,w) = −
N∑
i=1

(yi logµi + (1− yi) log(1− µi))

We can take the gradient with respect tow

∇wNLL(y |X,w) =
N∑
i=1

xi(µi − yi) = XT(µ− y)

And the Hessian is given by,

H = XTSX

S is a diagonal matrix where Sii = µi(1− µi)
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Iteratively Re-Weighted Least Squares (IRLS)
Depending on the dimension, we can apply Newton’s method to estimatew

Letwt be the parameters after t Newton steps.

The gradient and Hessian are given by:

gt = XT(µt − y) = −XT(y − µt)

Ht = XTStX

The Newton Update Rule is:

wt+1 = wt −H−1
t gt

= wt + (XTStX)−1XT(y − µt)

= (XTStX)−1XTSt(Xwt + S−1
t (y − µt))

= (XTStX)−1XTStzt

Where zt = Xwt + S−1
t (y − µt). Thenwt+1 is a solution of the following:

Weighted Least Squares Problem

minimise
N∑
i=1

St,ii(zt,i −wTxi)
2
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Multiclass Logistic Regression

Multiclass logistic regression is also a discriminative classifier

Let the inputs be x ∈ RD and y ∈ {1, . . . , C}

There are parameterswc ∈ RD for every class c = 1, . . . , C

We’ll put this together in a matrix formW that isD × C

The multiclass logistic model is given by:

p(y = c | x,W) =
exp(wT

cx)∑C
c′=1 exp(w

T
c′x)
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Multiclass Logistic Regression
The multiclass logistic model is given by:

p(y = c | x,W) =
exp(wT

cx)∑C
c′=1 exp(w

T
c′x)

Recall the softmax function

Softmax

Softmax maps a set of numbers to a probability distribution with
mode at the maximum

softmax
(
[a1, . . . , aC ]

T
)
=

[
ea1

Z
, . . . ,

eaC

Z

]T

where Z =

C∑
c=1

eac .

The multiclass logistic model is simply:

p(y | x,W) = softmax

([
wT

1x, . . . ,w
T
Cx
]T)

10



Multiclass Logistic Regression
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Summary: Logistic Regression

I Logistic Regression is a (binary) classification method

I It is a discriminative model

I Extension to multiclass by replacing sigmoid by softmax

I Can derive Maximum Likelihood Estimates using Convex Optimization

I See Chap 8.3 in Murphy (for multiclass), but we’ll revisit as a form of a
neural network
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Next Week

I Suppor Vector Machines

I Kernel Methods

I Revise Linear Programming and Convex Optimisation
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