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Logistic Regression

Logistic Regression is actually a classification method

In its simplest form it is a binary (two classes) classification method

» Today's Lecture: We'll denote these by 0 and 1
» Next Week: Sometimes it's more convenient to call them —1 and +1

» Ultimately, the choice is just for mathematical convenience
It is a discriminative method. We only model:

p(y | w,x)



Logistic Regression (LR)

» LR builds up on a linear model, composed with a sigmoid function
p(y | w,x) = Bernoulli(sigmoid(w - x))
» Z ~ Bernoulli(9)
P {1 with probability 6
0 with probability 1 — @

» Recall that the sigmoid function is defined by:

1
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» As we did in the case of linear models, we assume zo = 1 for all
datapoints, so we do not need to handle the bias term w separately



Prediction Using Logistic Regression

Suppose we have estimated the model parameters w € R”

For a new datapoint x,.., the model gives us the probability

1
D(Ynew = 1 | Xnew, W) = sigmoid(W « Xnew) =

1+ exp(—Xnew - W)
In order to make a prediction we can simply use a threshold at £

Grew = [(sigmoid(w - Xoew)) > ) = [(W - Xaew > 0)

N | =

Class boundary is linear (separating hyperplane)



Prediction Using Logistic Regression




Likelihood of Logistic Regression

Data D = ((xi,4:))L,, where x; € RP and y; € {0,1}
Let us denote the sigmoid function by o

We can write the likelihood for of observing the data given model
parameters w as:

p(y | X, w) = [Jo(whx)? - (1 = o(w'xi)) 7"

=1
Let us denote y; = o(w'x;)

We can write the negative log-likelihood as:

NLL(y | X, w) = — Z(yi log pi + (1 — y:) log(1 — p4))

=1



Likelihood of Logistic Regression

Recall that ;; = o(w"x;) and the negative log-likelihood is

NLL(y [ X, w) = — Z(yi log i + (1 — yi) log(1 — p4))

i=1

Let us focus on a single datapoint, the contribution to the negative
log-likelihood is

NLL(y: | xi, w) = —(yi log i + (1 — i) log(1 — pi))
This is called the cross-entropy between y; and p;

Ify; = 1, then as

» As p; — 1, NLL(y; | xi,w) — 0
> As p; — 0, NLL(y; | xi, w) — 00



Maximum Likelihood Estimate for LR

Recall that i; = o(w'x;) and the negative log-likelihood is

N
NLL(y | X,w) = — > (yilog i + (1 — y;) log(1 — p:))

i=1

We can take the gradient with respect to w
VwNLL(y | X, w) le pi—yi) =X (p—y)

And the Hessian is given by,
H=X'SX

S is a diagonal matrix where S;; = (1 — ;)



Iteratively Re-Weighted Least Squares (IRLS)
Depending on the dimension, we can apply Newton’'s method to estimate w

Let w; be the parameters after ¢ Newton steps.

The gradient and Hessian are given by:
g =X"(n,—y)=-X"(y — )
H, = X'S,X

The Newton Update Rule is:

w1l =we — H 'g,
= W; + (XTStX)ile(y — 1y)
= (X"S:X) ' XS (Xwe + S, My — 1))
= (X'8:X)'X"S,z

Where z; = Xw; + S; ' (y — u,). Then w1 is a solution of the Following:

Weighted Least Squares Problem

N
minimise Z S iz —w'x;)?
=1




Multiclass Logistic Regression

Multiclass logistic regression is also a discriminative classifier
Let the inputsbe x ¢ R” andy € {1,...,C}
There are parameters w. € R” foreveryclassc=1,...,C

We'll put this together in a matrix form W thatis D x C

The multiclass logistic model is given by:

exp(w!x)

=c|x, W)= ——~ ¢
Ply | ) 2321 exp(w],x)



Multiclass Logistic Regression

The multiclass logistic model is given by:

ex WIX
Ply=clx, W) = PWeX)__
21 exp(W) )

Recall the softmax function

Softmax

Softmax maps a set of numbers to a probability distribution with
mode at the maximum
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softmax ([al, R ac]T>

C
where Z = Z ee.

c=1

The multiclass logistic model is simply:

T
p(y | x, W) = softmax (|:W-1I—X, e ,wéx] )



Multiclass Logistic Regression




Summary: Logistic Regression

\{

Logistic Regression is a (binary) classification method

v

It is a discriminative model

» Extension to multiclass by replacing sigmoid by softmax

v

Can derive Maximum Likelihood Estimates using Convex Optimization

v

See Chap 8.3 in Murphy (for multiclass), but we'll revisit as a form of a
neural network



Next Week

» Suppor Vector Machines
» Kernel Methods

» Revise Linear Programming and Convex Optimisation



