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Last Time

I Primal Formuation of SVM

I Slack variables for linearly non-separable data
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SVM Formulation : Non-Separable Case

minimise: 1
2
‖w‖22 + C

N∑
i=1

ζi

subject to:

yi(w · xi + w0) ≥ 1− ζi

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}
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SVM Formulation : Loss Function

minimise:
1

2
‖w‖22︸ ︷︷ ︸

Regularizer

+ C

N∑
i=1

ζi︸ ︷︷ ︸
Loss Function

subject to:

yi(w · xi + w0) ≥ 1− ζi

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}
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Note that for the optimal solution, ζi = max{0, 1− yi(w · xi + w0)}

Thus, SVM can be viewed as minimizing the hinge loss with regularization
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Logistic Regression: Loss Function

Here yi ∈ {0, 1}, so to compare effectively to SVM, let zi = (2yi − 1):

I zi = 1 if yi = 1

I zi = −1 if yi = 0

NLL(yi;w,xi) = −

(
yi log

(
1

1 + e−w·xi

)
+ (1− yi) log

(
1

1 + ew·xi

))
= log

(
1 + e−zi(w·xi)

)
= log

(
1 + e−(2yi−1)(w·xi)

)
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Loss Functions
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Outline

Dual Formulation of SVM

Kernels



SVM Formulation: Non-Separable Case

What if your data looks like this?
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SVM Formulation : Constrained Minimisation

minimise: 1
2
‖w‖22 + C

N∑
i=1

ζi

subject to:

yi(w · xi + w0)− (1− ζi) ≥ 0

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}
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Contrained Optimisation with Inequalities

Primal Form

minimise F (z)

subject to gi(z) ≥ 0 i = 1, . . . ,m

hj(z) = 0 j = 1, . . . , l

Lagrange Function

Λ(z;α,µ) = F (z)−
m∑
i=1

αigi(z)−
l∑

j=1

µjhj(z)

For convex problems (as defined before), Karush-Kuhn-Tucker (KKT)
conditions provide necessary and sufficient conditions for a critical point of
Λ to be the minimum of the original constrained optimisation problem

For non-convex problems, they are necessary but not sufficient
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KKT Conditions

Lagrange Function

Λ(z;α,µ) = F (z)−
m∑
i=1

αigi(z)−
l∑

j=1

µjhj(z)

For convex problems, Karush-Kuhn-Tucker (KKT) conditions give necessary
and sufficient conditions for a solution (critical point of Λ) to be optimal

Dual feasibility: αi ≥ 0 for i = 1, . . .m

Primal feasibility: gi(z) ≥ 0 for i = 1, . . .m
hj(z) = 0 for j = 1, . . . l

Complementary slackness: αigi(z) = 0 for i = 1, . . .m
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SVM Formulation

minimise: 1
2
‖w‖22 + C

N∑
i=1

ζi

subject to:

yi(w · xi + w0)− (1− ζi) ≥ 0

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}

Lagrange Function

Λ(w, w0, ζ;α,µ) =
1

2
‖w‖22+C

N∑
i=1

ζi−
N∑
i=1

αi(yi(w·xi+w0)−(1−ζi))−
N∑
i=1

µiζi
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SVM Dual Formulation

Lagrange Function

Λ(w, w0, ζ;α,µ) =
1

2
‖w‖22+C

N∑
i=1

ζi−
N∑
i=1

αi(yi(w·xi+w0)−(1−ζi))−
N∑
i=1

µiζi

We write derivatives with respect tow, w0 and ζi,

∂Λ
∂w0

= −
N∑
i=1

αiyi

∂Λ
∂ζi

= C − αi − µi

∇wΛ = w −
N∑
i=1

αiyixi

For (KKT) dual feasibility constraints, we require αi ≥ 0, µi ≥ 0
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SVM Dual Formulation

Setting the derivatives to 0, substituting the resulting expressions in Λ (and
simplifying), we get a function g(α) and some constraints

g(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj

Constraints

0 ≤ αi ≤ C i = 1, . . . , N

N∑
i=1

αiyi = 0

Finding critical points of Λ satisfying the KKT conditions corresponds to
finding the maximum of g(α) subject to the above constraints
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SVM: Primal and Dual Formulations

Primal Form

minimise: 1
2
‖w‖22 +C

N∑
i=1

ζi

subject to:

yi(w · xi +w0) ≥ (1− ζi)

ζi ≥ 0

for i = 1, . . . , N

Dual Form

maximise
N∑
i=1

αi−
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi ·xj

subject to:

∑N
i=1 αiyi = 0

0 ≤ αi ≤ C

for i = 1, . . . , N
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KKT Complementary Slackness Conditions

I For all i, αi
(
yi(w · xi + w0)− (1− ζi)

)
= 0

I If αi > 0, yi(w · xi + w0) = 1− ζi

I Recall the form of the solution:w =
∑N
i=1 αiyixi

I Thus, only those datapoints xi for which αi > 0, determine the solution

I This is why they are called support vectors
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Support Vectors
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SVM Dual Formulation

maximise
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

subject to:

0 ≤ αi ≤ C i = 1, . . . , N
N∑
i=1

αiyi = 0

I Objective depends only between dot products of training inputs

I Dual formulation particularly useful if inputs are high-dimensional

I Dual constraints are much simpler than primal ones

I Tomake a new prediction only need to know dot product with support vectors

I Solution is of the formw =
∑N
i=1 αiyixi

I And sow · xnew =
∑N
i=1 αiyixi · xnew
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Outline

Dual Formulation of SVM

Kernels



GramMatrix

If we put the inputs in matrixX, where the ith row ofX is xT
i .

K = XXT =


xT

1x1 xT
1x2 · · · xT

1xN
xT

2x1 xT
2x2 · · · xT

2xN
...

...
. . .

...
xT
Nx1 xT

Nx2 · · · xT
NxN



I The matrixK is positive definite ifD > N and xi are linearly independent

I If we perform basis expansion

φ : RD → RM

then replace entries by φ(xi)
Tφ(xj)

I We only need the ability to compute inner products to use SVM
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Kernel Trick

Suppose, x ∈ R2 and we perform degree 2 polynomial expansion, we could
use the map:

ψ(x) =
[
1, x1, x2, x

2
1, x

2
2, x1x2

]T
But, we could also use the map:

φ(x) =
[
1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2

]T

If x = [x1, x2]T and x′ = [x′1, x
′
2]T, then

φ(x)Tφ(x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + x2

1(x′1)2 + x2
2(x′2)2 + 2x1x2x

′
1x
′
2

= (1 + x1x
′
1 + x2x

′
2)2 = (1 + x · x′)2

Instead of spending≈ Dd time to compute inner products after degree d
polynomial basis expansion, we only needO(D) time
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Kernel Trick

We can use a symmetric positive semi-definite matrix (Mercer Kernels)

K =


κ(x1,x1) κ(x1,x2) · · · κ(x1,xN )
κ(x2,x1) κ(x2,x2) · · · κ(x2,xN )

...
...

. . .
...

κ(xN ,x1) κ(xN ,x2) · · · κ(xN ,xN )


Here κ(x,x′) is some measure of similarity between x and x′

The dual program becomes

maximise
N∑
i=1

αi −
N∑
i=1

N∑
j=1

αiαjyiyjKi,j

subject to : 0 ≤ αi ≤ C and
∑N
i=1 αiyi = 0

To make prediction on new xnew, only need to compute κ(xi,xnew) for support
vectors xi (for which αi > 0)
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Polynomial Kernels

Rather than perform basis expansion,

κ(x,x′) = (1 + x · x′)d

This gives all terms of degree up to d

If we use κ(x,x′) = (x · x′)d, we get only degree d terms

Linear Kernel: κ(x,x′) = x · x′

All of these satisfy the Mercer or positive-definite condition
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Gaussian or RBF Kernel

Radial Basis Function (RBF) or Gaussian Kernel

κ(x,x′) = exp

(
−‖x− x′‖2

2σ2

)

σ2 is known as the bandwidth

We used this with γ = 1
2σ2 when we studied kernel

basis expansion for regression

Can generalise to more general covariance matrices

Results in a Mercer kernel
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Kernels on Discrete Data : Cosine Kernel

For text documents: let x denote bag of words

Cosine Similarity

κ(x,x′) =
x · x′

‖x‖2‖x′‖2

Term frequency tf(c) = log(1 + c), cword count for some word w

Inverse document frequency idf(w) = log
(

N
1+Nw

)
,Nw #docs containing w

tf-idf(x)w = tf(xw)idf(w)
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Kernels on Discrete Data : String Kernel

Let x and x′ be strings over some alphabetA

A = {A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V }

κ(x,x′) =
∑
s wsφs(x)φs(x

′)

φs(x) is the number of times s appears in x as substring

ws is the weight associated with substring s
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How to choose a good kernel?

Not always easy to tell whether a kernel function is a Mercer kernel

Mercer Condition: For any finite set of points, the Kernel matrix should be
positive semi-definite

If the following hold:
I κ1, κ2 are Mercer kernels for points in RD

I f : RD → R

I φ : RD → RM

I κ3 is a Mercer kernel on RM

the following are Mercer kernels
I κ1 + κ2, κ1 · κ2, ακ1 for α ≥ 0

I κ(x,x′) = f(x)f(x′)

I κ3(φ(x), φ(x′))

I κ(x,x′) = xTAx′ forA positive definite
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Kernel Trick in Linear Regression

Recall the least squares objective for linear regression

L(w) =
N∑
i=1

(wTxi − yi)2

and the solution ŵLS = (XTX)−1(XTy).

We can express ŵ =
∑m
i=1 αixi. Why?

You will give the answer in Problem Sheet 3
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Concluding Remarks

I Revise and self-study multiclass classification and performance
measures in lecture notes

I Next Time: Neural Networks

I Revise chain rule

I Online book by Michael Nielsen http://www.michaelnielsen.org
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