Machine Learning - MT 2017 13 Support Vector Machines II

Christoph Haase

University of Oxford
November 6, 2017

Last Time

- Primal Formuation of SVM
- Slack variables for linearly non-separable data

SVM Formulation : Non-Separable Case

minimise: $\quad \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{N} \zeta_{i}$
subject to:

$$
\begin{aligned}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1-\zeta_{i} \\
& \zeta_{i} \geq 0
\end{aligned}
$$

for $i=1, \ldots, N$
Неге $y_{i} \in\{-1,1\}$

SVM Formulation : Loss Function

subject to:

$$
\begin{aligned}
& \quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1-\zeta_{i} \\
& \quad \zeta_{i} \geq 0 \\
& \text { for } i=1, \ldots, N
\end{aligned}
$$

Here $y_{i} \in\{-1,1\}$

Note that for the optimal solution, $\zeta_{i}=\max \left\{0,1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)\right\}$
Thus, SVM can be viewed as minimizing the hinge loss with regularization

Logistic Regression: Loss Function

Here $y_{i} \in\{0,1\}$, so to compare effectively to SVM, let $z_{i}=\left(2 y_{i}-1\right)$:

- $z_{i}=1$ if $y_{i}=1$
- $z_{i}=-1$ if $y_{i}=0$

$$
\begin{aligned}
\operatorname{NLL}\left(y_{i} ; \mathbf{w}, \mathbf{x}_{i}\right) & =-\left(y_{i} \log \left(\frac{1}{1+e^{-\mathbf{w} \cdot \mathbf{x}_{i}}}\right)+\left(1-y_{i}\right) \log \left(\frac{1}{1+e^{\mathbf{w} \cdot \mathbf{x}_{i}}}\right)\right) \\
& =\log \left(1+e^{-z_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)}\right)=\log \left(1+e^{-\left(2 y_{i}-1\right)\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)}\right)
\end{aligned}
$$

Loss Functions

Outline

Dual Formulation of SVM

Kernels

SVM Formulation: Non-Separable Case

What if your data looks like this?

SVM Formulation : Constrained Minimisation

minimise: $\quad \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{N} \zeta_{i}$
subject to:
$y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)-\left(1-\zeta_{i}\right) \geq 0$
$\zeta_{i} \geq 0$
for $i=1, \ldots, N$
Неге $y_{i} \in\{-1,1\}$

Contrained Optimisation with Inequalities

Primal Form

minimise	$F(\mathbf{z})$
subject to	$g_{i}(\mathbf{z}) \geq 0$
	$h_{j}(\mathbf{z})=0$

$$
\begin{gathered}
i=1, \ldots, m \\
j=1, \ldots, l
\end{gathered}
$$

Lagrange Function

$$
\Lambda(\mathbf{z} ; \alpha, \boldsymbol{\mu})=F(\mathbf{z})-\sum_{i=1}^{m} \alpha_{i} g_{i}(\mathbf{z})-\sum_{j=1}^{l} \mu_{j} h_{j}(\mathbf{z})
$$

For convex problems (as defined before), Karush-Kuhn-Tucker (KKT) conditions provide necessary and sufficient conditions for a critical point of Λ to be the minimum of the original constrained optimisation problem

For non-convex problems, they are necessary but not sufficient

KKT Conditions

Lagrange Function

$$
\Lambda(\mathbf{z} ; \boldsymbol{\alpha}, \boldsymbol{\mu})=F(\mathbf{z})-\sum_{i=1}^{m} \alpha_{i} g_{i}(\mathbf{z})-\sum_{j=1}^{l} \mu_{j} h_{j}(\mathbf{z})
$$

For convex problems, Karush-Kuhn-Tucker (KKT) conditions give necessary and sufficient conditions for a solution (critical point of Λ) to be optimal

$$
\begin{array}{rlrl}
\text { Dual feasibility: } & \alpha_{i} & \geq 0 & \\
\text { for } i & =1, \ldots m \\
\text { Primal feasibility: } & g_{i}(\mathbf{z}) & \geq 0 & \text { for } i=1, \ldots m \\
h_{j}(\mathbf{z}) & =0 & \text { for } j=1, \ldots l
\end{array}
$$

Complementary slackness:

$$
\alpha_{i} g_{i}(\mathbf{z})=0 \quad \text { for } i=1, \ldots m
$$

SVM Formulation

minimise: $\quad \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{N} \zeta_{i}$
subject to:

$$
\begin{aligned}
& \qquad \begin{aligned}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)-\left(1-\zeta_{i}\right) \geq 0 \\
& \quad \zeta_{i} \geq 0
\end{aligned} \\
& \text { for } i=1, \ldots, N
\end{aligned}
$$

Неге $y_{i} \in\{-1,1\}$

Lagrange Function
$\Lambda\left(\mathbf{w}, w_{0}, \boldsymbol{\zeta} ; \boldsymbol{\alpha}, \boldsymbol{\mu}\right)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{N} \zeta_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)-\left(1-\zeta_{i}\right)\right)-\sum_{i=1}^{N} \mu_{i} \zeta_{i}$

SVM Dual Formulation

Lagrange Function

$$
\Lambda\left(\mathbf{w}, w_{0}, \boldsymbol{\zeta} ; \boldsymbol{\alpha}, \boldsymbol{\mu}\right)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{N} \zeta_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)-\left(1-\zeta_{i}\right)\right)-\sum_{i=1}^{N} \mu_{i} \zeta_{i}
$$

We write derivatives with respect to \mathbf{w}, w_{0} and ζ_{i},

$$
\begin{aligned}
\frac{\partial \Lambda}{\partial w_{0}} & =-\sum_{i=1}^{N} \alpha_{i} y_{i} \\
\frac{\partial \Lambda}{\partial \zeta_{i}} & =C-\alpha_{i}-\mu_{i} \\
\nabla_{\mathbf{w}} \Lambda & =\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}
\end{aligned}
$$

For (KKT) dual feasibility constraints, we require $\alpha_{i} \geq 0, \mu_{i} \geq 0$

SVM Dual Formulation

Setting the derivatives to 0 , substituting the resulting expressions in Λ (and simplifying), we get a function $g(\boldsymbol{\alpha})$ and some constraints

$$
g(\boldsymbol{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}
$$

Constraints

$$
\begin{array}{ll}
0 \leq \alpha_{i} \leq C & i=1, \ldots, N \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 &
\end{array}
$$

Finding critical points of Λ satisfying the KKT conditions corresponds to finding the maximum of $g(\boldsymbol{\alpha})$ subject to the above constraints

SVM: Primal and Dual Formulations

Primal Form
minimise: $\frac{1}{2}\\|\mathbf{w}\\|_{2}^{2}+C \sum_{i=1}^{N} \zeta_{i}$
subject to:
$y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq\left(1-\zeta_{i}\right)$
$\zeta_{i} \geq 0$
for $i=1, \ldots, N$

Dual Form

maximise $\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
subject to:

$$
\begin{aligned}
& \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
& 0 \leq \alpha_{i} \leq C
\end{aligned}
$$

for $i=1, \ldots, N$

KKT Complementary Slackness Conditions

- For all $i, \alpha_{i}\left(y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)-\left(1-\zeta_{i}\right)\right)=0$
- If $\alpha_{i}>0, y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)=1-\zeta_{i}$
- Recall the form of the solution: $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}$
- Thus, only those datapoints \mathbf{x}_{i} for which $\alpha_{i}>0$, determine the solution
- This is why they are called support vectors

Support Vectors

SVM Dual Formulation

maximise $\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$
subject to:

$$
\begin{aligned}
& 0 \leq \alpha_{i} \leq C \quad i=1, \ldots, N \\
& \sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Objective depends only between dot products of training inputs
- Dual formulation particularly useful if inputs are high-dimensional
- Dual constraints are much simpler than primal ones
- To make a new prediction only need to know dot product with support vectors
- Solution is of the form $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}$
- And so $\mathbf{w} \cdot \mathbf{x}_{\text {new }}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{\text {new }}$

Outline

Dual Formulation of SVM

Kernels

Gram Matrix

If we put the inputs in matrix \mathbf{X}, where the $i^{\text {th }}$ row of \mathbf{X} is \mathbf{x}_{i}^{\top}.

$$
\mathbf{K}=\mathbf{X} \mathbf{X}^{\top}=\left[\begin{array}{cccc}
\mathbf{x}_{1}^{\top} \mathbf{x}_{1} & \mathbf{x}_{1}^{\top} \mathbf{x}_{2} & \cdots & \mathbf{x}_{1}^{\top} \mathbf{x}_{N} \\
\mathbf{x}_{2}^{\top} \mathbf{x}_{1} & \mathbf{x}_{2}^{\top} \mathbf{x}_{2} & \cdots & \mathbf{x}_{2}^{\top} \mathbf{x}_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{x}_{N}^{\top} \mathbf{x}_{1} & \mathbf{x}_{N}^{\top} \mathbf{x}_{2} & \cdots & \mathbf{x}_{N}^{\top} \mathbf{x}_{N}
\end{array}\right]
$$

- The matrix \mathbf{K} is positive definite if $D>N$ and \mathbf{x}_{i} are linearly independent
- If we perform basis expansion

$$
\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{M}
$$

then replace entries by $\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)$

- We only need the ability to compute inner products to use SVM

Kernel Trick

Suppose, $\mathrm{x} \in \mathbb{R}^{2}$ and we perform degree 2 polynomial expansion, we could use the map:

$$
\psi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right]^{\top}
$$

But, we could also use the map:

$$
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{\top}
$$

If $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ and $\mathbf{x}^{\prime}=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]^{\top}$, then

$$
\begin{aligned}
\phi(\mathbf{x})^{\top} \phi\left(\mathbf{x}^{\prime}\right) & =1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} \\
& =\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}=\left(1+\mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{2}
\end{aligned}
$$

Instead of spending $\approx D^{d}$ time to compute inner products after degree d polynomial basis expansion, we only need $O(D)$ time

Kernel Trick

We can use a symmetric positive semi-definite matrix (Mercer Kernels)

$$
\mathbf{K}=\left[\begin{array}{cccc}
\kappa\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \kappa\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \cdots & \kappa\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\
\kappa\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & \kappa\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \cdots & \kappa\left(\mathbf{x}_{2}, \mathbf{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\kappa\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & \kappa\left(\mathbf{x}_{N}, \mathbf{x}_{2}\right) & \cdots & \kappa\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right)
\end{array}\right]
$$

Неге $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is some measure of similarity between \mathbf{x} and \mathbf{x}^{\prime}

The dual program becomes

$$
\operatorname{maximise} \sum_{i=1}^{N} \alpha_{i}-\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{i, j}
$$

$$
\text { subject to : } 0 \leq \alpha_{i} \leq C \text { and } \sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

To make prediction on new $\mathbf{x}_{\text {new }}$, only need to compute $\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{\text {new }}\right)$ for support vectors \mathbf{x}_{i} (for which $\alpha_{i}>0$)

Polynomial Kernels

Rather than perform basis expansion,

$$
\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{d}
$$

This gives all terms of degree up to d
If we use $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{d}$, we get only degree d terms
Linear Kernel: $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x} \cdot \mathbf{x}^{\prime}$
All of these satisfy the Mercer or positive-definite condition

Gaussian or RBF Kernel

Radial Basis Function (RBF) or Gaussian Kernel

$$
\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

σ^{2} is known as the bandwidth
We used this with $\gamma=\frac{1}{2 \sigma^{2}}$ when we studied kernel basis expansion for regression

Can generalise to more general covariance matrices

Results in a Mercer kernel

Kernels on Discrete Data : Cosine Kernel

For text documents: let x denote bag of words
Cosine Similarity

$$
\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{\|\mathbf{x}\|_{2}\left\|\mathbf{x}^{\prime}\right\|_{2}}
$$

Term frequency $\operatorname{tf}(c)=\log (1+c), c$ word count for some word w
Inverse document frequency $\operatorname{idf}(w)=\log \left(\frac{N}{1+N_{w}}\right), N_{w}$ \#docs containing w
$\operatorname{tf}-\mathrm{idf}(\mathbf{x})_{w}=\operatorname{tf}\left(x_{w}\right) \operatorname{idf}(w)$

Kernels on Discrete Data : String Kernel

Let x and x^{\prime} be strings over some alphabet \mathcal{A}
$\mathcal{A}=\{A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V\}$
IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP
$\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{s} w_{s} \phi_{s}(\mathbf{x}) \phi_{s}\left(\mathbf{x}^{\prime}\right)$
$\phi_{s}(\mathrm{x})$ is the number of times s appears in x as substring
w_{s} is the weight associated with substring s

How to choose a good kernel?

Not always easy to tell whether a kernel function is a Mercer kernel
Mercer Condition: For any finite set of points, the Kernel matrix should be positive semi-definite

If the following hold:

- κ_{1}, κ_{2} are Mercer kernels for points in \mathbb{R}^{D}
- $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$
- $\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{M}$
- κ_{3} is a Mercer kernel on \mathbb{R}^{M}
the following are Mercer kernels
- $\kappa_{1}+\kappa_{2}, \kappa_{1} \cdot \kappa_{2}, \alpha \kappa_{1}$ for $\alpha \geq 0$
- $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f(\mathbf{x}) f\left(\mathbf{x}^{\prime}\right)$
- $\kappa_{3}\left(\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right)$
- $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}^{\prime}$ for \mathbf{A} positive definite

Kernel Trick in Linear Regression

Recall the least squares objective for linear regression

$$
\mathcal{L}(\mathbf{w})=\sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}
$$

and the solution $\widehat{\mathbf{w}}_{\text {LS }}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{y}\right)$.
We can express $\widehat{\mathrm{w}}=\sum_{i=1}^{m} \alpha_{i} \mathbf{x}_{i}$. Why?
You will give the answer in Problem Sheet 3

Concluding Remarks

- Revise and self-study multiclass classification and performance measures in lecture notes
- Next Time: Neural Networks
- Revise chain rule
- Online book by Michael Nielsen http://www.michaelnielsen.org

