Machine Learning - MT 2017
 14, 15, 16. Neural Networks

Varun Kanade

University of Oxford
November 8, 13 \& 15, 2017

Announcements

- Problem Sheet 3 due this week
- Problem Sheet 4 posted soon (class in Week 8)
- Practical 2 next week: Compare NBC \& LR
- All subsequent lectures in LTA

Outline

Today, we'll study feedforward neural networks

- Multi-layer perceptrons
- Classification or regression settings
- Backpropagation to compute gradients
- Brief introduction to tensorflow and MNIST

Artificial Neuron : Logistic Regression

- A unit in a neural network computes a linear function of its input and is then composed with a non-linear activation function
- For logistic regression, the non-linear activation function is the sigmoid

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- The separating surface is linear

Multilayer Perceptron (MLP) : Classification

Multilayer Perceptron (MLP) : Regression

A Toy Example

Logistic Regression Fails Badly

Solve using MLP

Let us use the notation:

$$
\begin{aligned}
\mathbf{a}^{1} & =\mathbf{z}^{1}=\mathbf{x} \\
\mathbf{z}^{2} & =\mathbf{W}^{2} \mathbf{a}^{1}+\mathbf{b}^{2} \\
\mathbf{a}^{2} & =\tanh \left(\mathbf{z}^{2}\right) \\
\mathbf{z}^{3} & =\mathbf{W}^{3} \mathbf{a}^{2}+\mathbf{b}^{3} \\
\mathbf{y}=\mathbf{a}^{3} & =\sigma\left(\mathbf{z}^{3}\right)
\end{aligned}
$$

Scatterplot Comparison $\left(x_{1}, x_{2}\right)$ vs $\left(a_{1}^{2}, a_{2}^{2}\right)$

Decision Boundary of the Neural Net

Feedforward Neural Networks

Computing Gradients on Toy Example

Want the derivatives

$$
\begin{aligned}
& \frac{\partial \ell}{\partial w_{11}^{2}}, \frac{\partial \ell}{\partial w_{12}^{2}} \\
& \frac{\partial \ell}{\partial w_{21}^{2}}, \frac{\partial \ell}{\partial w_{22}^{2}} \\
& \frac{\partial \ell}{\partial w_{11}^{3}}, \frac{\partial \ell}{\partial w_{12}^{3}} \\
& \frac{\partial \ell}{\partial b_{1}^{2}}, \frac{\partial \ell}{\partial b_{2}^{2}}, \frac{\partial \ell}{\partial b_{1}^{3}}
\end{aligned}
$$

Would suffice to compute $\frac{\partial \ell}{\partial z_{1}^{3}}, \frac{\partial \ell}{\partial z_{1}^{2}}, \frac{\partial \ell}{\partial z_{2}^{2}}$

Computing Gradients on Toy Example

Let us compute the following:

1. $\frac{\partial \ell}{\partial a_{1}^{3}}=-\frac{y}{a_{1}^{3}}+\frac{1-y}{1-a_{1}^{3}}=\frac{a_{1}^{3}-y}{a_{1}^{3}\left(1-a_{1}^{3}\right)}$
2. $\frac{\partial a^{3}}{\partial z_{1}^{3}}=a_{1}^{3} \cdot\left(1-a_{1}^{3}\right)$
3. $\frac{\partial z_{1}^{3}}{\partial \mathbf{a}^{2}}=\left[w_{11}^{3}, w_{12}^{3}\right]$
4. $\frac{\partial \mathbf{a}^{2}}{\partial \mathbf{z}^{2}}=\left[\begin{array}{cc}1-\tanh ^{2}\left(z_{1}^{2}\right) & 0 \\ 0 & 1-\tanh ^{2}\left(z_{2}^{2}\right)\end{array}\right]$

Then we can calculate

$$
\begin{aligned}
\frac{\partial \ell}{\partial z_{1}^{3}} & =\frac{\partial \ell}{\partial a_{1}^{3}} \cdot \frac{\partial a_{1}^{3}}{\partial z_{1}^{3}}=a_{1}^{3}-y \\
\frac{\partial \ell}{\partial \mathbf{z}^{2}} & =\left(\frac{\partial \ell}{\partial a_{1}^{3}} \cdot \frac{\partial a_{1}^{3}}{\partial z_{1}^{3}}\right) \cdot \frac{\partial z_{1}^{3}}{\partial \mathbf{a}^{2}} \cdot \frac{\partial \mathbf{a}^{2}}{\partial \mathbf{z}^{2}}=\frac{\partial \ell}{\partial z_{1}^{3}} \cdot \frac{\partial z_{1}^{3}}{\partial \mathbf{a}^{2}} \cdot \frac{\partial \mathbf{a}^{2}}{\partial \mathbf{z}^{2}}
\end{aligned}
$$

Each layer consists of a linear function and non-linear activation

Layer l consists of the following:

$$
\begin{aligned}
& \mathbf{z}^{l}=\mathbf{W}^{l} \mathbf{a}^{l-1}+\mathbf{b}^{l} \\
& \mathbf{a}^{l}=f_{l}\left(\mathbf{z}^{l}\right)
\end{aligned}
$$

where f_{l} is the non-linear activation in layer l.

If there are n_{l} units in layer l, then \mathbf{W}^{l} is $n_{l} \times n_{l-1}$

Backward pass to compute derivatives

Forward Equations

(1) $\mathrm{a}^{1}=\mathrm{x}$ (input)
(2) $\mathbf{z}^{l}=\mathbf{W}^{l} \mathbf{a}^{l-1}+\mathbf{b}^{l}$
(3) $\mathbf{a}^{l}=f_{l}\left(\mathbf{z}^{l}\right)$
(4) $\ell\left(\mathbf{a}^{L}, y\right)$

Output Layer

$$
\begin{aligned}
& \mathbf{z}^{L}=\mathbf{W}^{L} \mathbf{a}^{L-1}+\mathbf{b}^{L} \\
& \mathbf{a}^{L}=f_{L}\left(\mathbf{z}^{L}\right)
\end{aligned}
$$

Loss: $\quad \ell\left(y, \mathbf{a}^{L}\right)$

$$
\frac{\partial \ell}{\partial \mathbf{z}^{L}}=\frac{\partial \ell}{\partial \mathbf{a}^{L}} \cdot \frac{\partial \mathbf{a}^{L}}{\partial \mathbf{z}^{L}}
$$

If there are n_{L} (output) units in layer L, then $\frac{\partial \ell}{\partial \mathbf{a}^{L}}$ and $\frac{\partial \ell}{\partial \mathbf{z}^{L}}$ are row vectors with n_{L} elements and $\frac{\partial \mathbf{a}^{L}}{\partial \mathbf{z}^{L}}$ is the $n_{L} \times n_{L}$ Jacobian matrix:

$$
\frac{\partial \mathbf{a}^{L}}{\partial \mathbf{z}^{L}}=\left[\begin{array}{cccc}
\frac{\partial a_{1}^{L}}{\partial z_{1}^{L}} & \frac{\partial a_{1}^{L}}{\partial z_{2}^{L}} & \cdots & \frac{\partial a_{1}^{L}}{\partial z_{n}^{L}} \\
\frac{\partial a_{2}^{L}}{\partial z_{1}^{L}} & \frac{\partial a_{2}^{L}}{\partial z_{2}^{L}} & \cdots & \frac{\partial a_{2}^{L}}{\partial z_{n_{L}}^{L}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial a_{n_{L}}^{L}}{\partial z_{1}^{L}} & \frac{\partial a_{n_{L}}^{L}}{\partial z_{2}^{L}} & \cdots & \frac{\partial a_{n_{L}}^{L}}{\partial z_{n_{L}}^{L}}
\end{array}\right]
$$

If f_{L} is applied element-wise, e.g., sigmoid then this matrix is diagonal

Back Propagation

Gradients with respect to parameters

Consider $\frac{\partial \ell}{\partial w_{i j}^{l}}=\frac{\partial \ell}{\partial z_{i}^{l}} \cdot \frac{\partial z_{i}^{l}}{\partial w_{i j}^{l}}=\frac{\partial \ell}{\partial z_{i}^{l}} \cdot a_{j}^{l-1}$
$\frac{\partial \ell}{\partial b_{i}^{l}}=\frac{\partial \ell}{\partial z_{i}^{l}}$
More succinctly, we may write: $\frac{\partial \ell}{\partial \mathbf{w}^{l}}=\left(a^{l-1} \frac{\partial \ell}{\partial \mathbf{z}^{l}}\right)^{\top}$
$\frac{\partial \ell}{\partial \mathbf{b}^{l}}=\frac{\partial \ell}{\partial \mathbf{z}^{l}}$

Forward Equations

(1) $\mathbf{a}^{1}=\mathrm{x}$ (input)
(2) $\mathbf{z}^{l}=\mathbf{W}^{l} \mathbf{a}^{l-1}+\mathbf{b}^{l}$
(3) $\mathbf{a}^{l}=f_{l}\left(\mathbf{z}^{l}\right)$
(4) $\ell\left(\mathbf{a}^{L}, y\right)$

Back-propagation Equations
(1) Compute $\frac{\partial \ell}{\partial \mathbf{z}^{L}}=\frac{\partial \ell}{\partial \mathbf{a}^{L}} \cdot \frac{\partial \mathbf{a}^{L}}{\partial \mathbf{z}^{L}}$
(2) $\frac{\partial \ell}{\partial \mathbf{z}^{l}}=\frac{\partial \ell}{\partial \mathbf{z}^{l+1}} \cdot \mathbf{W}^{l+1} \cdot \frac{\partial \mathbf{a}^{l}}{\partial \mathbf{z}^{l}}$
(3) $\frac{\partial \ell}{\partial \mathbf{w}^{l}}=\left(\mathbf{a}^{l-1} \frac{\partial \ell}{\partial \mathbf{z}^{l}}\right)^{\top}$
(4) $\frac{\partial \ell}{\partial \mathbf{b}^{l}}=\frac{\partial \ell}{\partial \mathbf{z}^{l}}$

Computational Questions

What is the running time to compute the gradient for a single data point?

- As many matrix multiplications as there are fully connected layers
- Performed twice during forward and backward pass

What is the space requirement?

- Need to store vectors $\mathbf{a}^{l}, \mathbf{z}^{l}$, and $\frac{\partial \ell}{\partial \mathbf{z}^{l}}$ for each layer

Can we process multiple examples together?

- Yes, if we minibatch, we perform tensor operations
- Make sure that all parameters fit in GPU memory

Training Deep Neural Networks

- Back-propagation gives gradient
- Stochastic gradient descent is the method of choice
- Regularisation
- How do we add ℓ_{1} or ℓ_{2} regularisation?
- Don't regularise bias terms
- How about convergence?
- What did we learn in the last 10 years, that we didn't know in the 80 s?

Training Feedforward Deep Networks

Layer 1	Layer 2	Layer 3	Layer 4
(Input)	(Hidden)	(Hidden)	(Output)

Why do we get non-convex optimisation problem?
All units in a layer are symmetric, hence invariant to permutations

A toy example

Target is $y=\frac{1-x}{2}$

$$
x \in\{-1,1\}
$$

Squared Loss Function

$$
\begin{aligned}
& \ell\left(a_{1}^{2}, y\right)=\left(a_{1}^{2}-y\right)^{2} \\
& \frac{\partial \ell}{\partial z_{1}^{2}}=2\left(a_{1}^{2}-y\right) \cdot \frac{\partial a_{1}^{2}}{\partial z_{1}^{2}}=2\left(a_{1}^{2}-y\right) \sigma^{\prime}\left(z_{1}^{2}\right)
\end{aligned}
$$

If $x=-1, w_{11}^{2} \approx 5, b_{1}^{2} \approx 0$, then $\sigma^{\prime}\left(z_{1}^{2}\right) \approx 0$
Cross-Entropy Loss Function

$$
\begin{aligned}
& \ell\left(a_{1}^{2}, y\right)=-\left(y \log a_{1}^{2}+(1-y) \log \left(1-a_{1}^{2}\right)\right) \\
& \frac{\partial \ell}{\partial z_{1}^{2}}=\frac{a_{1}^{2}-y}{a_{1}^{2}\left(1-a_{1}^{2}\right)} \cdot \frac{\partial a_{1}^{2}}{\partial z_{1}^{2}}=\left(a_{1}^{2}-y\right)
\end{aligned}
$$

Propagating Gradients Backwards

- Cross entropy loss: $\ell\left(a_{1}^{4}, y\right)=-\left(y \log a_{1}^{4}+(1-y) \log \left(1-a_{1}^{4}\right)\right)$
- $\frac{\partial \ell}{\partial z_{1}^{4}}=a_{1}^{4}-y$
- $\frac{\partial \ell}{\partial z_{1}^{3}}=\frac{\partial \ell}{\partial z_{1}^{4}} \cdot \frac{\partial z_{1}^{4}}{\partial a_{1}^{3}} \cdot \frac{\partial a_{1}^{3}}{\partial z_{1}^{3}}=\left(a_{1}^{4}-y\right) \cdot w_{11}^{4} \cdot \sigma^{\prime}\left(z_{1}^{3}\right)$
- $\frac{\partial \ell}{\partial z_{1}^{2}}=\frac{\partial \ell}{\partial z_{1}^{3}} \cdot \frac{\partial z_{1}^{3}}{\partial a_{1}^{2}} \cdot \frac{\partial a_{1}^{2}}{\partial z_{1}^{3}}=\left(a_{1}^{4}-y\right) \cdot w_{11}^{4} \cdot \sigma^{\prime}\left(z_{1}^{3}\right) \cdot w_{11}^{3} \cdot \sigma^{\prime}\left(z_{1}^{2}\right)$
- Saturation: When the output of an artificial neuron is in the 'flat' part, e.g., where $\sigma^{\prime}(z) \approx 0$ for sigmoid
- Vanishing Gradient Problem: Multiplying several $\sigma^{\prime}\left(z_{i}^{l}\right)$ together makes the gradient ≈ 0, when we have a large number of layers
- For example, when using sigmoid activation, $\sigma^{\prime}(z) \in[0,1 / 4]$

Avoiding Saturation

Rectifier

Initialising Weights and Biases

Initialising is important when minimising non-convex functions. We may get very different results depending on where we start the optimisation.

Suppose we were using a sigmoid unit, how would you initialise the weights?

- Suppose $z=\sum_{i=1}^{D} w_{i} a_{i}$
- E.g., choose $w_{i} \in\left[-\frac{1}{\sqrt{D}}, \frac{1}{\sqrt{D}}\right]$ at random

What if it were a ReLU unit?

- You can initialise similarly

How about the biases?

- For sigmoid, can use 0 or a random value around 0
- For ReLU, should use a small positive constant

Avoiding Overfitting

Deep Neural Networks have a lot of parameters

- Fully connected layers with $n_{1}, n_{2}, . ., n_{L}$ units have at least $n_{1} n_{2}+n_{2} n_{3}+\cdots+n_{L-1} n_{L}$ parameters
- For Problem Sheet 4, you will be asked to train an MLP for digit recognition with 2 million parameters and only 60,000 training images
- For image detection, one of the most famous models, the neural net used by Krizhevsky, Sutskever, Hinton (2012) has 60 million parameters and 1.2 million training images
- How do we prevent deep neural networks from overfitting?

Early Stopping

Maintain validation set and stop training when error on validation set stops decreasing.

What are the computational costs?

- Need to compute validation error
- Can do this every few iterations to
 reduce overhead

What are the advantages?

- If validation error flattens, or starts increasing can stop optimisation
- Prevents overfitting

See paper by Hardt, Recht and Singer (2015)

Add Data: Modified Data

Typically, getting additional data is either impossible or expensive
Fake the data!
Images can be translated slight, rotated slightly, change of brightness, etc.
Google Offline Translate trained on entirely fake data!

Google Research Blog

Add Data: Adversarial Training

Take trained (or partially trained model)
Create examples by modifications "imperceptible to the human eye", but where the model fails

\boldsymbol{x}

$$
\begin{gathered}
y=\text { "panda" } \\
\text { w/ } 57.7 \% \\
\text { confidence }
\end{gathered}
$$

$$
\operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)
$$

$$
\begin{aligned}
& \text { "nematode" } \\
& \text { w/ } 8.2 \% \\
& \text { confidence }
\end{aligned}
$$

$\boldsymbol{x}+$
$\epsilon \operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$
"gibbon"
w/ 99.3%
confidence

Szegedy et al. and Goodfellow et al.

Other Ideas to Reduce Overfitting

Hard constraints on weights
Gradient Clipping
Inject noise into the system
Enforce sparsity in the neural network
Unsupervised Pre-training

Bagging (Bootstrap Aggregation)

Bagging (Leo Breiman - 1994)

- Given dataset $\mathcal{D}=\left\langle\left(\mathbf{x}_{i}, y_{i}\right)\right\rangle_{i=1}^{N}$, sample $\mathcal{D}_{1}, \mathcal{D}_{2}, \cdots, \mathcal{D}_{k}$ of size N from \mathcal{D} with replacement
- Train classifiers f_{1}, \ldots, f_{k} on $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$
- When predicting use majority (or average if using regression)
- Clearly this approach is not practical for deep networks

Dropout

- For input x each hidden unit with probability $1 / 2$ independently
- Every input, will have a potentially different mask
- Potentially exponentially different models, but have "same weights"
- After training whole network is used by halving all the weights

Srivastava, Hinton, Krizhevsky, 2014

Errors Made by MLP for Digit Recognition

Avoiding Overfitting

- Use parameter sharing a.k.a weight tying in the model
- Exploit invariances to translation, rotation, etc.
- Exploit locality in images, audio, text, etc.
- Convolutional Neural Networks (convnets)

Convolutional Neural Networks (convnets)

(Fukushima, LeCun, Hinton 1980s)

Image Convolution

Source: L. W. Kheng

Convolution

In general, a convolution filter f is a tensor of dimension $W_{f} \times H_{f} \times F_{l}$, where F_{l} is the number of channels in the previous layer

Strides in x and y directions dictate which convolutions are computed to obtain the next layer

Zero-padding can be used if required to adjust layer sizes and boundaries

Typically, a convolution layer will have a large number of filters, the number of channels in the next layer will be the same as the number of filters used

Source: Krizhevsky, Sutskever, Hinton (2012)

Single depth slice

Sources: Krizhevsky, Sutskever, Hinton (2012); Wikipedia

\cdots			4	$\underline{7}$				-	,	*	=		2			4
	9	\square	7	1		7		+	E	7	-		,	7	\square	3
		2		\square	7			=				$=$	\square	-	1	1
1								1	-				7		1	
		\%	1		\%	II	I					1				
		IT	1					\square								

Source: Krizhevsky, Sutskever, Hinton (2012)

Source: Zeiler and Fergus (2013)

Source: Zeiler and Fergus (2013)

Convolutional Layer

Suppose that there is no zero padding and strides in both directions are 1

$$
\begin{aligned}
& z_{i^{\prime}, j^{\prime}, f^{\prime}}^{l+1}=b_{f^{\prime}}+\sum_{i=1}^{W_{f^{\prime}}} \sum_{j=1}^{H_{f^{\prime}}} \sum_{f=1}^{F_{l}} a_{i^{\prime}+i-1, j^{\prime}+j-1, f}^{l} w_{i, j, f}^{l+1, f^{\prime}} \\
& \frac{\partial z_{i^{\prime}, j^{\prime}, f^{\prime}}^{l+1}}{\partial w_{i, j, f}^{l+1, f^{\prime}}}=a_{i^{\prime}+i-1, j^{\prime}+j-1, f}^{l} \\
& \frac{\partial \ell}{\partial w_{i, j, f}^{l+1, f^{\prime}}}=\sum_{i^{\prime}, j^{\prime}} \frac{\partial \ell}{\partial z_{i^{\prime}, j^{\prime}, f^{\prime}}^{l+1}} \cdot a_{i^{\prime}+i-1, j^{\prime}+j-1, f}^{l}
\end{aligned}
$$

Convolutional Layer

Suppose that there is no zero padding and strides in both directions are 1

$$
\begin{aligned}
z_{i^{\prime}, j^{\prime}, f^{\prime}}^{l+1} & =b_{f^{\prime}}+\sum_{i=1}^{W_{f^{\prime}}} \sum_{j=1}^{H_{f^{\prime}}} \sum_{f=1}^{F_{l}} a_{i^{\prime}+i-1, j^{\prime}+j-1, f}^{l} w_{i, j, f}^{l+1, f^{\prime}} \\
\frac{\partial z_{i^{\prime}, j^{\prime}, f^{\prime}}^{l+1}}{\partial a_{i, j, f}^{l}} & =w_{i-i^{\prime}+1, j-j^{\prime}+1, f}^{l+1, f^{\prime}} \\
\frac{\partial \ell}{\partial a_{i, j, f}^{l}} & =\sum_{i^{\prime}, j^{\prime}, f^{\prime}} \frac{\partial \ell}{\partial z_{i^{\prime}, j^{\prime}, f^{\prime}}^{l+1}} \cdot w_{i-i^{\prime}+1, j-j^{\prime}+1, f}^{l+1, f^{\prime}}
\end{aligned}
$$

Max-Pooling Layer

Let $\Omega\left(i^{\prime}, j^{\prime}\right)$ be the set of (i, j) pairs in the previous layer that are involved in the maxpool

$$
\begin{aligned}
s_{i^{\prime}, j^{\prime}}^{l+1} & =\max _{i, j \in \Omega\left(i^{\prime}, j^{\prime}\right)} a_{i, j}^{l} \\
\frac{\partial s_{i^{\prime}, j^{\prime}}^{l+1}}{\partial a_{i, j}^{l}} & =\mathbb{I}\left((i, j)=\underset{\tilde{i}, \tilde{j} \in \Omega\left(i^{\prime}, j^{\prime}\right)}{\operatorname{argmax}} a_{\tilde{i}, \tilde{j}}^{l}\right)
\end{aligned}
$$

ResNets : Why more layers can give worse models

Source: He, Zhang, Ren and Sun (2015)

ResNets Architecture

Source: He, Zhang, Ren and Sun (2015)

ResNets Results

Source: He, Zhang, Ren and Sun (2015)

ResNets Results

Source: He, Zhang, Ren and Sun (2015)

Next Week

- Practial will be about training neural networks on MNIST dataset
- Time permitting, implement one problem on the sheet in tensorflow
- Start Unsupervised Learning
- Revise eigenvectors, eigenvalues (Problem 5 on Sheet 3)

