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This paper proposes a novel variant of quantum-behaved particle swarm optimization
(QPSO) algorithm with the local attractor point subject to a Gaussian probability distri-
bution (GAQPSO). The local attractor point in QPSO plays an important in that deter-
mining the convergence behavior of an individual particle. As such, the mean value
and standard deviation of the proposed Gaussian probability distribution in GAQPSO
are carefully selected. The distributions and diversities of the local attractor points in
GAQPSO and QPSO are evaluated and compared. For the purpose of comparison, two
variants of the GAQPSO algorithm are proposed by using a mutation probability and
other types of probability distribution. The GAQPSO has been comprehensively evalu-
ated on the suite of CEC2005 benchmark functions, and the experimental results are
compared with those of the PSO and QPSO algorithms based on different probability
distributions. It is shown by the results that the GAQPSO algorithm is an effective
approach that can improve the QPSO performance considerably, that is, the GAQPSO
algorithm is less likely to be stuck in local optima and hence it can achieve better solu-
tions in most cases.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm based on the metaphor of so-
cial interaction and communication such as bird flocking and fish schooling [1,2]. PSO algorithms can be easily implemented
and is computationally inexpensive, having to adjust only a small number of parameters. In PSO, the particles, representing
the potential solutions, move around in a multidimensional search space with a velocity constantly updated by the particle’s
own experience and the experience of the particle’s neighbors or the experience of the whole swarm. PSO shares many
similarities with evolutionary algorithms, and has been proven to have robust performance over a variety of difficult
optimization problems [3].

In the past a few years, many improved PSO algorithms have been proposed [4–11]. Different kinds of probability
distributions to generate random numbers have been used in PSO algorithm, such as Gaussian, Cauchy, Levy and expo-
nential distributions. In [12], Kennedy replaced the particle update rule with sampling from a Gaussian distribution with
the mean being the centroid of the personal and neighborhood best positions of each particle, and the standard
. All rights reserved.
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deviation being the gap between them. In [13,14], Kennedy used double-exponential distribution and other versions of
Gaussian probability distribution in PSO to achieve good results. Richer and Blackwell pointed out that the tails of
Gaussian distribution function are too thin to enable escape from stagnation and then proposed the Levy distribution
in PSO to improve performance of the bare bones PSO so that it becomes effectively equivalent to standard PSO [15].
In [16–19], Krohling and Coelho has studied the influence of different probability distributions to generate the weighting
coefficients of PSO and they found that Gaussian, Cauchy, and the exponential probability distribution could improve the
performance of the canonical PSO. In [20], Krohling proposed the jump strategy, which is implemented based on the
Gaussian or the Cauchy probability distribution in the bare bone PSO. Higashi and Iba designed the Gaussian mutation
in PSO to improve the search ability [21].

Recently, inspired by quantum mechanics and trajectory analysis of PSO [22], Sun et al. used a strategy based on a
quantum d potential well model to sample around the previous best points[23], and later introduced the mean best
position into the algorithm and proposed a new version of PSO, quantum-behaved particle swarm optimization
(QPSO)[24,25]. The iterative equation of QPSO is very different from that of PSO. Besides, unlike PSO, QPSO needs
no velocity vectors for particles, and also has fewer parameters to adjust, making it easier to implement. The QPSO
algorithm has been shown to successfully solve a wide range of continuous optimization problems and many efficient
strategies have been proposed to improve the algorithm [26–30]. Since QPSO was proposed, the Gaussian and Cauchy
probability distribution have been imported to generate the random numbers in order to avoid premature conver-
gence. In [31–33], the random sequences in QPSO were generated using the absolute value of the Gaussian probability
distribution with zero mean and unit variance. Based on the characteristic of QPSO, the variables of the global best and
mean best positions are mutated with Cauchy distribution in [34], and an adaptive QPSO version was proposed in [35].
A set of different mutation operations on the personal best positions of the particles in QPSO were studied in [36].
Most of these mutation operations were executed on the global best position, the mean best position or the personal
best positions. Some of the operations were used to change the sampling methods of random numbers in QPSO algo-
rithm. Few interests were focused on the local attractor point of the QPSO algorithm. Therefore, this paper concen-
trates on the mutation operator for the local attractor point and proposed a QPSO with Gaussian distributed
attractor (GAQPSO). The GAQPSO algorithm, along with QPSO and other variants of PSO, is tested on a set of
CEC2005 benchmark functions. The proposed method outperforms its competitors in most cases, as shown by the
experimental results.

The rest of the paper is organized as follows. Sections 2 and 3 describe PSO and QPSO, respectively. Section 4 presents the
idea of Gaussian distribution on the local attractor point, and an analysis of distributions and the diversities of the points are
provided, followed by the proposed GAQPSO algorithm and two variants of it. Section 5 experimentally compares the
GAQPSO algorithm with various existing PSO algorithms and some variants of the GAQPSO using a set of benchmark func-
tions. Finally, general conclusions are drawn in Section 6.
2. Particle swarm optimization

In the original PSO with M particles, each particle is represented as a potential solution to a problem in a D-dimensional

space and its position at the tth iteration is denoted as Xt
i ¼ Xt

i;1; . . . ;Xt
i;j; . . . ;Xt

i;D

h i
. Each particle remembers its own previous

best position and its velocity along each dimension as Vt
i ¼ ½V

t
i;1; . . . ;Vt

i;j; . . . ;Vt
i;D�. The velocity and position of particle i at

(t + 1)th iteration are updated by the following equations:
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where c1 and c2 are two positive constants, known as the acceleration coefficients; rt
i;j and Rt

i;j are two uniformly distrib-

uted random numbers on the range (0,1) for the jth dimension of particle i. Vector Pt
i ¼ Pt

i;1; . . . ; Pt
i;j; . . . Pt

i;D

h i
is the posi-

tion with the best fitness found so far for the ith particle, which is called personal best (pbest) position. And vector

Gt ¼ Gt
1; . . . ;Gt

j ; . . . Gt
D

h i
records the best position discovered by the swarm so far, known as the global best (gbest) posi-

tion. Xt
i;j;V

t
i;j and Pt

i;j are the jth dimension of vector of Xt
i ;V

t
i and Pt

i , respectively. The parameter w is the inertia weight
used for the balance between the global and local search abilities [2]. Usually w decreases linearly with the iteration
generations as:
w ¼ wmax � t � ðwmax �wminÞ=T; ð3Þ
where wmax and wmin are the maximum and minimum weights and usually set to 0.9 and 0.4, respectively [2]. T is a prede-
fined maximum number of iterations, and t represents the number of current iteration. Let f be the objective function to be
minimized. The PSO algorithm can be described by the following pseudocode.
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Pseudocode of the PSO algorithm:
Randomly generate an initial population with positions and velocities
Repeat

For i = 1 to population size do
if f(Xi) < f(Pi) then Pi = Xi;
G = arg min (f(Pi));
For j = 1 to D do

Velocity update with Eq. (1);
Position update with Eq. (2);

End//end for loop j
End//end for loop i

Until termination criterion is met.
3. Quantum-behaved particle swarm optimization (QPSO)

Trajectory analyses in [22] demonstrated the fact that convergence of PSO algorithm may be achieved if each particle con-
verges to its local attractor pt

i ¼ pt
i;1; p

t
i;2; . . . pt

i;j; . . . ; pt
i;D

h i
with coordinates
pt
i;j ¼
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or
pt
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i;j þ ð1�uÞGt
j ; ð5Þ
where
u ¼
c1rt

i;j

c1rt
1j þ c2Rt

i;j

: ð6Þ
Assume that a PSO system is a quantum system, and each particle has a quantum behavior with its quantum state for-
mulated by a wave functionw. jwj2 is the probability density function of the position of the particle. Inspired by analysis of
convergence of the traditional PSO in [22], we further assume that, at iteration t, particle i moves in D-dimensional space
with a d potential well centered at pt

i;j on the jth dimension. Correspondingly, the wave function at iteration t + 1 is
wðXtþ1
i;j Þ ¼

1ffiffiffiffiffi
Lt
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where Lt
ij is the standard deviation of the double exponential distribution, varying with iteration number t. Hence, the prob-

ability density function Q is a double exponential distribution as follows
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and thus the probability distribution function F is
F Xtþ1
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Using Monte Carlo method, we can obtain the jth component of position Xi at iteration t + 1 as:
Xtþ1
i;j ¼ pt
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1
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where utþ1
i;j is a random number uniformly distributed over (0,1). The value of Lt

i;j is calculated as:
Lt
i;j ¼ 2a Ct
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where Ct is known as the mean best (mbest) position defined as the mean of the pbest positions of all particles. That is
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where M is the population size and Pt
i is the personal best position of particle i. Hence, the position of the particle updates

according to the following equation:
Xtþ1
i;j ¼ pt

i;j � a Ct
j � Xt
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��� ��� ln 1=utþ1
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� �
; ð13Þ



3766 J. Sun et al. / Applied Mathematics and Computation 218 (2011) 3763–3775
where parameter a is known as the contraction–expansion (CE) coefficient, which can be tuned to control the convergence
speed of the algorithms. Generally, we call the PSO with Eq. (13) quantum-behaved particle swarm Optimization (QPSO),
where parameter a must be set as a < 1.781 to guarantee convergence of the particle [37]. When using QPSO in practical
applications, the CE coefficient should be properly controlled. Generally, there are two methods to control this parameter.
One is fixing the value of a during the search process. In [37], it is shown that setting a to be a number in the (0.5, 0.8) inter-
val can generate satisfactory results for most benchmark functions. Particularly, when a = 0.75, QPSO can obtain good per-
formance in general. However, the method fixing a is sensitive to population size and maximum number of iterations. If
these two parameters are changed, the value of a to get desirable algorithmic performance may be very different. The
method that can surmount this problem is to use a time-varying CE coefficient. In [37], it is suggested that decreasing
the value of a linearly from a1 to a0(a0 < a1) in the course of the search process is a simple but effective way. In this approach,
the value of a is computed by:
a ¼ a0 þ ðT � tÞ � ða1 � a0Þ=T; ð14Þ
where a1 and a0 are the final and initial values of a, respectively, T is the maximum number of iterations, t is the
current iteration number. In [37], it is suggested that setting a1 larger than 0.8 and smaller than 1.2 while a0 smaller
than 0.6 can generate the acceptable algorithmic performance. In most of the papers in the literature on QPSO and in
[37], it recommended that linearly decreasing a0 from 1.0 to 0.5 can lead the QPSO algorithm to good performance in
general.

QPSO has some characteristics that are different from those of PSO. First of all, the introduced exponential distribu-
tion of positions makes QPSO global convergent. Secondly, the introduction of the mean best position into QPSO is an-
other improvement of QPSO. In original PSO, each particle converges to the global best position independently. On the
other hand, in the QPSO with mean best position, each particle cannot converge to global best position without consid-
ering its colleagues. It is indicated by Eq. (13) that the distance between particle’s current position and the mbest posi-
tion determines the position distribution of the particle for the next iteration. If the personal best positions of several
particles are far from the global best position Gt (these particle called lagged particles) while those of the other particles
are near the global best position, the mbest position may be pulled away from Gt by lagged particles. When the lagged
particles are chasing after their colleagues, say converging to Gt, the mbest position will be approaching Gt slowly. The
distances between the mbest position and the personal best positions of particles near Gt do not decrease quickly, which
can decelerate the convergence of the particles near Gt and make them explore globally around Gt until the lagged ones
are close to Gt. Therefore, in the QPSO with mean best position, the particle swarm does never abandon any lagged par-
ticle and thus seems to be more intelligent and more cooperative social organism. In a word, the wait among particles
enhances the global search ability of QPSO greatly.

Fig. 1 illustrates the waiting phenomena among the particles in QSPO. In Fig. 1, the big circle with black background rep-
resents the particle with the global position, the little circles with white background and black dots represent the other par-
ticles, and the little circles with white background and vertical lines represents the lagged particles; the arrows around the
little circles represent the possible directions of the particles; the big arrowhead points to the direction in which the particle
moves with high probability. In the PSO algorithm, each particle converges to the global best position independently without
waiting its colleagues so that the particle flies in the direction toward the global best position with a high probability, as
shown by Fig. 1(a). The influence of the lagged particles on the other particles is very little since the only linkage among
the particles is the global best position. If the lagged particles fail to find out positions better than the current gbest position
during a certain number of iterations, their influence on the other particle is null. On the other hand, in QPSO, the lagged
particles exert greater influence on the other particles through the mbest position except for the gbest position, and thus
the particles around the gbest position may fly in any direction, as shown by Fig. 1(b). However, they move in the direction
toward the gbest position with higher probability since the overall tendency of the particles’ movements is convergence to
the gbest position.
(b) 

OSPQ

(a)

OSP

Fig. 1. The movements of particles in PSO and QPSO; (a) PSO (b) QPSO.
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The procedure for implementing the QPSO is given by the following pseudo-codes:

Initialize the population size (M), the positions and the dimensions of the particles;
Fort = 1 to Maximum Iteration T

Compute the mean best position C by Eq. (12);
a = (a1 � a0) � (T � t)/T + a0;
For i = 1 to population size M

If f(Xi) < f(Pi) then Pi = Xi; Endif
G = argmin (f(Pi));;
For j = 1 to D

u = rand (0,1); u = rand (0,1);
pij = u � Pij + (1 � u)Gj;
If (rand (0,1) > 0.5)

Xij = pij + a � abs (Cj � Xij) � log (1/u);
Else

Xij = pij � a � abs (Cj � Xij) � log (1/u);
Endif

Endfor// end for loop j
Endfor//end for loop i

Endfor//end for loop t
4. QPSO with Gaussian distributed attractor (GAQPSO)

4.1. Analysis of the local attractor point

It is evident from the Eq. (13) that each component of the particle’s updated position is determined by pt
i;j and the dis-

turbing part a Ct
j � Ct

i;j

��� ��� ln 1=utþ1
i;j

� �
. It was proved in [37] that if a < 1.781, the disturbing part converges to zero so that each

component of particle’s position converges to pt
i;j. Like the original PSO algorithm, convergence of the particles’ positions to

their local stochastic attractors can guarantee the convergence of the algorithm [37]. Eq. (5) indicates that pt
i , the local sto-

chastic attractor of particle i, lies in the hyper-rectangle with Pt
i and Gt being the two ends of its diagonal so that it moves

following Pt
i and Gt. In fact, as the particles are converging to their own local attractors, their personal best positions are con-

verging to the global best position, leading the QPSO algorithm to converge. As a result, the local attractor of each particle
will gather toward the global best position, which in turn makes also the current position of the particle converge to the
global best position. Thus we may find that the global best position guides the movement of pt

i , which influence the conver-
gence behavior of the particle’s current position. If the global best position is trapped into a local optimal point, pt

i , the par-
ticle’s current position Xt

i will also be dragged into that point, leading the algorithm to premature convergence. Therefore, it
may happen that using other probability distribution, instead of the uniform distribution as in Eq. (5), to determine the local
attractor may be a way of improving the QPSO algorithm.

4.2. The local attractor point with Gaussian probability distribution

As the local attractor plays an important role in the QPSO algorithm, the misleading local attractor point may make
the QPSO algorithm trap into the local optimal solution frequently. Here we propose to use Gaussian distribution to
determine the local attractor. The mean value and the standard deviation of Gaussian distribution are the key parameters,
which determine the shape of the distribution. In the proposed method, we denote the new local attractor point as np.
The value of the original defined local attractor point in QPSO is chosen as the mean of the distribution. The standard
deviation is equal to the distance between the mean best particle and the personal best particle, that is Ct � Pt

i . According
to the definition of the mbest position, at the early stage of the search, the particles may be scattered in a wider space,
and then the defined standard deviation is relatively larger. During the search procedure, as the particles converge, Pt

i

careens toward Ct, and the standard deviation declines to zero. The proposed method can diversify the QPSO swarm
through the new local attractor point and improve the performance in escaping the local minima. The new local attractor
point np is generated by
npt
i ¼ N pt

i ;C
t � Pt

i

� �
: ð15Þ
Therefore the particle position is updated according to the following equation:
Xtþ1
i;j ¼ npt

i;j � a Ct
j � Xt

i;j

��� ��� ln 1=utþ1
i;j

� �
; ð16Þ
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where a and ut
i;j have the same meanings as those in QPSO algorithm. We call the proposed method Gaussian distributed

local attractor QPSO (GAQPSO) algorithm. The procedure for implementing the GAQPSO is given by the following pseudo-
codes.

Initialize the population size, the positions and the dimensions of the particles;
Fort = 1 to Maximum Iteration T

Compute the mean best position C by Eq. (12);
a = (a1 � a0) � (T � t)/T + a0;
For i = 1 to population size M

If f(Xi) < f(Pi) then Pi = Xi; Endif
Find the gbes position G;
For j = 1 to D

u = rand (0,1); u = rand (0,1);
pij = u � Pij + (1 � u)Gj;
Generate the new local attractor pointnpi by Eq. (15)
If (rand (0,1) > 0.5)

Xij = npij + a � jCj � Xijj � log (1/u);
Else

Xij = npij � a � jCj � Xijj � log (1/u);
Endif

Endfor// end for loop j
Endfor//end for loop i

Endfor//end for loop t
4.3. Analysis of distributions and the diversities

To illustrate the details of the distribution of the local attractor point in the QPSO and GAQPSO during the search process,
we herein take two 2-dimensional test functions as an example. One is Sphere function and the other is Griewank function.
Sphere function is a unimodal function while Griewank function is a multimodal one.
Sphere function : f 1ðxÞ ¼
XD

i¼1

x2
i ; with � 100 6 xi 6 100 ð17Þ

Griewank function : f 4ðxÞ ¼
1

4000

XD

i¼1

x2
i �

Yn

i¼1

cos
xiffiffi

i
p
� 	

þ 1; with � 600 6 xi 6 600: ð18Þ
Firstly, QPSO algorithm and GAQPSO algorithm are used to solve the two minimization problems. The population size is 50
and the maximum number of iterations is 10 for both algorithms. The distributions of the local attractor points in QPSO and
GAQPSO during the search process are observed and shown in Fig. 2. In Fig. 2, the square points represent the local attractor p
and the circle points represent the new local attractor np and they are plotted from initialization to the final iteration. It can
be seen from Fig. 2 that whether in solving the unimodal function or the multimodal function, GAQPSO algorithm produces a
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Fig. 2. Distribution comparison between QPSO and GAQPSO algorithm on Sphere function (a) and Griewank function (b) in 2 dimensions.
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wide range of attractor points than QPSO algorithm. Therefore, GAQPSO may have stronger abilities to lead the swarm escape
from the local minima.

Secondly, as mentioned above, GAQPSO could diversify the population as an overall result, which is achieved by diversi-
fication of the local attractor points. Herein we use a diversity measure to analyze the diversity changes of local attractor
points in QPSO and GAQPSO. The diversity measure for D-dimensional numerical problems is the ‘‘distance-to-average-
point’’ measure defined as [38]
Fig
diversityðPÞ ¼ 1
LM
�
XM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

j¼1

ðsij � sjÞ2
vuut ; ð19Þ
where L is the length of the diagonal in the search space, M is the population size, D is the dimensionality of the problem, sij is
the jth value of the ith individual, and sj is the jth value of the average point. This diversity measure is dependent on swarm
size, the dimensionality of the problem as well as the search range in each dimension. Low population diversity indicates
that the swarm has clustered in a small region. Conversely, high population diversity indicates that the swarm has scattered
in a wide region. Low population diversity is always taken the blame for the local convergence. However, high diversity may
cause the algorithm not to converge. Thereupon the diversity should be considered together with the problem and the search
process of the algorithm.

In this test, the population size is 20, the dimension is 30, and the maximum number of iterations is 2000 for QPSO and
GAQPSO. Both the two algorithm are used to solve the two minimization problems. The diversity of the attractor points is
recorded during the search process. For QPSO, the diversity is calculated as:
diversityðpÞ ¼ 1
LM
�
XM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

j¼1

ðpij � pjÞ
2

vuut ð20Þ
and for GAQPSO, the diversity is calculated as:
diversityðnpÞ ¼ 1
LM
�
XM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

j¼1

ðnpij � npjÞ2
vuut : ð21Þ
Each algorithm was tested 50 times on each function. Fig. 3 compares the diversities between the QPSO and GAQPSO algo-
rithm on Sphere function and Griewank function with dimensionality 30. The graph for both algorithms is an average over 50
test runs. We observe that, for both the functions the diversity of GAQPSO are higher than that of QPSO during the early
phase of the search process and this is helpful for the attractor points located in a wide search space, which can prevent
the algorithm from being trapped in the local minima. As far as Sphere function is concerned, since it is a simple unimodal
function, during the later stage of search the low diversity can help reach high-precision solutions. From Fig. 3(a), it can be
seen that GAQPSO has lower diversity in the later stage than QPSO. As for Griewank function, which is a difficult multimodal
function, keeping diversity at certain level during the later phase of search is helpful to find better regions. As can be seen
from Fig. 3(b), GAQPSO has higher diversity than QPSO in the final phase. The disadvantage of keeping high diversity in the
final phase is that the convergence speed may be slowed.
0 500 1000 1500 2000
10-20

10-15

10-10

10-5

100

Iteration

L
og

(D
iv

er
si

ty
)

GAQPSO
QPSO

0 500 1000 1500 2000

10-10

10-8

10-6

10-4

10-2

Iteration

L
og

(D
iv

er
si

ty
)

GAQPSO
QPSO

(a) (b) 

. 3. Diversity comparisons between the QPSO and the GAQPSO algorithm on Sphere function (a) and Griewank function (b) in 30 dimensions.
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4.4. Variants of GAQPSO

4.4.1. GAQPSO under a certain mutation probability
In this section, we propose a variant of GAQPSO by using a mutation probability which is used to determine whether the

local attractor is determined by Eq. (5) or Eq. (15) during the iterative process. In this variant of GAQPSO, a random number
uniformly distributed on (0,1) is generated for each particle during each iteration. If the random number is smaller than the
given mutation probability pm, then the local attractor of the particle is determined by Eq. (15); otherwise by Eq. (5). Thus, if
pm is set to be 1, the algorithm is essentially the GAQPSO algorithm. On the other hand, if pm is zero, the algorithm is identical
to the original QPSO. As a result, the update of the particle’s position in the proposed variant of GAQPSO is measured by the
following procedure:

IF rand (0,1) < pm Then Xij = npij ± a � jCj � Xijj � log (1/u);
ELSE Xij = pij ± a � jCj � Xijjlog (1/u); ENDIF

where pm is the user-defined mutation probability.

4.4.2. GAQPSO using other methods to set up the standard deviation
In order to investigate the effectiveness of the proposed standard deviation in GAQPSO, we present two different

strategies for generating the Gaussian distribution that is used to generate the local attractor of each particle during
the search process. The mean value for both strategies is still pt

i . The standard deviation for the first strategy is set
to the distance between Ct and the middle point between Pt

i and Gt, and for the second strategy it is set to the distance
between Ct and Gt. The algorithms based on the two strategies are denoted as GAQPSO-Type I and GAQPSO-Type II,
respectively.
GAQPSO� Type I : npt
i ¼ N pt

i ;C
t � At

i

� �
;At

i ¼ 0:5 � Pt
i þ Gt� �

ð22Þ
GAQPSO� TypeII : npt

i ¼ N pt
i ;C

t � Gt� �
: ð23Þ
5. Experimental results and analysis

5.1. Benchmark functions and experimental setup

In this section, GAQPSO is used to optimize the functions F1 to F12 of the CEC2005 benchmark functions proposed by
Suganthan et al. [39], in order to determine whether GAQPSO algorithm can be as effective as QPSO and other variants of
PSO, including PSO with inertia weight (PSO-In) [2], PSO with constriction factor (PSO-Co), standard PSO [22], Gaussian
PSO [17], Gaussian Bare Bones PSO [12], Levy PSO [15], dynamic multiple swarm PSO [40] and fully-informed particle swarm
[11]. The expressions of the benchmarks function are not provided in this text due to the space limitation. One can refer to
reference [30] and find the MATLAB source code on Suganthan’s website. Of the used twelve benchmark functions, F1 to F6

are unimodal functions, F7 to F12 are functions with many local minima. The magnitude of upper and lower bounds as well as
the initialization ranges of benchmark functions can also be found in [39].

Each algorithm ran 100 times on each problem. At each run, the particles used in the algorithm start in new and ran-
domly-generated positions. The parameters of each algorithm are chosen as follows:

Population size: M = 20;
Problem dimension: D = 30;
Maximum iteration: T = 3000.

For the GAQPSO algorithms and QPSO, the CE coefficient decreases linearly from 1.0 to 0.5 during the search process
according to equation (14), that is, a1 = 1.0 anda0 = 0.5. The other parameter configurations of the other PSO variants were
set according to their corresponding reference.

The best fitness value for each run was recorded and then the average best fitness value can be compared with one an-
other, and the standard deviations of the best fitness values can be calculated.

5.2. Experimental results

5.2.1. Comparison between GAQPSO and other PSO Variants
The mean best fitness values and standard deviations by the algorithms on each problem are presented in Table 3. For a

thorough comparison the t-test has also been carried out. Table 1 shows the t values on every function of this unpaired test
with a significance level of 0.05 between GAQPSO and another algorithm. In Table 2, the signs that GAQPSO performs sig-
nificantly better than or significantly worse than the compared algorithm are given respectively.



Table 1
Experimental results of mean best fitness values and standard deviations by algorithms and problems (best results in bold).

Algorithms F1 F2 F3 F4 F5 F6

In-PSO (Std. Dev.) 3.8773e�013 785.0932 3.9733e + 07 1.1249e + 04 6.0547e + 03 263.7252
(1.6083e�012) (661.2154) (4.6433e + 07) (5.4394e + 03) (2.0346e + 03) (437.4145)

Co-PSO 1.5713e�026 0.1267 8.6472e + 06 1.3219e + 04 7.6892e + 03 123.0243
(1.4427e�025) (0.3796) (9.1219e + 06) (6.0874e + 03) (2.3917e + 03) (266.2520)

Standard PSO 8.2929e�026 78.2831 6.6185e + 06 1.3312e + 04 6.2884e + 03 153.5178
(1.2289e�025) (52.3272) (3.0124e + 06) (4.1076e + 03) (1.4318e + 03) (246.1049)

Gaussian PSO 7.3661e�026 0.0988 1.1669e + 07 2.3982e + 04 8.0279e + 03 150.7872
(5.9181e�025) (0.3362) (2.5153e + 07) (1.2512e + 04) (2.3704e + 03) (303.3368)

Gaussian Bare 1.7869e�025 16.8751 7.7940e + 06 1.1405e + 04 9.5814e + 03 144.1377
Bones PSO (8.4585e�025) (16.2021) (4.3240e + 06) (6.7712e + 03) (3.0227e + 03) (165.2616)

PSO-E 5.2531e�024 20.2750 6.2852e + 06 8.2706e + 03 7.2562e + 03 189.8292
(2.2395e�023) (15.2414) (2.8036e + 06) (3.6254e + 03) (1.8666e + 03) (375.8636)

Lévy PSO 1.1880e�024 36.9986 1.7366e + 07 7.4842e + 03 8.2543e + 03 133.9526
(1.1455e�023) (29.1360) (1.9001e + 07) (6.6588e + 03) (2.2297e + 03) (293.8460)

CLPSO 3.5515e�008 5.3394e + 03 5.1434e + 07 1.6069e + 04 5.4958e + 003 117.3987
(2.2423e�008) (1.2207e + 03) (1.3489e + 07) (3.4776e + 03) (888.9618) (54.8846)

DMS-PSO 7.2525e�006 844.9978 1.2841e + 07 2.7125e + 003 2.9189e + 003 296.0911
(2.2114e�005) (350.2620) (4.9745e + 06) (972.8958) (811.5164) (347.1682)

FIPS 3.3157e�027 75.4903 1.0409e + 07 1.0529e + 04 4.3452e + 003 188.8304
(2.5732e�028) (76.1305) (4.4786e + 06) (3.8510e + 03) (978.6149) (294.0374)

QPSO 1.2672e�027 120.6051 4.4257e + 06 4.0049e + 03 3.3684e + 003 88.0494
(3.7147e�028) (62.2340) (2.3302e + 06) (2.7218e + 03) (975.6551) (159.7481)

GAQPSO 8.5433e�027 15.2620 4.1685e + 06 2.3503e + 03 2.8864e + 03 56.6257
(1.6695e�027) (16.9682) (1.8723e + 06) (1.8573e + 03) (732.4688) (90.6767)

GAQPSO-Type I 7.6789e�027 113.2691 1.1177e + 07 3.0692e + 03 2.5286e + 03 72.3946
(1.9185e�027) (83.1571) (6.3152e + 06) (1.9989e + 03) (947.8740) (110.9107)

GAQPSO-Type II 4.8949e�012 2.5788e + 03 3.6754e + 07 7.7058e + 03 2.6231e + 03 116.9730
(2.2871e�011) (1.9398e + 03) (3.1630e + 07) (1.5084e + 03) (935.7576) (148.0414)

Algorithms F7 F8 F9 F10 F11 F12

In-PSO (Std. Dev.) 0.9907 0.0414 39.5528 239.5814 41.0529 3.6785e + 04
(4.7802) (0.2393) (16.1654) (72.2521) (6.0318) (4.0943e + 04)

Co-PSO 0.0255 5.1120 96.7296 171.6488 36.0339 9.9648e + 03
(0.0327) (4.5667) (28.0712) (58.5713) (7.2659) (1.6158e + 04)

Standard PSO 0.0218 0.2744 79.1219 128.9865 30.3424 1.8178e + 04
(0.0165) (0.6795) (20.2619) (32.3662) (2.7409) (1.4866e + 04)

Gaussian PSO 0.0224 2.7722 103.6245 184.2657 33.5448
(0.0178) (1.4603) (28.6113) (57.3675) (6.5823) (6.5610e + 04)

Gaussian Bare 0.0205 3.5460 80.9496 164.2914 29.8088 3.4327e + 04
Bones PSO (0.0208) (6.1929) (22.0621) (72.8542) (3.2671) (6.2435e + 04)

PSO-E 0.0493 3.5881 66.5112 163.7187 29.2666 1.7161e + 04
(0.0538) (5.5286) (20.9853) (55.0921) (3.2083) (1.0862e + 04)

Lévy PSO 0.0446 2.2168 74.0446 154.3838 28.9923 1.6282e + 04
(0.1182) (1.3575) (21.6913) (76.3070) (5.0212) (2.5184e + 04)

CLPSO 2.4151 1.1582e�04 0.6990 151.2854 30.9500 5.4400e + 04
(0.7533) (6.7878e�05) (0.7983) (23.4628) (1.6697) (1.2508e + 04)

DMS-PSO 0.3985 0.1213 39.9694 112.8426 25.8903 1.3714e + 04
(0.2502) (0.3716) (10.2384) (71.2957) (3.1488) (8.8995e + 03)

FIPS 0.0330 0.3843 64.6289 198.3699 35.4586 4.6334e + 04
(0.0464) (0.5713) (14.5907) (21.7958) (2.7216) (2.4690e + 04)

QPSO 0.0208 (0.0130) 2.0961e�14 29.9218 118.4549 28.1887 1.2938e + 04
(1.9099e�14) (10.5736) (53.0216) (6.2233) (1.3787e + 04)

GAQPSO 0.0161 1.5632e�014 25.4653 169.7682 33.7577 6.8676e + 03
(0.0141) (3.1128e�015) (20.9819) (32.8371) (7.6365) (6.3181e + 03)

GAQPSO-Type I 0.0152 1.9895e�014 97.9204 202.1704 40.6849 2.4744e + 04
(0.0125) (5.5316e�015) (46.1955) (13.7047) (1.3981) (2.1769e + 04)

GAQPSO-Type II 0.0700 5.7137e�07 124.9709 215.3553 41.1852 3.4988e + 04
(0.0571) (1.2202e�06) (45.8213) (19.1182) (1.1642) (3.3402e + 04)
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Table 2
t-testa value for all the twelve functions: comparison of GAQPSO with other algorithms (GAQPSO-other algorithm).

Algorithms F1 F2 F3 F4 F5 F6

PSO-In �2.4108b �11.6388b �7.6531b �15.4821b �14.6516b �4.6361b

PSO-Co �0.4969c 8.9176d �4.8096b �17.0772b �19.2009b �2.3607b

Standard PSO �6.0525b �11.4564b �6.9076b �24.3162b �21.153b �3.6942b

Gaussian PSO �1.1003c 8.9345d �2.9737b �17.1014b �20.7236b �2.9741b

Gaussian Bare Bones PSO �2.0115b �0.6876c �7.6943b �12.896b �21.5261b �4.6425b

PSO-E �2.3418b �2.1979b �6.2786b �14.5338b �21.7927b �3.4451b

Lévy PSO �1.0296c �6.4468b �6.9122b �7.4265b �22.872b �2.5145b

CLPSO �15.8386b �43.6112b �34.7073b �34.797b �22.6539b �5.7337b

DMS-PSO �3.2796b �23.6613b �16.3165b �1.7275b �0.2973c �6.6738b

FIPS 30.9469d �7.7217b �12.8558b �19.1293b �11.9342b �4.2965b

QPSO 42.5421d �16.3308b �0.8604d �5.0214b �3.9508b �1.7107b

GAQPSO-Type I 3.3989d �11.5478b �10.6401b �2.6347b 2.9869d �1.1007c

GAQPSO-Type II �2.1402b �13.215b �10.2841b �22.383b 2.2157d �3.4761b

Algorithms F7 F8 F9 F10 F11 F12

PSO-In �2.0388b �1.73b �5.3187b �8.7966b �7.4966b �7.2216b

PSO-Co �2.6397b �11.1941b �20.3344b �0.2801c �2.1594b �1.7852b

Standard PSO �2.6263b �4.0383b �18.3956b 8.845d 4.2094d �7.0021b

Gaussian PSO �2.7744b �18.9838b �22.0289b �2.1932b 0.2112c �9.4074b

Gaussian Bare Bones PSO �1.751b �5.7259b �18.2237b 0.6853c 4.7543d �4.3757b

PSO-E �5.9694b �6.4901b �13.8317b 0.9432c 5.422d �8.1915b

Lévy PSO �2.3942b �16.33b �16.0972b 1.8519d 5.2141d �3.6259b

CLPSO �31.841b �17.063b 11.7951d 4.5797d 3.5918d �33.9198b

DMS-PSO �15.2596b �3.2643b �6.2125b 7.2522d 9.5245d �6.2729b

FIPS �3.4849b �6.7268b �15.3244b �7.257b �2.0981b �15.4858b

QPSO �2.4507b �2.7539b �1.8967b 8.2277d 5.6531 �4.0027b

GAQPSO-Type I 0.4776c �6.7162b �14.2805b �9.1063b �8.9229b �7.8864b

GAQPSO-Type II �9.1643b �4.6826b �19.7445b �11.9975b �9.6152b �8.2721b

a The t value of 99 degrees of freedom is significant at 0.05 level of significance by an unpaired t-test.
b GAQPSO is significantly better than the compared algorithm.
c GAQPSO has no significant performance difference with the compared algorithm.
d GAQPSO is significantly worse than the compared algorithm.
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For function F1, shifted sphere function, all the algorithms could get a solution near the global optimal solution, but the
solution accuracy differs widely among them. QPSO offered the highest accuracy and GAQPSO and GAQPSO-Type I performed
better than all the other algorithms. GAQPSO was the fourth best performing algorithm for this function. F2 is shifted Schwe-
fel’s problem 1.2. For this function, the mean best fitness value of Gaussian PSO outperforms all the other algorithms. From a
statistical point of view, GAQPSO is significantly better than the other algorithms except PSO-Co and Gaussian PSO. For func-
tion F3, shifted rotated high conditioned elliptic function, the mean best fitness value of GAQPSO was the best among all the
compared algorithms. Tables 1 and 2 show that GAQPSO performed significantly better than any other algorithms except
QPSO. The results for F4, shifted Schwefel’s problem 1.2 with noise in fitness, shows that GAQPSO outperformed any other
competitor in a significant manner. The fifth benchmark function F5 is known as Schwefel’s problem 2.6 with global opti-
mum on bounds. It can be observed that GAQPSO-Type I and GAQPSO-Type II had the better performances than all the other
methods. The third best performed algorithm was GAQPSO, which outperformed the rest of the algorithms in a significant
manner, except DMS-PSO. Table 1 also shows that for F6, shifted Rosenbrock function, GAQPSO obtained the best solution
among all the algorithms and its advantages over other competitors, except QPSO, were statistically significant. Results ob-
tained for F7, shifted rotated Griewank’s function without bounds, indicate that GAQPSO and GAQPSO-Type I generated bet-
ter solutions than their competitors but the difference between them was not statistically significant. F8 is shifted rotated
Ackley’s function with global optimum on bounds. For this function, the performance of GAQPSO was superior to the other
algorithms significantly. F9, shifted Rastrigrin function, is separable. For this function, CLPSO had significant better perfor-
mance than the others, and GAQPSO was the second best methods among the tested algorithms. F10 is shifted rotated Rastri-
grin function, for which DMS-PSO was the winner, and GAQPSO along with its variants didn’t show better performance than
the others. The similar thing to F10 happened for F11, shifted rotated Weierstrass function. For F12, Schwefel’s problem 2.13,
GAQPSO had the significant advantage over all the other methods.

Ranking the algorithmic performances (i.e. the mean best fitness values), as shown in Table 3, provided an overall com-
parison among all the algorithms. It can be observed that GAQPSO had the best total rank, which means that it had the best
overall performance on the suite of CEC 2005 benchmark functions. QPSO is showed to have the second best overall perfor-
mance, as indicated by its total rank. GAQPSO-Type II, however, didn’t perform so effectively as GAQPSO, and GAQPSO-Type
II, probably due to its slower convergence speed resulting from the method of determining the local attractor. From Table 3,
it can be seen that DMS-PSO and standard PSO showed the better overall performance than the other algorithms except
GAQPSO, QPSO and GAQPSO-Type I.



Table 3
Ranking of the algorithmic performances.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Total rank

PSO-In 11 11 13 10 8 13 13 6 4 14 13 11 127
PSO-Co 5 2 6 11 11 6 7 14 11 9 11 2 95
Standard PSO 7 8 4 12 8 10 5 8 9 3 6 7 87
Gaussian PSO 6 1 9 14 12 9 6 11 13 10 8 14 113
Gaussian Bare Bones PSO 8 4 5 9 14 8 3 12 10 7 5 9 94
PSO-E 10 5 3 7 10 12 10 13 7 6 4 6 93
Lévy PSO 9 6 11 5 13 7 9 10 8 5 3 5 91
CLPSO 13 14 14 13 7 5 14 5 1 4 7 13 110
DMS-PSO 14 12 10 2 4 14 12 7 5 1 1 4 86
FIPS 2 7 7 8 6 11 8 9 6 11 10 12 97
QPSO 1 10 2 4 5 3 4 3 3 2 2 3 42
GAQPSO 4 3 1 1 3 1 2 1 2 8 9 1 36
GAQPSO-Type I 3 9 8 3 1 2 1 2 12 12 12 8 73
GAQPSO-Type II 12 13 12 6 2 4 11 4 14 13 14 10 115

Table 4
Experimental results of mean best fitness values and standard deviations for the GAQPSO algorithm under a set of mutation probabilities (best results in bold).

Algorithms F1 F2 F3 F4 F5 F6

GAQPSO 1.2783e�027 104.8460 6.6256e + 006 4.3192e + 003 3.2724e + 003 153.5163
(pm = 0.1) (3.1594e�028) (101.1204) (2.7293e + 006) (2.7817e + 003) (945.2200) (302.3906)
GAQPSO 1.2103e�027 77.7572 6.6095e + 006 3.4578e + 003 3.3525e + 003 133.2310
(pm = 0.2) (4.7711e�028) (58.0841) (2.7952e + 006) (2.1091e + 003) (987.8831) (256.6336)
GAQPSO 1.1345e�027 64.8749 5.9896e + 006 3.5549e + 003 3.2236e + 003 118.0402
(pm = 0.3) (3.3074e�028) (47.7864) (2.7173e + 006) (2.5534e + 003) (896.0692) (208.8569)
GAQPSO 1.1433e�027 57.7256 6.0165e + 006 2.8639e + 003 3.0920e + 003 105.9820
(pm = 0.4) (2.9646e�028) (42.2141) (2.6675e + 006) (1.9578e + 003) (886.4175) (201.6067)
GAQPSO 1.1372e�027 56.4884 6.2019e + 006 2.8592e + 003 2.9851e + 003 89.6964
(pm = 0.5) (2.8156e�028) (43.2032) (3.0493e + 006) (1.8087e + 003) (883.6004) (143.4129)
GAQPSO 1.2410e�027 40.8899 5.3771e + 006 2.8937e + 003 3.1567e + 003 88.0263
(pm = 0.6) (3.7061e�028) (29.3929) (2.2465e + 006) (1.7840e + 003) (723.9084) (156.9850)
GAQPSO 1.2789e�027 34.0822 5.0023e + 006 2.7342e + 003 2.9450e + 003 70.8822
(pm = 0.7) (2.9639e�028) (26.5946) (2.4197e + 006) (1.7869e + 003) (820.2506) (121.2040)
GAQPSO 1.5273e�027 26.0977 4.6965e + 006 2.4609e + 003 3.0789e + 003 74.5598
(pm = 0.8) (4.2974e�028) (19.2088) (2.0126e + 006) (2.1051e + 003) (766.4450) (107.4096)
GAQPSO 2.0827e�027 24.0650 4.3909e + 006 2.4301e + 003 2.9061e + 003 75.5166
(pm = 0.9) (4.6317e�028) (17.8373) (2.0442e + 006) (1.6011e + 003) (805.02370) (130.6647)
GAQPSO 8.5433e�027 15.2620 4.1685e + 06 2.3503e + 03 2.8864e + 003 56.6257
(pm = 1.0) (1.6695e�027) (16.9682) (1.8723e + 06) (1.8573e + 03) (732.4688) (90.6767)

Algorithms F7 F8 F9 F10 F11 F12

GAQPSO 0.0211 1.4317e�014 30.7548 123.0231 28.5835 1.1428e + 04
(pm = 0.1) (0.0127) (5.9845e�015) (9.3873) (58.0714) (6.9448) (1.1116e + 04)
GAQPSO 0.0223 1.5596e�014 30.7836 124.8172 28.6232 1.0962e + 04
(pm = 0.2) (0.0135) (8.8892e�015) (9.0599) (52.8876) (7.1778) (9.7002e + 03)
GAQPSO 0.0185 1.3998e�014 29.5468 126.4855 28.1537 1.0108e + 04
(pm = 0.3) (0.01280) (5.1452e�015) (8.7679) (58.5137) (7.4035) (8.0463e + 03)
GAQPSO 0.0227 1.2292e�014 28.8157 125.2887 26.4654 9.5308e + 03
(pm = 0.4) (0.0174) (4.5001e�015) (14.7901) (52.4135) (7.5398) (7.2507e + 03)
GAQPSO 0.0198 1.2363e�014 29.2997 124.9129 27.6080 1.0648e + 04
(pm = 0.5) (0.0157) (3.7271e�015) (10.7621) (53.1230) (7.3283) (8.6593e + 03)
GAQPSO 0.0194 1.3287e�014 27.7833 122.6634 27.8604 1.1344e + 04
(pm = 0.6) (0.0158) (3.6280e�015) (9.8191) (51.2455) (7.3706) (8.6655e + 03)
GAQPSO 0.0176 1.2612e�014 27.0451 123.4124 29.0839 1.0366e + 04
(pm = 0.7) (0.0120) (3.9560e�015) (8.1948) (50.8396) (8.2908) (8.8476e + 03)
GAQPSO 0.0177 1.3038e�014 27.1810 124.2773 29.5899 1.0708e + 04
(pm = 0.8) (0.0123) (3.1150e�015) (12.4430) (48.6487) (7.5390) (1.0381e + 04)
GAQPSO 0.0194 1.3785e�014 27.9978 145.0926 30.8242 9.6254e + 03
(pm = 0.9) (0.0147) (2.6374e�015) (16.5692) (49.9601) (7.8822) (8.8004e + 03)
GAQPSO 0.0161 1.5632e�014 25.4653 169.7682 33.7577 6.8676e + 03
(pm = 1.0) (0.0141) (3.1128e�015) (20.9819) (32.8371) (7.6365) (6.3181e + 03)
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5.2.2. Experimental results for GAQPSO with mutation probability
In order to test the GAQPSO with mutation probability, different values of pm were chosen from 0.1 to 1.0 with the step

size 0.1. The algorithm ran 100 times on each problem for each value of pm. The algorithmic parameters such as the popu-
lation size, problem dimension, maximum number of iterations, and CE coefficient were the same as those specified in Sec-
tion 5.1. The mean best fitness values and standard deviations obtained from all the tests are presented in Table 4.

It is evident from the results that the GAQPSO without mutation probability (i.e. pm = 1.0) outperformed those with a cer-
tain mutation probability except on F1, F8, F10 and F11. For F1, the best result was obtained by setting pm to 0.5. For F8,
although the algorithm performed best when pm was 0.5, it is shown that the value of pm did not exert remarkable influence
on the algorithmic performance. For F10, setting pm to 0.6 was able to generate the best results, but larger value of pm did not
result in better performance of the algorithm. For F11, the best value of pm is 0.4 and larger pm also weakened the algorithmic
performance. For all the other benchmark functions, it can be observed that the mean best fitness values become better and
better as the mutation probability increases, implying that using Eq. (5) to determine the local attractor point of the particle
can indeed improve QPSO in most cases by enhancing the global search ability of the algorithm.

6. Conclusion

In this paper, a variant of QPSO, namely GAQPSO, is proposed by using a Gaussian probability distribution to generate the
local attractor point of each particle. In QPSO, each particle should converge to the local attractor point in order to guarantee
that all the particles converge. Considering the effect of the local attractor point, we used a Gaussian probability distribution
in the GAQPSO algorithm to generate the local attractor points. The mean of Gaussian distributed local attractor used is iden-
tical to the local attractor point in the QPSO algorithm, and its standard deviation is chosen to be the position distance be-
tween the mean best particle and the personal best. As the particle swarm evolves, the value of standard deviation goes to
zero and the local attractor point in the GAQPSO algorithm careen toward that in the QPSO algorithm.

GAQPSO is less susceptible to premature convergence and less likely to be stuck in local optima, owning this to the Gauss-
ian distributed local attractor points which make the particles volatile and diversify the swarm. In order to further investi-
gate the effectiveness of the GAQPSO algorithm, some variants of GAQPSO were proposed. One variant uses the Gaussian
distributed local attractor point as a mutation according to a certain probability. Another variant is modifying the probability
distribution by using other methods to set up the standard deviations in the GAQPSO. The GAQPSO algorithms, along with its
variants, were tested on a suite of CEC2005 benchmark functions, and compared with QPSO and other PSO variants. The re-
sults show that the GAQPSO algorithm has superior features, both in high quality of the solution and robustness of the results
in most cases.

Our further work will focus on applying the GAQPSO algorithm to the real-world optimization problems and an using
some other probability distributions in the QPSO algorithm.
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