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Abstract
Support Vector Machines is a very popular machine learning technique. De-

spite of all its theoretical and practical advantages, SVMs could produce sub-
optimal results with imbalanced datasets. That is, an SVM classifier trained
on an imbalanced dataset can produce suboptimal models which are biased
towards the majority class and have low performance on the minority class,
like most of the other classification paradigms. There have been various data
preprocessing and algorithmic techniques proposed in the literature to allevi-
ate this problem for SVMs. This chapter aims to review these techniques.

6.1 INTRODUCTION

Support Vector Machines (SVMs) [1, 2, 3, 4, 5, 6, 7] is a popular machine
learning technique, which has been successfully applied to many real-world
classification problems from various domains. Due to its theoretical and prac-
tical advantages, such as solid mathematical background, high generalization

Imbalanced Learning: Foundations, Algorithms, and Applications,. By Haibo He and
Yunqian Ma
Copyright c© 2012 John Wiley & Sons, Inc.

1



2 CLASS IMBALANCE LEARNING METHODS FOR SUPPORT VECTOR MACHINES

capability and ability to find global and non-linear classification solutions,
SVMs have been very popular among the machine learning and data mining
researchers.

Although SVMs often work effectively with balanced datasets, they could
produce suboptimal results with imbalanced datasets. More specifically, an
SVM classifier trained on an imbalanced dataset often produces models which
are biased towards the majority class and have low performance on the mi-
nority class. There have been various data preprocessing and algorithmic
techniques proposed to overcome this problem for SVMs. This chapter is ded-
icated to discuss these techniques. In section 6.2 of this chapter we present
some background on the SVM learning algorithm. In section 6.3, we discuss
why SVMs are sensitive to the imbalance in datasets. Section 6.4 presents the
existing techniques proposed in the literature to handle the class imbalance
problem for SVMs. Finally, section 6.5 summarizes the chapter.

6.2 INTRODUCTION TO SUPPORT VECTOR MACHINES

In this section, we briefly review the learning algorithm of SVMs, which has
been initially proposed in [1, 2, 3]. Let us consider that we have a binary
classification problem represented by a dataset {(x1, y1), (x2, y2), . . . , (xl, yl)},
where xi ∈ <n represents an n-dimensional data point and yi ∈ {−1, 1}
represents the label of the class of that data point, for i = 1, . . . , l. The goal
of the SVM learning algorithm is to find the optimal separating hyperplane
which effectively separates these data points into two classes. In order to find
a better separation of the classes, the data points are first considered to be
transformed into a higher dimensional feature space by a non-linear mapping
function Φ. A possible separating hyperplane residing in this transformed
higher dimensional feature space can be represented by,

w · Φ(x) + b = 0 (6.1)

where w is the weight vector normal to the hyperplane. If the dataset is
completely linearly separable, the separating hyperplane with the maximum
margin (for a higher generalization capability) can be found by solving the
following maximal margin optimization problem:

min(
1

2
w · w)

s.t. yi(w · Φ(xi) + b) ≥ 1 (6.2)

i = 1, . . . , l
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However, in most real-world problems, the datasets are not completely
linearly separable even though they are mapped into a higher dimensional
feature space. Therefore, the constrains in the above optimization problem in
Eq.(6.2) are relaxed by introducing a set of slack variables, ξi ≥ 0. Then the
soft margin optimization problem can be reformulated as follows:

min(
1

2
w · w + C

l∑
i=1

ξi)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi (6.3)

ξi ≥ 0, i = 1, . . . , l

The slack variables ξi > 0 hold for misclassified examples, and therefore the
penalty term

∑l
i=1 ξi can be considered of as a measure of the amount of total

misclassifications (training errors) of the model. This new objective function
given in Eq.(6.3) has two goals. One is to maximize the margin and the other
one is to minimize the number of misclassifications (the penalty term). The
parameter C controls the trade-off between these two goals. This quadratic
optimization problem can be easily solved by representing it as a Lagrangian
optimization problem, which has the following dual form:

max
αi

{
l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjΦ(xi) · Φ(xj)} (6.4)

s.t.

l∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l

where αi are Lagrange multipliers, which should satisfy the following Karush-
Kuhn-Tucker (KKT) conditions:

αi(yi(w · φ(xi) + b)− 1 + ξi) = 0, i = 1, . . . , l (6.5)

(C − αi)ξi = 0, i = 1, . . . , l (6.6)

An important property of SVMs is that it is not necessary to know the
mapping function φ(x) explicitly. By applying a kernel function, such that
K(xi, xj) = φ(xi) ·φ(xj), we would be able to transform the dual optimization
problem given in Eq.(6.4) into Eq.(6.7)
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max
αi

{
l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj)} (6.7)

s.t.

l∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l

By solving Eq.(6.7) and finding the optimal values for αi, w can be recov-
ered as in Eq.(6.8)

w =

l∑
i=1

αiyiφ(xi) (6.8)

and b can be determined from the KKT conditions given in Eq.(6.5). The
data points having non-zero αi values are called support vectors. Finally, the
SVM decision function can be given by:

f(x) = sign(w · Φ(x) + b) = sign(

l∑
i=1

αiyiK(xi, x) + b) (6.9)

6.3 SVMS AND CLASS IMBALANCE

Although SVMs often produce effective solutions for balanced datasets, they
are sensitive to the imbalance in the datasets and produce sub-optimal models.
[8, 9, 10] have studied this problem closely and proposed several possible rea-
sons as to why SVMs can be sensitive to class imbalance, which are discussed
below.

6.3.1 Weakness of the soft margin optimization problem

It has been identified that the separating hyperplane of an SVM model devel-
oped with an imbalanced dataset can be skewed towards the minority class
[8], and this skewness can degrade the performance of that model with respect
to the minority class. This phenomenon can be explained as follows.

Recall the objective function of the SVM soft-margin optimization problem,
which was given in Eq.(6.3) previously.
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min(
1

2
w · w + C

l∑
i=1

ξi)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi (6.10)

ξi ≥ 0, i = 1, . . . , l

The first part of this objective function focuses on maximizing the mar-
gin, while the second part attempts to minimize the penalty term associated
with the misclassifications, where the regularization parameter C can also be
considered as the assigned misclassification cost. Since we consider the same
misclassification cost for all the training examples (i.e., same vale of C for
both positive and negative examples), in order to reduce the penalty term,
the total number of misclassifications should be reduced. When the dataset
is imbalanced, the density of majority class examples would be higher than
the density of minority class examples even around the class boundary region,
where the ideal hyperplane would pass through (throughout this chapter we
consider the majority class as the negative class and the minority class as
the positive class). This is also pointed out in [9], that the low presence of
positive examples make them appear further from the ideal class boundary
than the negative examples. As a consequence, in order to reduce the total
number of misclassifications in SVM learning, the separating hyperplane can
be shifted (or skewed) towards the minority class. This shift/skew can cause
the generation of more false negative predictions, which lowers the model’s
performance on the minority positive class. When the class imbalance is ex-
treme, the SVMs could produce models having largely skewed hyperplanes,
which would even recognize all the examples as negatives [10].

6.3.2 The imbalanced support-vector ratio

[9] has experimentally identified that as the training data gets more imbal-
anced, the ratio between the positive and negative support vectors also be-
comes more imbalanced. They have hypothesized that as a result of this im-
balance, the neighbourhood of a test instance close to the boundary is more
likely to be dominated by negative support vectors, and hence the decision
function is more likely to classify a boundary point as negative. However,
[10] has argued against this idea by pointing out that due to the constraint∑l
i=1 yiαi = 0 (given in Eq.(6.4)), αi of each positive support vector, which

are less in numbers than the negative support vectors, must be larger in mag-
nitude than the αi values associated with the negative support vectors. These
αi act as weights in the final decision function (Eq.6.9), and hence larger αi in
the positive support vectors receive higher weights than the negative support
vectors, which can reduce the effect of imbalance in support vectors up to
some extent. [10] has further argued that this could be the reason why SVMs
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do not perform too badly compared to other machine learning algorithms for
moderately skewed datasets.

In the remaining sections of this chapter we review the methods found in the
literature to handle the class imbalance problem for SVMs. These methods
have been developed as both data preprocessing methods (called external
methods) and algorithmic modifications to the SVM algorithm (called internal
methods).

6.4 EXTERNAL IMBALANCE LEARNING METHODS FOR SVMS:
DATA PREPROCESSING METHODS

6.4.1 Resampling methods

All the data preprocessing methods discussed in the other chapters of this
book can be used to balance the datasets before training SVM models. These
methods include random and focused under/oversampling methods and syn-
thetic data generation methods like SMOTE [11]. Resampling methods have
been successfully applied to train SVMs with imbalanced datasets in different
domains [10, 11, 12, 13, 14, 15, 16].

Especially, [17] presents an efficient focused oversampling method for SVMs.
In this method, first the separating hyperplane found by training an SVM
model on the original imbalanced dataset is used to select the most informa-
tive examples for a given classification problem, which are the data points
lying around the class boundary region. Then, only these selected examples
are balanced by oversampling as opposed to blindly oversampling the com-
plete dataset. This method reduces the SVM training time significantly while
obtaining the comparable classification results to the original oversampling
method.

Support cluster machines (SCMs) method presented in [18] can be viewed
as another focused resampling method for SVMs. This method first parti-
tions the negative examples into disjoint clusters by using the kernel-k-means
clustering method. Then it trains an initial SVM model using the positive
examples and the representatives of the negative clusters, namely, the data
examples representing the cluster centres. With the global picture of the ini-
tial SVMs, it approximately identifies the support vectors and non-support
vectors. Then a shrinking technique is used to remove the samples which are
most probably not support vectors. This procedure of clustering and shrinking
is performed iteratively several times until convergence.

6.4.2 Ensemble learning methods

Ensemble learning has also been applied as a solution for training SVMs with
imbalanced datasets [19, 20, 21, 22]. Generally, in these methods, the ma-
jority class dataset is separated into multiple subdatasets such that each of
these sub-datasets has a similar number of examples as the minority class
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dataset. This can be done by random sampling with or without replacement
(bootstrapping), or through clustering methods. Then a set of SVM classifiers
is developed so that each one is trained with the same positive dataset and
a different negative sub-dataset. Finally, the decisions made by the classifier
ensemble are combined by using a method such as majority voting. In addi-
tion, special boosting algorithms, such as Adacost [23], RareBoost [24] and
SMOTEBoost [25], which have been used in class imbalance learning with
ensemble settings, could also be applied with SVMs.

6.5 INTERNAL IMBALANCE LEARNING METHODS FOR SVMS:
ALGORITHMIC METHODS

In this section we present the algorithmic modifications proposed in the liter-
ature to make the SVM algorithm less sensitive to class imbalance.

6.5.1 Different Error Costs (DEC)

As we pointed out in section 6.3 above, the main reason for the SVM algorithm
to be sensitive to class imbalance would be that the soft margin objective func-
tion given in Eq.(6.10) assigns the same cost (i.e., C) for both positive and
negative misclassifications in the penalty term. This would cause the separat-
ing hyperplane to be skewed towards the minority class, which would finally
yield a suboptimal model. The DEC method is a cost-sensitive learning solu-
tion proposed in [8] to overcome this problem in SVMs. In this method, the
SVM soft margin objective function is modified to assign two misclassification
costs, such that C+ is the misclassification cost for positive class examples,
while C− is the misclassification cost for negative class examples, as given in
Eq.(6.11) below. Here we also assume positive class to be the minority class
and negative class to be the majority class.

min(
1

2
w · w + C+

l∑
i|yi=+1

ξi + C−
l∑

i|yi=−1

ξi)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi (6.11)

ξi ≥ 0, i = 1, . . . , l

By assigning a higher misclassification cost for the minority class examples
than the majority class examples (i.e.,C+ > C−), the effect of class imbalance
could be reduced. That is, the modified SVM algorithm would not tend to
skew the separating hyperplane towards the minority class examples to reduce
the total misclassifications as the minority class examples are now assigned
with a higher misclassification cost. The dual Lagrangian form of this modified
objective function can be represented as follows:
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max
αi

{
l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj)} (6.12)

s.t.

l∑
i=1

yiαi = 0, 0 ≤ α+
i ≤ C

+, 0 ≤ α−i ≤ C
−, i = 1, . . . , l

where α+
i and α−i represent the Lagrangian multipliers of positive and

negative examples, respectively. This dual optimization problem can be solved
in the same way as solving the normal SVM optimization problem. As a rule
of thumb, [10] has reported that the reasonably good classification results
from the DEC method could be obtained by setting the C−/C+ equals to the
minority to majority class ratio.

6.5.2 One class learning

[26, 27] have presented two extreme rebalancing methods for training SVMs
with highly imbalanced datasets. In the first method they have trained an
SVM model only with the minority class examples. In the second method, the
DEC method has been extended to assign a C− = 0 misclassification cost for
the majority class examples and C+ = 1/N+ misclassification cost for minor-
ity class examples, where N+ is the number of minority class examples. From
the experimental results obtained on several heavily imbalanced synthetic and
real-world datasets, these methods have been observed to be more effective
than general data rebalancing methods.

6.5.3 zSVM

zSVM is another algorithmic modification proposed for SVMs in [28] to learn
from imbalanced datasets. In this method, first an SVM model is developed by
using the original imbalanced training dataset. Then, the decision boundary
of the resulted model is modified to remove its bias towards the majority (neg-
ative) class. Consider the standard SVM decision function given in Eq.(6.9),
which can be rewritten as follows:

f(x) = sign(

l∑
i=1

αiyiK(xi, x) + b)

= sign(

l1∑
i=1

α+
i yiK(xi, x) +

l2∑
j=1

α−j yjK(xj , x) + b) (6.13)
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where α+
i are the coefficients of the positive support vectors, α−j are the

coefficients of the negative support vectors, and l1 and l2 represent the number
of positive and negative training examples, respectively. In the zSVM method,
the magnitude of the α+

i values of the positive support vectors are increased
by multiplying all of them by a particular small positive value z. Then, the
modified SVM decision function can be represented as follows:

f(x) = sign(z ∗
l1∑
i=1

α+
i yiK(xi, x) +

l2∑
j=1

α−i yiK(xj , x) + b) (6.14)

This modification of α+
i would increase the weights of the positive sup-

port vectors in the decision function, and therefore it would decrease its bias
towards the majority negative class. In [28], the value of z giving the best
classification results for the training dataset was selected as the optimal value.

6.5.4 Kernel modification methods

There have been several techniques proposed in the literature to make the
SVM algorithm less sensitive to the class imbalance by modifying the associ-
ated kernel function.

6.5.4.1 Class boundary alignment [9] has proposed a variant of SVM learn-
ing method, where the kernel function is conformally transformed to enlarge
the margin around the class boundary region in the transformed higher di-
mensional feature space to have improved performance. [29] has improved
this method for imbalanced datasets by enlarging more of the class bound-
ary around the minority class compared to the class boundary around the
majority class. This method is called the class boundary alignment (CBA)
method which can only be used with the vector space representation of input
data. [30] has further proposed a variant of the CBA method for the sequence
representation of imbalanced input data by modifying the kernel matrix to
have the similar effect, which is called the Kernel Boundary Alignment (KBA)
method.

6.5.4.2 Kernel target alignment In the context of SVM learning, a quantita-
tive measure of agreement between the kernel function used and the learning
task is important from the both theoretical and practical point of view. Ker-
nel target alignment method has been proposed as a method for measuring
the agreement between a kernel being used and the classification task in [31].
This method has been improved for imbalanced datasets learning in [32].

6.5.4.3 Margin calibration The DEC method described previously modifies
the SVM objective function by assigning a higher misclassification cost to the
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positive examples than the negative examples to change the penalty term.
[33] has extended this method to modify the SVM objective function not only
in terms of the penalty term, but also in terms of the margin to recover the
biased decision boundary. As proposed in this method, the modification first
adopts an inversed proportional regularized penalty to reweight the imbal-
anced classes. Then it employs a margin compensation to lead the margin to
be lopsided, which enables the decision boundary drift.

6.5.4.4 Other kernel-modification methods There have been several imbal-
ance learning techniques proposed in the literature for other kernel-based
classifiers. These methods include the kernel classifier construction algorithm
proposed in [34] based on orthogonal forward selection (OFS) and the regu-
larized orthogonal weighted least squares (ROWLSs) estimator, kernel neural
gas (KNG) algorithm for imbalanced clustering [35], the P2PKNNC algo-
rithm based on the k-nearest neighbors classifier and the P2P communication
paradigm [36], Adaboost relevance vector machine (RVM) [37], among others.

6.5.5 Active learning

Active learning methods, as opposed to conventional batch learning, have also
been applied to solve the problem of class imbalance for SVMs. [38] and [39]
have proposed an efficient active learning strategy for SVMs to overcome the
class imbalance problem. This method iteratively selects the closest instance
to the separating hyperplane from the unseen training data and adds it to
the training set to retrain the classifier. With an early stopping criterion, the
method can significantly decrease the training time in large scale imbalanced
datasets.

6.5.6 Fuzzy SVMs for class imbalance learning (FSVM-CIL)

All the methods presented so far attempt to make SVMs robust to the problem
of class imbalance. It has been well studies in the literature that SVMs are
also sensitive to the noise and outliers present in datasets. Therefore, it can
be argued that although the existing class imbalance learning methods can
make the SVM algorithm less sensitive to the class imbalance problem, it can
still be sensitive to noise and outliers present in datasets, which could still
result in suboptimal models. In fact, some class imbalance learning methods,
such as random oversampling and SMOTE, can make the problem worse by
duplicating the existing outliers and noisy examples or introducing new ones.
Fuzzy SVMs for Class Imbalance Learning (FSVM-CIL) is an improved SVM
method proposed in [40] to handle the problem of class imbalance together
with the problem of outliers and noise. In this section, we present this method
with more details.

6.5.6.1 The Fuzzy SVM method As mentioned previously, the standard SVM
algorithm considers all the data points with equal importance and assigns the
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same misclassification cost for those in its objective function. We have already
pointed out that this can cause SVM to produce sub optimal models on imbal-
anced datasets. It has also been found out that the same reason of considering
all the data points with equal importance can also cause SVMs to be sensitive
to the outliers and noise present in a dataset. That is, the presence of out-
liers and noisy examples (especially, around the class boundary region) can
influence the position and orientation of the separating hyperplane causing
the development of suboptimal models.

In order to make the SVMs less sensitive to outliers and noisy examples,
a technique called Fuzzy SVMs (FSVMs) have been proposed in [41]. The
FSVM method assigns different fuzzy membership values, mi;mi ≥ 0 (or
weights), for different examples to reflect different importance in their own
classes, where more important examples are assigned higher membership val-
ues, while less important ones (such as outliers and noise) are assigned lower
membership values. Then, the SVM soft margin optimization problem is re-
formulated as follows:

min(
1

2
w · w + C

l∑
i=1

miξi)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi (6.15)

ξi ≥ 0, i = 1, . . . , l

In this reformulation of the objective function, the membership mi of a data
point xi is incorporated into the penalty term, such that a smaller mi could
reduce the effect of the associated slack variable ξi in the objective function (if
the corresponding data point xi is treated as less important). In another view,
if we consider C as the cost assigned for a misclassification, now each data
point is assigned with a different misclassification cost, miC, which is based
on the importance of the data point in its own class, such that more important
data points are assigned higher costs, while less important ones are assigned
lower costs. Therefore, the FSVM algorithm can find a more robust separating
hyperplane through maximizing the margin by allowing some misclassification
for less important examples, like the outliers and noise.

In order to solve the FSVM optimization problem, Eq.(6.15) can be trans-
formed into the following dual Lagrangian form:

max
αi

{
l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj)} (6.16)

s.t.

l∑
i=1

yiαi = 0, 0 ≤ αi ≤ miC, i = 1, . . . , l
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The only difference between the original SVM dual optimization problem
given in Eq.(6.7) and the FSVM dual optimization problem given in Eq.(6.16)
is the upper bound of the values that αi could take. By solving this dual
problem in Eq.(6.16) for optimal αi, w and b can be recovered in the same way
as in the normal SVM learning algorithm. The same SVM decision function
in Eq.(6.9) applies for FSVMs method as well.

6.5.6.2 FSVM-CIL method However, the standard FSVM method is still
sensitive to the class imbalance problem, since the assigned misclassification
costs do not consider the imbalance of the dataset. [40] has improved the
standard FSVM method by combining it with the DEC method, which is
called the FSVM-CIL. In the FSVM-CIL method, the membership values for
data points are assigned in such a way to satisfy the following two goals:

1. To suppress the effect of between class imbalance.

2. To reflect the within class importance of different training examples in
order to suppress the effect of outliers and noise.

Let m+
i represents the membership value of a positive data point x+i , while

m−i represents the membership of a negative data point x−i in their own
classes. In the proposed FSVM-CIL method, these membership functions are
defined as follows:

m+
i = f(x+i )r+ (6.17)

m−i = f(x−i )r− (6.18)

where f(xi) generates a value between 0 and 1, which reflects the impor-
tance of xi in its own class. The values for r+ and r− were assigned in order
to reflect the class imbalance, such that r+ = 1 and r− = r, where r is the
minority to majority class ratio (r+ > r−) (this was following the findings
reported in [10], where the optimal results from the DEC method could be
obtained when C−/C+ equals to the minority to majority class ratio). Ac-
cording to this assignment of values, a positive class data point is assigned a
misclassification cost m+

i C, where m+
i takes a value in the [0,1] interval, while

a negative class data point is assigned a misclassification cost m−i C, where
m−i takes value in the [0, r] interval, where r < 1.

In order to define the function f(xi) introduced in Eq.(6.17) and (6.18),
which gives the within class importance of a training example, the following
methods have been considered in [40].

A. f(xi) is based on the distance from the own class centre:
In this method, f(xi) is defined with respect to dceni , which is the distance

between xi and its own class centre. The examples closer to the class centre
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are treated as more informative and assigned higher f(xi) values, while the
examples far away from the centre are treated as outliers or noise and assigned
lower f(xi) values. Here, two separate decaying functions of dceni have been
used to define f(xi), which are represented by f cenlin (xi) and f cenexp (xi) as follows:

f cenlin (xi) = 1− (dceni /(max(dceni ) + δ)) (6.19)

is a linearly decaying function. δ is a small positive value used to avoid the
case where f(xi) becomes zero.

f cenexp (xi) = 2/(1 + exp(dceni ∗ β)) (6.20)

is an exponentially decaying function, where β;β ∈ [0, 1] determines the

steepness of the decay. dceni = ‖xi − x̄‖
1
2 is the Euclidean distance to xi from

its own class centre x̄.

B. f(xi) is based on the distance from the preestimated separating hyperplane:

In this method, f(xi) is defined based on dsphi , which is the distance to xi
from the preestimated separating hyperplane as introduced in [42]. Here dsphi
is estimated by the distance to xi from the centre of the common spherical
region, which can be defined as a hyper-sphere covering the overlapping region
of the two classes, where the separation hyperplane is more likely to pass
through. Both linear and exponential decaying functions are used to define
the function f(xi), which are represented by fsphlin (xi) and fsphexp (xi) as follows:

fsphlin (xi) = 1− (dsphi /(max(dsphi ) + δ)) (6.21)

fsphexp (xi) = 2/(1 + exp(dsphi ∗ β)) (6.22)

where dsphi = ‖xi− x̄‖
1
2 and x̄ is the centre of the spherical region, which is

estimated by the centre of the entire dataset, δ is a small positive value and
β ∈ [0, 1].

C. f(xi) is based on the distance from the actual separating hyperplane:
In this method, f(xi) is defined based on the distance from the actual sepa-

rating hyperplane to xi, which is found by training a conventional SVM model
on the imbalanced dataset. The data points closer to the actual separating
hyperplane are treated as more informative and assigned higher membership
values, while the data points far away from the separating hyperplane are
treated as less informative and assigned lower membership values. The fol-
lowing procedure is carried out to assign f(xi) values in this method:
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1. Train a normal SVM model with the original imbalanced dataset

2. Find the functional margin dhypi of each example xi (given in Eq.(6.23))
(this is equivalent to the absolute value of the SVM decision value) with
respect to the separating hyperplane found. The functional margin is
proportional to the geometric margin of a training example with respect
to the separating hyperplane.

dhypi = yi(w · Φ(xi) + b) (6.23)

3. Consider both linear and exponential decaying functions to define f(xi)
as follows:

fhyplin (xi) = 1− (dhypi /(max(dhypi ) + δ)) (6.24)

fhypexp (xi) = 2/(1 + exp(dhypi ∗ β)) (6.25)

where δ is a small positive value and β ∈ [0, 1].
Following the aforementioned methods of assigning membership values for

positive and negative training data points, several FSVM-CIL settings have
been defined in [40]. These methods have been validated on 10 real-world
imbalanced datasets representing a variety of domains, complexities and im-
balanced ratios, which are highly likely to contain noisy examples and out-
liers. FSVM-CIL settings have resulted in better classification results on these
datasets than the existing class imbalance learning methods applied for stan-
dard SVMs, namely, random oversampling, random undersampling, SMOTE,
DEC and zSVM methods. [40] pointed out that better performance of FSVM-
CIL method is due to its capability to handle outliers and noise in these
datasets in addition to the class imbalance problem.

6.5.7 Hybrid Methods

There exist methods which have used the combination of both external and
internal methods to solve the class imbalance problem for SVMs. The hybrid
kernel machine ensemble (HKME) method [43] combines a standard binary
SVM and a one-class SVM classifier to solve the problem of class imbalance.
[10] has combined the SMOTE algorithm with the DEC method for SVMs for
imbalanced dataset learning and shown to have better performance than the
use of either of these methods alone.



SUMMARY 15

6.6 SUMMARY

This chapter aimed to review the existing imbalance learning methods devel-
oped for SVMs. These methods have been developed as data pre-processing
methods or algorithmic improvements. As it has been pointed out in the
literature, the class imbalance learning method giving the optimal solution
is often dataset dependent. Therefore, it is worth applying several of these
available external and internal methods and compare the performances, when
training an SVM model on an imbalanced dataset.
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