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Motivated by concepts in quantum mechanics and particle swarm optimization (PSO),
quantum-behaved particle swarm optimization (QPSO) was proposed as a variant of PSO
with better global search ability. Although it has been shown to perform well in finding
optimal solutions for many optimization problems, there has so far been little theoretical
analysis on its convergence and performance. This paper presents a convergence analysis
and performance evaluation of the QPSO algorithm and it also proposes two variants of
the QPSO algorithm. First, we investigate in detail the convergence of the QPSO algorithm
on a probabilistic metric space and prove that the QPSO algorithm is a form of contraction
mapping and can converge to the global optimum. This is the first time that the theory of
probabilistic metric spaces has been employed to analyze a stochastic optimization algo-
rithm. We provided a new definition for the convergence rate of a stochastic algorithm
as well as definitions for three types of convergence according to the correlations between
the convergence rate and the objective function values. With these definitions, the effec-
tiveness of the QPSO is evaluated by computing and analyzing the time complexity and
the convergence rate of the algorithm. Then, the QPSO with random mean best position
(QPSO-RM) and the QPSO with ranking operator (QPSO-RO) are proposed as two improve-
ments of the QPSO algorithm. Finally, some empirical studies on popular benchmark func-
tions are performed in order to make a full performance evaluation and comparison
between QPSO, QPSO-RM, QPSO-RO and other variants of PSO.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Particle swarm optimization (PSO), motivated by the social behavior of bird flocks or fish schooling, was first introduced
by Kennedy and Eberhart as a population-based optimization technique [31]. In PSO, the potential solutions, called particles,
fly through the problem space by following their own experiences and the current best particle. The PSO algorithm is com-
parable in performance with the well known Genetic Algorithm (GA) approach [1,21,29,44,50], and has gained increasing
popularity during the last decade due to its effectiveness in performing difficult optimization tasks.

In order to gain a deep insight into the mechanism of PSO, many theoretical analyses have been done on the algorithm.
Most of these works focused on the behaviour of the single particle in PSO, analyzing the particle’s trajectory or its stability
by using deterministic or stochastic methods [5,11,18,20,28,30,32,51,69,84]. As for the algorithm itself, Van den Bergh [5]
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proved that the canonical PSO is not a global search algorithm, even not a local one, according to the convergence criteria
provided by Solis and Wets [74].

In addition to the theoretical analyses mentioned above, there has been a considerable amount of work done in develop-
ing the original version of PSO, through empirical simulations. Shi and Eberhart [68] introduced the concept of inertia weight
to the original PSO, in order to balance the local and global search during the optimization process. Clerc [10] proposed an
alternative version of PSO incorporating a parameter called constriction factor which should replace the restriction on veloc-
ities. Angeline [2] introduced a tournament selection into PSO based on the particle’s current fitness so that the properties
that make some solutions superior were transferred directly to some of the less effective particles. This technique improved
the performance of the PSO algorithm on some benchmark functions. Suganthan [76] proposed a variant of the algorithm,
with another general form of particle swarm optimization referred to as the local best (LBest) model. It divided the swarm
into multiple ‘‘neighborhoods’’, where each neighborhood maintained its own local best solution. This approach was less
prone to becoming trapped in local minima, but typically had slower convergence. Several researchers investigated other
neighborhood topologies or adaptive topologies that may enhance the performance of PSO, in order to improve the explo-
ration ability of the algorithm [6,12,27,33,34,42,43,46,49,54].

Some researchers have attempted to experiment with various ways to simulate the particle trajectories by directly sam-
pling, using a random number generator with a certain probability distribution [35–39,56,64,78,79]. For example, Sun et al.,
inspired by quantum mechanics and the trajectory analysis of PSO [11], used a strategy based on a quantum d potential well
to sample around the previous best points [78], and later introduced the mean best position into the algorithm and proposed
a new version of PSO, quantum-behaved particle swarm optimization (QPSO) [79,80]. The QPSO algorithm essentially falls
into the family of bare-bones PSO [35,36], but uses double exponential distribution and an adaptive strategy to sample par-
ticle’s positions. The iterative equation of QPSO is very different from that of PSO, and leads QPSO to be global convergent, as
will be proved mathematically in this paper. Besides, unlike PSO, QPSO needs no velocity vectors for particles, and also has
fewer parameters to adjust, making it easier to implement.

The QPSO algorithm has been shown to successfully solve a wide range of continuous optimization problems and many
efficient strategies have been proposed to improve the algorithm [13–15,19,45,48,86,89]. While empirical evidence has
shown that the algorithm works well, there has thus far been little insight into how it works. In this paper, we investigate
the convergence issue of the QPSO and propose two improved versions of the algorithm as well. First, the global convergence
of the QPSO is analyzed on the probability metric (PM) space established for the algorithm. We prove that the QPSO is a form
of contraction mapping on the PM space and its orbit is probabilistic bounded, and, in turn, that the algorithm converges
asymptotically to the global optimum, the unique fixed point. It is the first time that the theory of PM-sapces has been used
to analyze a stochastic optimization algorithm. Next, the time complexity and its relationship to the behavior of a single par-
ticle are addressed, and a new definition of the convergence rate for a stochastic algorithm is presented, followed by semi-
theoretically evaluating the time complexity and convergence rate of the QPSO and PSO. Then, we propose two improved
versions of QPSO, in order to enhance the search ability of the algorithm. One improved QPSO employs a random mean best
position, so that the particle swarm can be diversified during the search and thus its global search ability is enhanced. The
other incorporates a ranking operator to select a random particle whose personal best position replaces the global best posi-
tion in order to guide the particle to escape the local optima. Finally, in order to further evaluate the efficiency of the QPSO
algorithms and test the performance of the improved QPSO, we make a performance comparison with other variants of PSO
by testing the algorithms on a set of problems from the CEC2005 benchmarks.

The remainder of the paper is structured as follows. In Section 2, the principles of QPSO are introduced. The global con-
vergence analysis of QPSO is given in Section 3. The efficiency evaluation of the algorithms by time complexity and conver-
gence rate is provided in Section 4. Section 5 presents the two proposed improved QPSO algorithms. Section 6 provides the
experimental results on benchmark functions. Some concluding remarks are given in Section 7.
2. Quantum-behaved particle swarm optimization

In the PSO with M individuals, each individual is treated as a volume-less particle in the N-dimensional space, with the

current position vector and velocity vector of particle i at the nth iteration represented by Xi;n ¼ X1
i;n;X

2
i;n; . . . ;XN

i;n

� �
and Vi;n ¼

V1
i;n;V

2
i;n; . . . ;VN

i;n

� �
. The particle updates its position and velocity according to the following equations:
Vj
i;nþ1 ¼ Vj

i;n þ c1rj
i;n Pj

i;n � Xj
i;n

� �
þ c2Rj

i;n Gj
n � Xj

i;n

� �
; ð1Þ

Xj
i;nþ1 ¼ Xj

i;n þ Vj
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for i = 1, 2, . . . , M; j = 1, 2, . . . , N, where c1 and c2 are called acceleration coefficients. Vector Pi;n ¼ P1
i;n; P

2
i;n; . . . ; PN

i;n

� �
is the best

previous position (the position giving the best objective function value or fitness value) of particle i called personal best

(pbest) position, and vector Gn ¼ G1
n;G

2
n; . . . ;GN

n

� �
is the position of the best particle among all the particles in the population

and called global best (gbest) position. The parameters rj
i;n and Rj

i;n are sequences of two different random numbers
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distributed uniformly on (0, 1), that is, rj
i;n;R

j
i;n � Uð0;1Þ. Generally, the value of Vj

i;n is restricted within the interval
[�Vmax, Vmax]. Without loss of generality, if we consider the following minimization problem:
Minimize f ðXÞ;
s:t: X 2 S # RN ;

ð3Þ
where f(X) is an objective function continuous almost everywhere and S is the feasible space, then Pi,n can be updated by
Pi;n ¼
Xi;n if f ðXi;nÞ < f ðPi;n�1Þ
Pi;n�1 if f ðXi;nÞP f ðPi;n�1Þ

�
; ð4Þ
and accordingly Gn can be found by Gn = Pg,n, where g = argmin16i6M[f(Pi,n)].
The trajectory analysis in [11] demonstrated the fact that the convergence of the PSO algorithm may be achieved if each

particle converges to its local attractor, pi;n ¼ p1
i;n; p

2
i;n; . . . pN

i;n

� �
defined at the coordinates
pj
i;n ¼
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or
pj
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where uj
i;n ¼ c1rj

i;n c1rj
i;n þ c2Rj

i;n

� �.
with regard to the random numbers rj

i;n and Rj
i;n in (1) and (5). In PSO, the acceleration

coefficients c1 and c2 are generally set to be equal, i.e., c1 = c2, and thus uj
i;n is a sequence of uniformly distributed random

numbers on (0,1). As a result, Eq. (6) can be restated as
pj
i;n ¼ uj

i;nPj
i;n þ 1�uj

i;n

� �
Gj

n; uj
i;n � Uð0;1Þ: ð7Þ
The above equation indicates that pi,n, the stochastic attractor of particle i, lies in the hyper-rectangle with Pi,n and Gn

being the two ends of its diagonal so that it moves following Pi,n and Gn. In fact, as the particles are converging to their
own local attractors, their current position, personal best positions, local attractors and the global best positions are all con-
verging to one point, leading the PSO algorithm to converge. From the point view of Newtonian dynamics, in the process of
convergence, the particle moves around and careens toward point pi,n with its kinetic energy (or velocity) declining to zero,
like a returning satellite orbiting the earth. As such, the particle in PSO can be considered as the one flying in an attraction
potential field centered at point pi,n in Newtonian space. It has to be in a bound state for the sake of avoiding explosion and
guaranteeing convergence. If these conditions are generalized to the case that the particle in PSO moves in quantum space, it
is also indispensable that the particle should move in a quantum potential field to ensure the bound state. The bound state in
quantum space, however, is entirely different from that in Newtonian space, which may lead to a very different form of PSO.
This is the motivation of the QPSO algorithm [78].

In QPSO, each single particle is treated as a spin-less one moving in quantum space. Thus the state of the particle is char-
acterized by a wave function w, where jwj2 is the probability density function of its position. Inspired by the convergence
analysis of the particle in PSO, we assume that, at the nth iteration, particle i flies in the N-dimensional quantum space with

a d potential well centered at pj
i;n on the jth dimension (1 6 j 6 N). Let Yj

i;nþ1 ¼ Xj
i;nþ1 � pj

i;n

��� ���, then we can obtain the normal-

ized wave function at iteration n+1 as;
w Yj
i;nþ1

� �
¼ 1ffiffiffiffiffiffiffi
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q exp �Yj
i;nþ1=Lj

i;n

� �
; ð8Þ
which satisfies the bound condition that w Yj
i;nþ1

� �
! 0 as Yj

i;nþ1 !1. Lj
i;n is the characteristic length of the wave function. By

the definition of wave function, the probability density function is given by
Q Yj
i;nþ1

� �
¼ w Yj

i;nþ1

� ���� ���2 ¼ 1

Lj
i;n

exp �2Yj
i;nþ1=Lj

i;n

� �
; ð9Þ
and thus the probability distribution function is
F Yj
i;nþ1

� �
¼ 1� exp �2Yj

i;nþ1=Lj
i;n

� �
: ð10Þ
Using the Monte Carlo method, we can measure the jth component of position of particle i at the (n + 1)th iteration by
Xj
i;nþ1 ¼ pj

i;n �
Lj

i;n

2
ln 1=uj

i;nþ1

� �
; uj

i;nþ1 � Uð0;1Þ; ð11Þ
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where uj
i;nþ1 is a sequence of random numbers uniformly distributed on (0, 1). Two approaches of determining the value of Lj

i;n

were proposed in [78,79], respectively:
Lj
i;n ¼ 2a Xj

i;n � pj
i;n

��� ���; ð12Þ
and
Lj
i;n ¼ 2a Xj

i;n � Cj
n

��� ���; ð13Þ
where Cn ¼ C1
n;C

2
n; . . . ;CN

n

� �
is called mean best (mbest) position defined by the average of the pbest positions of all particles,

i.e., Cj
n ¼ ð1=MÞ

PM
i¼1Pj

i;n ð1 6 j 6 NÞ. These two strategies result in two versions of the QPSO algorithm. To distinguish them,
we denote the QPSO with the former approach as QPSO-Type 1 and the QPSO with the latter one as QPSO-Type 2. Therefore,
the position of the particle in either type of QPSO is updated according to the following two equations respectively:
Xj
i;nþ1 ¼ pj

i;n � a Xj
i;n � pj

i;n

��� ��� ln 1=uj
i;nþ1

� �
; ð14Þ
or
Xj
i;nþ1 ¼ pj

i;n � a Xj
i;n � Cj

n

��� ��� ln 1=uj
i;nþ1

� �
: ð15Þ
The parameter a in Eqs. (13)–(15) is known as the contraction-expansion (CE) coefficient, which can be adjusted to bal-
ance the local and global search of the algorithm during the optimization process. The search procedure of the algorithm is
outlined in Fig. 1. Note that randi(�), i = 1, 2, 3, is used to denote random numbers generated uniformly and distributed on
(0, 1).
Fig. 1. The procedure of the QPSO algorithm.
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3. Convergence of the QPSO algorithm

In this section, the global convergence of the QPSO is analyzed by establishing a probabilistic metric space (PM-space) for
the algorithm, in which we prove that the algorithm is a form of contraction mapping and its orbit is probabilistic bounded.
Before the convergence analysis, we give an introduction to the PM-space and some related work, and provide basic concepts
of a PM-space and the fixed point theorem on the PM-space that are used in the analysis.

3.1. An introduction to PM-spaces and some related work

The idea of a PM-space was first introduced by Menger as a generalization of ordinary metric spaces [47]. In this theory,
the notion of distance has a probabilistic nature, that is, the distance between two points x and y is represented by a distri-
bution function Fx,y, and for any positive number t, the value Fx,y(t) is interpreted as the probability that the distance from x to
y is less than t. Such a probabilistic generalization is well adapted for the investigation of physical events, and has also impor-
tant applications in nonlinear analysis [9].

The theory of PM-spaces was brought to its present state by Schweizer and Sklar [59–62], Šeerstnev [67], Tardiff [82] and
Thorp [83]. There are also many others studying on PM-spaces [16,58,66]. For a clear and detailed history, as well as for the
motivations behind the introduction of PM-spaces, the reader should refer to the book by Schweizer and Sklar [63].

The convergence theorems for obtaining the stable points, i.e., the fixed point theorems for contraction mappings, have been
always an active area of research since 1922, with the celebrated Banach contraction fixed point theorem. Seghal [65] initiated
the study of the fixed point theorems in PM-spaces. Subsequently, some other fixed point theorems for contraction mappings
have been proved in PM-spaces [8,25,26,40,53,71–73]. In [52], the authors established global output convergence for a recur-
rent neural network (RNN) with continuous and monotone non-decreasing activation functions, by using the fixed point the-
orems in PM-spaces. They provided the sufficient conditions to guarantee the global output convergence of this class of neural
networks, which are very useful in the design of RNNs. However, since the output of a RNN is not probabilistic of nature, they
practically employed the fixed point theorems in PM-spaces to analyze the convergence of the sequence of non-random vari-
ables. That is, they essentially specialized the fixed point theorems in PM-spaces into the ones in ordinary metric spaces.

In the remaining part of this section, we analyze the convergence of the QPSO algorithm, whose output, i.e. the fitness
value of the global best position, is a sequence of random variables. Therefore the theory of PM-spaces is very suitable for
the analysis of the algorithm. To our knowledge, it is the first time that the fix point theorem of a stochastic algorithm
has ever been proved. Although this section focuses on the QPSO algorithm, the established theoretical framework can be
used as a general–purpose analysis tool for the convergence of any stochastic optimization algorithm.

3.2. Preliminaries

Definition 1. Denote the set of all real numbers as R, and the set of all non-negative real numbers as R+. The mapping
f: R ? R+ is a called distribution function if it is non-decreasing, left continuous and inft2Rf(t) = 0, supt2Rf(t) = 1.

We denote the set of all distribution functions by D, and H(t) is the specific distribution function defined by
HðtÞ ¼
1 t > 0
0 t 6 0

�
: ð16Þ
Definition 2. A probabilistic metric space (briefly, a PM-space) is an ordered pair (E, F), where E is a nonempty set and F is a
mapping of E � E into D. The value of F at (x, y) 2 E � E is denoted by Fx,y, and Fx,y(t) represents the value of Fx,y at t. The func-
tions Fx,y (x,y 2 E) are assumed to satisfy the following conditions:

(PM-1) Fx,y(0) = 0;
(PM-2) Fx,y(t) = H(t) for all t > 0 if and only if x = y;
(PM-3) Fx,y = Fy,x;
(PM-4) Fx,y(t1) = 1 and Fy,z(t2) = 1 imply Fx,z(t1 + t2) = 1, "x, y, z 2 E.

The value Fx,y(t) of Fx,y at t 2 R can be interpreted as the probability that the distance between x and y is less than t.
Definition 3. A mapping D: [0, 1] � [0, 1] ? [0, 1] is a triangle norm (briefly t-norm) if it satisfies: for every a, b, c, d 2 [0, 1],

(D-1) D(a, 1) = a, D(0, 0) = 0;
(D-2) D(a, b) = D(b, a);
(D-3) D(c, d) P D(a, b) for c P a, d P b;
(D-4) D(D(a, b), c) = D(a, D(b, c)).

It can be easily verified that D1(a, b) = max{a + b � 1, 0) is a t-norm.
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Definition 4. A Menger probabilistic metric space (briefly a Menger space) is a triplet (E, F, D), where (E, F) is a PM-space and
t-norm D is such that Menger’s triangle inequality

(PM-4)’ Fx,z(t1 + t2) P D(Fx,y(t1),Fy,z(t2))

holds for all x, y, z 2 E and for all t1 P 0, t2 P 0.
If (E,F,D) is a Menger space with a continuous t-norm, then it is a Hausdoff Space with the topology T introduced by the

family {Uy(e, k):y 2 E,k > 0}, where
Uyðe; kÞ ¼ fx 2 E; Fx;yðeÞ > 1� k; e > 0; k > 0g ð17Þ
is called an (e, k)-neighborhood of y 2 E. Hence we can introduce the following concepts into (E, F, D).
Definition 5. Let {xn} a sequence in a Menger space (E, F, D), where D is continuous. The sequence {xn} converges to x⁄ 2 E in

T ðxn!
T

x�Þ, if for every e > 0 and k > 0, there exists a positive integer K = K(e, k) such that Fxn ;x� ðeÞ > 1� k, whenever n P K.

The sequence {xn} is called a T -Cauchy Sequence in E, if for every e > 0 and k > 0, there exists a positive integer
K = K(e, k) such that Fxn ;xmðeÞ > 1� k, whenever m, n P K. A Menger space (E, F, D) is called T -Complete if every T -Cauchy
Sequence in E converges in T to a point in E. In [63], it was proved that every Menger space with continuous t-norm is T -
Complete.
Definition 6. Let (E, F, D) be a Menger space where D is continuous. The self-mapping T that maps E into itself is T -contin-
uous on E, if for every sequence {xn} in E, Txn!

T
Tx� whenever xn!

T
x� 2 E.
3.3. The fixed point theorem in PM-space

Definition 7. Let T be a self-mapping of a Menger space(E, F, D). T is a contraction mapping, if there exists a constant
k 2 (0, 1) and for every x 2 E there exists a positive integer n(x) such that for every y 2 E,
FTnðxÞx;TnðxÞyðtÞP Fx;y
t
k

� �
; 8t P 0: ð18Þ
A set A � (E, F, D) is called probabilistic bounded if supt>0infx,y2AFx,y(t) = 1. Denote the orbit generated by T at x 2 E by
OT(x; 0,1), i.e., OTðx; 0;1Þ ¼ fxn ¼ Tnxg1n¼0. For the contraction mapping in Definition 7, we have the following fixed point
theorem.
Theorem 1. Let a self-mapping T: (E, F, D) ? (E, F, D) be the contraction mapping in Definition 7. If for every x 2 E, OT(x; 0,1) is
probabilistic bounded, then there exists a unique common fixed point x⁄ in E for T, and for every x0 2 E, the iterative sequence {Tnx0}
converges to x⁄ in T (see the proof in Appendix A).
3.4. Global convergence of the QPSO algorithm

3.4.1. Construction of the PM-space for QPSO
Consider the minimization problem defined by (3), which is rewritten as follows:
Minimize f ðXÞ;
s:t: X 2 S # RN;

ð19Þ
where f is a real-valued function defined over region S and continuous almost everywhere, and S is a compact subset of a N-
dimensional Euclidean space RN. Let V represent the range of f over S, and thus V � R. Denote f⁄ = minX2S{f(X)}.

Theorem 2. Consider the ordered pair (V, F), where F is a mapping of V � V into D. For every x, y 2 V, if the distribution function
Fx,y is defined by Fx,y(t) = P{jx � yj < t}, "t 2 R, then (V, F) is a PM-space (see the proof in Appendix A).
Theorem 3. The triplet (V, F, D) is a Menger space, where D = D1 (see the proof in Appendix A).
(V, F, D) is a Menger space with continuous t-norm D1, and also is a Hausdoff space of the topology T introduced by the family

{Uy(e, k): y 2 V, k > 0}, where Uy(e, k) = {x 2 V, Fx,y(e) > 1 � k, e, k > 0}, and consequently is T -Complete.
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3.4.2. The fixed point theorem of the QPSO algorithm
We regard the QPSO as a mapping denoted by T, and therefore T is a self-mapping of the Menger space (V, F, D). When

n = 0, the global best position G0 is generated by the initialization of QPSO. Let f0 = f(G0), and thus f0 2 V. By a series of iter-
ations of the algorithm, we can obtain a sequence of global best position {Gn,n P 1}, and a sequence of the corresponding
non-increasing function values {fn, n P 1}, where fn = f(Gn). We can consider {fn, n P 1} as a sequence of points generated
by T in (V, F, D), i.e. fn = Tnf0 and fn 2 V. Denoting the orbit generated by T at f0 2 V by OT(f0; 0,1), we have
OTðf0; 0;1Þ ¼ ffn ¼ Tnf0g1n¼0. The following theorem proves that T is a contraction mapping of (V, F, D).

Theorem 4. The mapping T is a contraction mapping of the Menger space (V, F, D) (see the proof in Appendix A).
Theorem 5. f⁄ is the unique fixed point in V such that for every f0 2 V, the iterative sequence {Tnf0} converges to f⁄ (see the proof in
Appendix A).

Define the optimality region of problem (3) by Ve = V(e) = {f: f 2 V, f � f⁄ < e}. For QPSO in(V, F, D), the theorem below
shows the equivalence between the convergence in T and the convergence in probability.

Theorem 6. The sequence of function values {fn, n P 0} generated by the QPSO converges to f⁄ in probability (see the proof in
Appendix A).

The above convergence analysis on a PM-space can be used to analyze other random optimization algorithms. Essentially,
any global convergent algorithm is a contraction mapping defined by Definition 7, whose orbit is probabilistic bounded. The
PSO algorithm is not global convergent, since it does not satisfy the contractive condition of Definition 7, even though its
orbit is probabilistic bounded.

4. Time complexity and convergence rate of the QPSO algorithm

4.1. Measure of time complexity

Convergence is an important characteristic of a stochastic optimization algorithm. Nevertheless, it is not sufficient to
evaluate the efficiency of the algorithm by comparison to others. The most promising and tractable approach is the study
of the distribution of the number of steps required to reach the optimality region V(e), more specifically by comparing
the expected number of steps and higher moments of this distribution. The number of steps required to reach V(e) is defined
by K(e) = inf{njfn 2 Ve}. The expected value (time complexity) and the variance of K(e), if they exist, can be computed by
E½KðeÞ	 ¼
X1
n¼0

nan; ð20Þ

Var½KðeÞ	 ¼ E½K2ðeÞ	 � fE½KðeÞ	g2 ¼
X1
n¼0

n2an �
X1
n¼0

nan

 !2

; ð21Þ
where an = an(e) with an(t) defined by (A13), that is
an ¼ PfKðeÞ ¼ ng ¼ Pff0 2 Vc
e; f1 2 Vc

e; f2 2 Vc
e; . . . ; fn�1 2 Vc

e; fn 2 V eg ¼ anðeÞ: ð22Þ
Referring to (A14), we can also find that
Ffn ;f� ðeÞ ¼ Pffn 2 Veg ¼
Xn

i¼0

an: ð23Þ
Thus, it is required that
P1

i¼0an ¼ 1 so that the algorithm can be global convergent. It is evident that the existence of
E[K(e)] relies on the convergence of

P1
n¼0nan. Generally, for most of the stochastic optimization algorithms, particularly pop-

ulation-based random search techniques, it is far more difficult to compute all an analytically than to prove the global con-
vergence of the algorithm. To evaluate E[K(e)] and Var[K(e)], researchers have either undertaken theoretical analysis relying
on specific situations or provided the numerical results on some specific functions [3,22–24,75,85,87].

Now we focus our attention on the problem of how the behavior of the individual particle influences the convergence of
QPSO, from the perspective of time complexity. It has been shown that for both types of QPSO, setting a 6 ec 
 1.781 (where
c 
 0.577215665 is called Euler constant) can prevent the particle from exploding [81]. As can be seen, however, the proof of
global convergence of QPSO does not involve the behavior of the individual particle. It is true that the algorithm is global
convergent even when the particle diverges (i.e. when a > ec). The global convergence of QPSO only requires thatP1

i¼0an ¼ 1 or gn(e) > 0 for all n, according to (A14). When the particle diverges, for every e > 0, although gn(e) declines con-
stantly, Ffn ;f� ðeÞ ¼

Pn
i¼0anðeÞ ¼ 1�

Qn
i¼1½1� giðeÞ	 may also converge to 1 since 0 < gn(e) < 1 for all n <1. The series

P1
n¼0nan,

however, may diverge in such a case. Therefore, we find that the divergence of the particle may also guarantee the global
convergence of the algorithm, but can result in infinite complexity in general. On the other hand, when the particle con-
verges or is bounded, gn(e) does not decline constantly but may even increase during the search. As a result, for certain
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e > 0,
P1

n¼0nan can converge, which implies that the algorithm has finite time complexity. Thus, to make QPSO converge glob-
ally with finite time complexity, we have to set a 6 ec to ensure the convergence or boundedness of the particle.

4.2. The convergence rate

Another measure used to evaluate the efficiency of the algorithm is its convergence rate. The mathematical complexity of
analyzing the convergence rate of a population-based random optimization algorithm, however, is no less significant than
that of computing the expected value or variance of K(e). Although some work has been done on the issue of the convergence
rate [7,41,55,57,74,85], it is apparently an open problem for arbitrary objective functions. In these literatures, the conver-
gence rate of an algorithm is defined as the rate of change of Euclidean distance from the current solution to the optimal
point. This definition can indeed measure the convergence speed of the algorithm intuitively and effectively when the opti-
mization problem is unimodal. However, if the problem is multimodal, it may fail to evaluate the efficiency of the algorithm
properly when the current solution flies away from the optimal point but its fitness value improves. Particularly, when the
objective function has many optimal solutions in the given search domain, such a definition for the convergence rate is
unfeasible since we cannot determine which optimal point is used as the reference point, to which the distance from current
solution should be computed.

The definition proposed in this work differs from the above one in that it measures the convergence rate by the rate of
change of the difference between the current best fitness value and the optimal value, not by that of the difference between
the current best point and the optimal solution. More precisely, the convergence rate at the nth step cn 2 (0, 1) by the con-
ditional expectation of the change rate of the difference between the current best fitness value and the minimum fitness va-
lue, that is
cn ¼ E
jfn � f�j
jfn�1 � f�j

����fn�1

	 

¼ E

fn � f�
fn�1 � f�

����fn�1

	 

: ð24Þ
Thus we have
E½ðfn � f�Þjfn�1	 ¼ cnðfn�1 � f�Þ: ð25Þ
The advantage of this kind of definition for the convergence rate lies in that is can be applied to arbitrary objective func-
tions. It can be observed from (24) that with given fn � 1, smaller cn 2 (0, 1) results from smaller fn or jfn � f⁄j, implying rapider
decreasing of the fn, i.e. the faster convergence speed of the algorithm. Let en = E(fn � f⁄) be the expected error at iteration
n P 0. If there exists a constant c 2 (0, 1) called expected convergence rate, then en = cne0 for every n P 0, which, by elemen-
tary transformation, leads to
n ¼ log10ðen=e0Þ
log10ðcÞ

¼ � H
log10ðcÞ

; ð26Þ
where H > 0 denotes the orders of magnitude the error is to be decreased. If H is fixed, then the time n that is required to
decrease the error by H orders of magnitude decreases as c decreases toward zero. Since the expected error after K(e) iter-
ations is approximately e, we therefore have eK(e) = cK(e)e0 
 e, from which we can evaluate K(e) approximately by
KðeÞ 
 log10ðe=e0Þ
log10ðcÞ

¼ log10ðe=E½f0 � f�	Þ
log10ðcÞ

¼ log10fe=½Eðf0Þ � f�	g
logðcÞ ¼ �H0

logðcÞ ; ð27Þ
where H0 = log10((E[f0] � f⁄)/e) > 0. The following theorem states the relationship between c and cn.

Theorem 7. Let �c ¼
Qn

i¼1�ci
� �1=n, where �ci ¼ EðciÞ. If {cn,n > 0} and {fn � f⁄, n > 0} are two negatively correlated (or positively

correlated or uncorrelated) sequences of random variables, then c < �c (or c > �c or c ¼ �cÞ (see the proof in Appendix A).
Since the sequence {fn � f⁄, n > 0} decreases with n, the negatively correlation between {cn,n > 0} and {fn � f⁄, n > 0} implies

that cn increases or the convergence velocity decreases as fn decreases. In this case, the convergence of fn is called sub-linear.
When {cn, n > 0} and {fn � f⁄, n > 0} are positively correlated, cn decreases as fn decreases, which means that the convergence
accelerates as fn decreases, and thus we call that fn is of super-linear convergence. When {cn,n > 0} and {fn � f⁄, n > 0} are
uncorrelated, c ¼ �c for all n > 0, implying that cn = c, and the convergence of fn is known as linear.

Linear convergence may occur in some idealized situations. For Pure Adaptive Search (PAS) [88], if the objective function
is the Sphere function f(X) = XT � X, it may achieve linear convergence. Taking a 2-dimensional problem for instance, we have

E = [fn � f⁄ jfn � 1] = E[fnjfn � 1] = E[kXnk2jkXn�1k2]. Denoting r2
n�1 ¼ kXn�1k2 and considering that Xn is distributed uniformly

over Sn ¼ X : kXk2
6 r2

n�1

n o
, we obtain
E ¼ ½fn � f�jfn�1	 ¼
1

pr2
n�1

Z Z
Sn

r2 dX ¼ 1
pr2

n�1

Z 2p

0
dh
Z rn�1

0
r2 � r dr ¼ r2

n�1

2
¼ kXn�1k2

2
¼ fn�1 � 0

2
¼ fn�1 � f�

2
:

Thus it can be find that cn = 0.5 for all n > 0 and c = cn = 0.5, implying that linear convergence is achieved by the PAS.
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Most of practical stochastic algorithms, however, run in sub-linear convergence in general. If we are to evaluate an algo-
rithm in terms of the convergence rate, we can calculate the value of �c ¼

Qn
i¼1�ci

� �1=n and compare it with that of other algo-
rithms, and besides, we may also compute the value of j�c � cj to measure the ‘‘linearity’’ of its convergence. However, for
most of the stochastic algorithms including QPSO, analytical calculation of their convergence rates is no less difficult than
that of their time complexities. Therefore, in the remainder part of this section we turn our attention to the numerical results
of convergence rate and time complexity on some specific problems.

4.3. Testing the time complexity and convergence rate of the QSPO algorithm

4.3.1. Evaluation of time complexity
Now, as it is hard to compute analytically the time complexity and convergence rate of QPSO. In this subsection, we test

these convergence properties of QPSO empirically, using the Sphere function f(X) = XT � X, which has minimum value at zero.
The Sphere function is unimodal and is a special instance from the class of quadratic functions with positive definite Hessian
matrix. It has been generally used to test the convergence properties of a random search algorithm [74]. In our experiment,
the initialization scope used by each algorithm for the function is [�10, 10]N, where N is the dimension of the problem.

For evaluating the convergence of the algorithms, the first thing we require is a fair time measurement. The number of
iterations cannot be accepted as a time measure since the algorithms perform different amount of work in their inner loops
and also they have different population sizes. We have used the number of fitness function (objective function) evaluations
as a measure of time. The advantage of measuring complexity by counting the function evaluations is that there is a strong
relationship between this measure and the processor time as the function complexity increases. Therefore, the subscript m is
used to denote the number of fitness function values, and the relationship m = (n � 1)M + i holds, where n is the number of
iterations, M is the population size and i is the particle’s index.

We performed two sets of experiments to evaluate the time complexity and convergence rate of the QPSO algorithm,
respectively. The QPSO-Type 1, QPSO-Type 2 and PSO with constriction factor [10] were tested for the comparison. To test
the time complexity, we set the optimality region as V(e) = V(10�4) = {f: f 2 V, f � f⁄ < 10�4} and recorded K(e), the number of
function evaluations when the tested algorithm first reached the region. Each algorithm ran 50 times on the Sphere function
with a certain dimension. We figured out some statistical results including the mean number of function evaluations ðKðeÞÞ,
the standard deviation of K(e) (rK(e)), the standard error ðrKðeÞ=

ffiffiffiffiffiffi
50
p
Þ, the ratio of the standard error and the dimension

ðrKðeÞ=ðN
ffiffiffiffiffiffi
50
p
ÞÞ, and the ratio of KðeÞ and the dimension (KðeÞ/N). Tables 1–3 list, respectively, the results generated by

QPSO-Type 1 with a = 1.00, QPSO-Type 2 with a = 0.75 and PSO with constriction factor v = 0.73 and acceleration coefficients
c1 = c2 = 2.05. Each algorithm used 20 particles. The settings of a for both types of QPSO may lead to good performance in
general, which has been demonstrated in our preliminary studies on a set of widely used benchmark functions.

The numerical results of KðeÞ/N for QPSO-Type 2, listed in the last columns in Table 2, show to have a fairly stable values,
with the maximum and minimum values being 154.8450 and 146.0333 respectively. Moreover, the correlation coefficient
Table 1
Statistical results of the time complexity test for QPSO-Type 1.

N KðeÞ rK(e) rKðeÞ=
ffiffiffiffiffiffi
50
p

rKðeÞ=ðN
ffiffiffiffiffiffi
50
p
Þ KðeÞ=N

2 232.16 49.24713 6.9646 3.4823 116.0800
3 382.78 67.11832 9.4920 3.1640 127.5933
4 577.92 92.87886 13.1351 3.2838 144.4800
5 741.08 104.8719 14.8311 2.9662 148.2160
6 921.92 128.5678 18.1822 3.0304 153.6533
7 1124.7 115.4569 16.3281 2.3326 160.6714
8 1396.2 170.9966 24.1826 3.0228 174.5250
9 1586.36 159.0606 22.4946 2.4994 176.2622

10 1852.86 185.6496 26.2548 2.6255 185.2860

Table 2
Statistical results of the time complexity test for QPSO-Type 2.

N KðeÞ rK(e) rKðeÞ=
ffiffiffiffiffiffi
50
p

rKðeÞ=ðN
ffiffiffiffiffiffi
50
p
Þ KðeÞ=N

2 306.26 69.41529 9.8168 4.9084 153.1300
3 455.06 71.15301 10.0626 3.3542 151.6867
4 619.38 60.03057 8.4896 2.1224 154.8450
5 748.92 69.87156 9.8813 1.9763 149.7840
6 883.92 94.45458 13.3579 2.2263 147.3200
7 1043.26 101.0267 14.2873 2.0410 149.0371
8 1171.68 102.8985 14.5520 1.8190 146.4600
9 1314.3 117.4271 16.6067 1.8452 146.0333

10 1477.2 112.9856 15.9786 1.5979 147.7200



Table 3
Statistical results of the time complexity test for PSO.

N KðeÞ rK(e) rKðeÞ=
ffiffiffiffiffiffi
50
p

rKðeÞ=ðN
ffiffiffiffiffiffi
50
p
Þ KðeÞ=N

2 679.2 126.4995 96.0534 48.0267 339.6000
3 967.8 146.133 136.8676 45.6225 322.6000
4 1235.3 137.2839 174.6978 43.6745 308.8250
5 1417.3 157.8286 200.4365 40.0873 283.4600
6 1686 174.2886 238.4364 39.7394 281.0000
7 1914.5 220.8512 270.7512 38.6787 273.5000
8 2083.3 186.5505 294.6231 36.8279 260.4125
9 2346.5 162.1101 331.8452 36.8717 260.7222

10 2525.2 200.4582 357.1172 35.7117 252.5200
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between KðeÞ and N in Table 2 was found to be 0.9997. The fact indicates that there is a strong linear correlation between
KðeÞ and the dimension, i.e. KðeÞ ¼ H � N, for the QPSO-Type 2. The constant H is function of the algorithm used and appears
to be near 150 in Table 2. For QPSO-Type 1 and PSO, the correlation coefficients between KðeÞ and N are 0.9967 and 0.9984,
meaning that with the given algorithmic parameters, the linear correlations between KðeÞ and N are not so remarkable as
that for QPSO-Type 2, but the linearity for PSO is somewhat stronger than that for QPSO-Type 1. For further investigation,
we visualize in Figs. 2–4 the results of each tested algorithm with other parameter settings. Fig. 2 shows that the value of
KðeÞ/N increases slowly as the dimension increases, implying that the time complexity may increase nonlinearly with the
dimension. From Figs. 3 and 4, it can be seen that the time complexities of QPSO-Type 2 and PSO increase fairly linearly when
dimension varies in the range of 2–20. However, both the QPSO-Type 1 and QPSO-Type 2 may have lower time complexity
than PSO under the given parameter settings.

To explain the linear correlation we observed, let us consider an idealized random search algorithm with the constant
probability q(0 < q 6 1) of improving objective function value. The algorithm is called Somewhat Adaptive Search (SAS),
as in [88]. Denote the time complexity of PAS by E[KPAS(e)], and by referring to [3], we can obtain that
E½KSASðeÞ	 ¼ 1

q E½KPASðeÞ	 ¼ ln vðSÞ
vðVeÞ, where v(�) is the Lebesgue measure. For the testing problem, Ve is an N-dimensional

super-ball with radius
ffiffiffi
e
p

and its volume is vðV eÞ ¼ pN=2 C N
2 þ 1
� �� �

eN
2 . Considering that ln C N

2 þ 1
� �

¼ OðNÞ, we obtain
M
ea

n 
N

um
be

r o
f F

un
ct

io
n 

Ev
al

ua
tio

ns
E½KSASðeÞ	 ¼
1
q

ln
dN

vðVeÞ
¼ 1

q
ln dN � C N

2
þ 1

� ��
ðpeÞ

N
2

	 

¼ N

q
ln

dffiffiffiffiffiffi
pe
p
	 


þ ln C
N
2
þ 1

� �
¼ OðNÞ; ð28Þ
where d is the length of the search scope of each dimension. The above equation implies that the SAS has linear time com-
plexity and the constant H is mainly determined by q if the values of d and e are given.

For the tested algorithm, the probability q generally varies with the number of function evaluations and dimension of the
problem. Under certain parameter settings, the linear correlation between time complexity and dimension showed by QPSO-
Type 2 or PSO indicates that q is relatively stable when the number of function evaluation is increasing and the dimension is
varying in a certain interval. The value of q of QPSO-Type 1 seems to be less stable when the algorithm is running, leading the
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Fig. 2. Results of time complexity testing for QPSO-Type 1 with different values of a and population sizes.
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Fig. 3. Results of the time complexity testing for QPSO-Type 2 with different values of a and population sizes.
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Fig. 4. Results of the time complexity testing for QPSO-Type 2 with different values of v and population sizes.
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time complexity to increase nonlinearly with the dimension. Nevertheless, since both types of QPSO may have larger q, the
values of their H’s are smaller than that of PSO.

4.3.2. Evaluation of the convergence rate
To test the convergence rate, we also had 50 trial runs for every instance with each run executed for a given maximum

number of function evaluations, which were set as mmax = 200N. For each algorithm, two groups of experiments were per-
formed, one with population size M = 20, the other with M = 40. To compute the convergence rate, at the (m � 1)th step of
the function evaluation, we sampled the particle’s position 30 times independently before the next update of the position.
For each sample position, we calculated its objective function value denoted by f k

m (where k is the number of sampled posi-
tion), which in turn was compared with that of the global best position fm � 1. If f k

m�1 < fm�1, we recorded f k
m as it was; other-

wise, we replaced it by fm�1. After the 30th sampling, we computed E½fm�1 � f�jfm�1	 ¼ 1
30

P30
k¼1 f k

m � f�
� �

and thus could obtain
the convergence rate cm. It should be noticed that the sampling procedure did not affect the actual variables such as the par-
ticle’s current position, its personal best position, the global best position, its velocity (for PSO algorithm) and so forth. After
the sampling, the particle updated the position according to these variables.

For a certain m, the value of �cm was obtain by calculating the arithmetic mean of all the cms of 50 runs. Thus, �c was ob-
tained by using �c ¼

Qnmax
m¼1�cm

� �1=nmax and the expected convergence rate c was worked out by c ¼ ð�f nmax=
�f 0Þ1=nmax . Besides, we

also computed the correlation coefficient between cm and fm, and denoted it by h(cm,fm).
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Tables 4–6 list the results generated by QPSO-Type 1 (a = 1.00), QPSO-Type 2 (a = 0.75) and PSO (v = 0.729, c1 = c2 = 2.05).
It can be seen from the three tables that for each algorithm on each problem, the value of �c is larger than c and the correlation
coefficient is negative. The fact indicates that the algorithms ran with sub-linear convergence. It can also be observed that
the convergence rates of both types of QPSO (as shown in Tables 4 and 5) are smaller than that of PSO (as shown in Table 6)
on each problem with the same population size except when N = 2. This implies that QPSO may converge faster. A closer look
at the three tables reveals that h(cm, fm) increases as the dimension increases. The reason may be that improvement of the
function value was relatively harder when the dimension was high, making the convergence rate cm so close to 1 that it chan-
ged little as fm decreases. It should also be noted that for a given problem, when M = 40, the convergence rates of all the three
algorithms are larger than those when M = 20. However, it cannot be concluded that a larger population size leads to a larger
convergence rate, since the convergence rate also depends on other parameters. Smaller population size may result in a fas-
ter convergence on the problem with lower dimension, but the algorithm may encounter premature convergence when
dimension is higher. On the other hand, although the algorithm with larger population size is not efficient on low-dimen-
sional problems, it has less chance to result in premature convergence on high-dimensional problems. It can be inferred that
if other parameters are given, when the dimension increases to a certain number, the convergence rate of the algorithm with
smaller population size may exceed that with larger population size.
Table 4
Results for the convergence rate test of QPSO-Type 1.

N nmax M = 20 M = 40

�f 0
�f nmax

�c c h(cm,fm) �f 0
�f nmax

�c c h(cm,fm)

2 400 6.3710 1.9311e�05 0.9772 0.9687 �0.1306 2.8309 4.5267e�05 0.9867 0.9728 �0.1513
3 600 19.1981 4.7244e�06 0.9810 0.9750 �0.1089 11.1715 2.8342e�04 0.9876 0.9825 �0.1341
4 800 32.2220 3.5506e�06 0.9842 0.9802 �0.0893 23.8846 2.5734e�04 0.9900 0.9858 �0.1333
5 1000 52.0046 6.6324e�06 0.9869 0.9843 �0.0734 44.3261 6.8896e�04 0.9912 0.9890 �0.1052
6 1200 74.4027 1.3265e�05 0.9887 0.9871 �0.0830 63.5427 6.9010e�04 0.9926 0.9905 �0.1120
7 1400 104.7848 1.3256e�05 0.9902 0.9887 �0.0870 82.9243 0.0012 0.9936 0.9921 �0.0999
8 1600 119.6822 1.7295e�05 0.9918 0.9902 �0.0745 103.6366 0.0027 0.9943 0.9934 �0.1009
9 1800 145.3857 7.2877e�05 0.9926 0.9920 �0.0710 127.3277 0.0032 0.9950 0.9941 �0.0924

10 2000 166.8939 6.9944e�05 0.9933 0.9927 �0.0581 139.2103 0.0046 0.9954 0.9949 �0.0848

Table 5
Results for the convergence rate test of QPSO-Type 2.

N nmax M = 20 M = 40

�f 0
�f nmax

�c c h(cm,fm) �f 0
�f nmax

�c c h(cm,fm)

2 400 6.2432 2.2060e�05 0.9845 0.9691 �0.2165 3.5850 4.2072e�04 0.9883 0.9776 �0.2589
3 600 14.0202 1.2962e�05 0.9864 0.9771 �0.2134 12.6022 0.0012 0.9898 0.9847 �0.2304
4 800 33.3147 1.7636e�05 0.9867 0.9821 �0.1644 25.9027 0.0019 0.9920 0.9882 �0.2289
5 1000 50.7010 7.1771e�06 0.9881 0.9844 �0.1579 43.9053 0.0012 0.9927 0.9895 �0.1910
6 1200 68.6281 4.2896e�06 0.9889 0.9863 �0.1405 62.3872 0.0018 0.9933 0.9913 �0.1529
7 1400 100.3869 2.6875e�06 0.9899 0.9876 �0.1410 87.6376 0.0020 0.9939 0.9924 �0.1633
8 1600 132.1488 2.1607e�06 0.9910 0.9889 �0.1244 100.1323 0.0023 0.9945 0.9933 �0.1700
9 1800 144.2586 1.5950e�06 0.9915 0.9899 �0.1090 119.0672 0.0013 0.9951 0.9937 �0.1329

10 2000 172.0399 1.7459e�06 0.9921 0.9908 �0.0782 154.5341 0.0017 0.9951 0.9943 �0.1274

Table 6
Results for the convergence rate test of PSO.

N nmax M = 20 M = 40

�f 0
�f nmax

�c c h(cm,fm) �f 0
�f nmax

�c c h(cm,fm)

2 400 6.2601 0.0050 0.9911 0.9823 �0.2151 2.9063 0.0252 0.9938 0.9882 �0.2362
3 600 18.2950 0.0061 0.9921 0.9867 �0.1664 10.1600 0.0636 0.9948 0.9916 �0.1726
4 800 36.3027 0.0053 0.9921 0.9890 �0.1333 22.8484 0.0830 0.9954 0.9930 �0.1478
5 1000 56.0108 0.0045 0.9932 0.9906 �0.1033 39.7976 0.1222 0.9954 0.9942 �0.1223
6 1200 75.1300 0.0042 0.9936 0.9919 �0.0812 60.8450 0.1102 0.9961 0.9948 �0.1088
7 1400 92.8699 0.0043 0.9940 0.9929 �0.0621 80.6101 0.1425 0.9964 0.9955 �0.0902
8 1600 125.3514 0.0036 0.9946 0.9935 �0.0731 98.5102 0.1624 0.9967 0.9960 �0.0608
9 1800 153.0013 0.0035 0.9949 0.9941 �0.0530 123.9556 0.1989 0.9969 0.9964 �0.0723

10 2000 170.3619 0.0034 0.9952 0.9946 �0.0446 135.5715 0.2071 0.9971 0.9968 �0.0636
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5. Two improved QPSO algorithms

Although the QPSO method, particularly the QPSO-Type 2, has been showed to be efficient in solving continuous optimi-
zation problem, there is the possibility of improving the algorithm without increasing the complexity of its implementation.
Here, we proposed two improved versions of the algorithm based on the QPSO-Type 2.

5.1. QPSO with random mean best position

In the first improved QPSO algorithm, the mean best position C in (15) is replaced by the pbest position of a randomly
selected particle in the population at each iteration. For convenience, we denoted the randomly selected pbest position by
C0n. For each particle, the probability for its personal best position to be selected as C0n is 1/M. Consequently, the expected
value of C0n equals to Cn, that is,
E C 0n
� �

¼
XM

i¼1

1
M

Pi;n ¼ Cn: ð29Þ
However, since the C0n appears to be more changeful than Cn, the current position of each particle at each iteration shows
to be more volatile than that of the particle in QPSO-Type 2, which diversifies the particle swarm and in turn enhances the
global search ability of the algorithm. This improved algorithm is called QPSO with random mean best position (QPSO-RM).

5.2. QPSO with ranking operator

The second improvement involves a ranking operator proposed to enhance the global search ability of the QPSO algo-
rithm. In the original QPSO and QPSO-RM, the neighborhood topology is the global best model so that each particle follows
Fig. 5. The procedure of the QPSO-RO algorithm.
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their own pbest position and the gbest position, leading the algorithm to fast convergence. However, the particle may be mis-
guided by the gbestposition if it is located at a local optimal point, particularly at the later stage of the search process. In such
a case, the particles are all pulled toward the gbest position and have less opportunity to escape the local optimum even
though some particles are located in promising regions where the better solutions or the global optimal solution can be
found. As a result, the QPSO using this topology may be prone to encounter premature convergence.

In the proposed QPSO with ranking operator (QPSO-RO), each particle flies in the search space following its own pbest
position and the pbestposition of a randomly selected particle based on a ranking operator, whose fitness value is better than
the considered particle. The selection procedure is as follows. Before the position update for particle i at every iteration, the
pbest positions of all the particles are ranked in ascending order according to their fitness values, with the rank of the global
best particle being M and that of the worst particle being 1. Given that the rank of the considered particle is
ranki(1 6 ranki 6M), each particle whose rank is larger than ranki will be considered as a candidate to be selected but the
other particles will not be selected. In other words, the selection probability of particle q(1 6 q 6M) is given by
PSq ¼
2�rankq

rankiðranki�1Þ ; rankq > ranki

0; rankq 6 ranki

(
; ð30Þ
where ranki is the rank of particle i. From Eq. (30), it can be seen that the sum of the selection probabilities of all the can-
didates equals 1. For particle i, if the pbest position of particle q is selected, then the coordinates of the local attractor of par-
ticle i is determined by
pj
i;n ¼ uj

i;nPj
i;n þ 1�uj

i;n

� �
Pj

q;n; uj
i;n � Uð0;1Þ; ð31Þ
where Pj
q;n is the jth component of the pbest position of particle q with rankq > ranki.

Eq. (31) implies that particle i is attracted by both its own pbest position and the randomly selected Pq,n. Although the
global best particle is selected with the highest probability, there is a better chance for the other particles to be selected
as a part of the local attractor. This helps the particle swarm search other promising region and consequently enhance
the global search ability of the algorithm. The procedure of the QPSO-RO algorithm is outlined in Fig. 5. Also note that
randi(�), i = 1, 2, 3, is used to denote random numbers generated uniformly and distributed on (0, 1).
6. Experiments on benchmark functions

Section 3 has theoretically proven that the QPSO algorithm is global convergent, which, however, is not sufficient to draw
a conclusion that the QPSO is effective in real-world applications. Semi-theoretical evaluation of time-complexity and con-
vergence rate of QPSO in Section 4 reveals that it has lower computational complexity and better convergence properties for
the Sphere function, which is a unimodal function usually used to test the local search ability of an algorithm. Nevertheless,
it is hard to generalize the same evaluation method to an arbitrary problem, particularly when the problem is multimodal,
and it is inconclusive with respect to the overall performance of the algorithms using the Sphere function only. Hence, to
evaluate the QPSO objectively, it would be better to compare it with other PSO variants using a large test set of optimization
functions.

The goal of this section is thus to determine the overall performance of QPSO by using the first ten functions from the
CEC2005 benchmark suite [77]. Furthermore, the proposed QPSO-RM and QPSO-RO were also experimented on these bench-
mark functions. A performance comparison was made among the QPSO algorithms (QPSO-Type 1 and QPSO-Type 2), QPSO-
RM, QPSO-RO and other forms of PSO, including PSO with inertia weight (PSO-In) [68–70], PSO with constriction factor (PSO-
Co) [10,11], the Standard PSO [4], Gaussian PSO [64], Gaussian Bare Bones PSO [35,36], Exponential PSO (PSO-E) [39], Lévy
PSO [56], comprehensive learning PSO (CLPSO) [43], dynamic multiple swarm PSO (DMS-PSO) [42] and fully-informed par-
ticle swarm (FIPS) [46].

F1 to F5 of the CEC 2005 benchmark suite are unimodal, while functions F6 to F10 are multi-modal. Each algorithm ran
100 times on each problem using 20 particles to search the global best fitness value. At each run, the particles in the algo-
rithms started in new and randomly-generated positions, which are uniformly distributed within the search bounds. Every
run of each algorithm lasted 3000 iterations and the best fitness value (objective function value) for each run was recorded.

For the QPSO-based algorithms, two methods of controlling a were used. One is the fixed-value method, in which the va-
lue of a was fixed at a constant during the search process. The other is time-varying method, in which the value of a de-
creased linearly in the course of running. For QPSO-Type 1 with the fixed-value method, a was fixed at 1.0, while for
QPSO-Type 1 with the time-varying method, a decreased linearly form 1.0 to 0.9. For QPSO-Type 2 with the fixed-value
method, the value of a was fixed at 0.75, while for QPSO-Type 2 with the time-varying method, a decreased linearly from
1.0 to 0.5 with regard to the iteration number. For QPSO-RM, a was set to be 0.54 when the fixed-value method was used,
and decreased linearly from 0.6 to 0.5 when the time-varying method was used. For QPSO-RO, a was fixed at 0.68 and de-
creased linearly from 0.9 to 0.5 for the two parameter control methods, respectively. The parameter configurations for the
QPSO-based algorithms were recommended according to our preliminary experiments or by the existing publications
[80,81]. The other parameters of the remainder PSO variants were configured as recommended by the corresponding
publications.
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The mean best fitness values and standard deviations out of 100 runs of each algorithm on F1 to F5 are presented in Table
7 and those on F6 to F10 in Table 8. To investigate if the differences in mean best fitness values between algorithms were
significant, the mean values for each problem were analyzed using a multiple comparison procedure, an ANOVA (Analysis
Of Variance), with 0.05 as the level of significance. The procedure employed in this work is called the ‘‘stepdown’’ procedure,
which takes into account that all but one of the comparisons are less different than the range. When doing all pairwise com-
parisons, this approach is the best available if confidence intervals are not needed and the sample sizes are equal [17].

The algorithms were ranked to determine which algorithm could be reliably said to be the most effective for each prob-
lem. The algorithms that were not statistically different to each other were given the same rank; those that were not statis-
tically different to more than one other groups of algorithms were ranked with the best-performing of these groups. For each
algorithm, the resulting rank for each problem, the total rank and the average rank are shown in Table 9.

For the Shifted Sphere Function (F1), QPSO-RM with either fixed or time-varying a generated better results than other
methods. The results for the Shifted Schwefel’s Problem 1.2 (F2) show that, QPSO-RM with fixed a yielded the best results,
but the performances of PSO-In and QPSO-Type 2 with linearly decreasing a were inferior to those of the other competitors.
For Shifted Rotated High Conditioned Elliptic Function (F3), when using fixed a, both the QPSO-RO and QPSO-RM outper-
formed the other methods in a statistical significance manner. QPSO-RO with fixed a also showed to be the winner among
all the tested algorithms for the Shifted Schwefel’s Problem 1.2 with Noise in Fitness (F4). F5 is the Schwefel’s Problem 2.6
with Global Optimum on the Bounds, and for this benchmark, QPSO-RO with time-varying a yielded the best results. For
benchmark F6, the Shifted Rosenbrock Function, the QPSO-based algorithms except QPSO-Type 2 were superior to those
of the other algorithms, among which there was no statistically significant difference except PSO-In and DMS-PSO. The re-
sults for the Shifted Rotated Griewank’s Function without Bounds (F7) suggest that QPSO-RM, either with fixed a or with
time-varying a, was able to find the solution for the function with the best quality compared to the other methods. Bench-
mark F8 is the Shifted Rotated Ackley’s Function with Global Optimum on the Bounds. The QPSO-RM with time-varying a
showed the best performance for this problem among the competitors. It can be seen that the performance differences be-
tween the QPSO-based algorithms and PSO-In are not statistically significant. The Shifted Rastrigin’s Function (F9) is a sep-
arable function, which the CLPSO algorithm was good at solving it. However, it can be observed that the QPSO-RO obtained
Table 7
Experimental results of mean best fitness values and standard deviations by algorithms and problems, F1 to F5 (best results in bold).

Algorithms F1 F2 F3 F4 F5

In-PSO (Std. Dev.) 3.8773e�013 785.0932 3.9733e+07 1.1249e+04 6.0547e+03
(1.6083e�012) (661.2154) (4.6433e+07) (5.4394e+03) (2.0346e+03)

PSO-Co 1.5713e�026 0.1267 8.6472e+06 1.3219e+04 7.6892e+03
(1.4427e�025) (0.3796) (9.1219e+06) (6.0874e+03) (2.3917e+03)

Standard PSO 8.2929e�026 78.2831 6.6185e+06 1.3312e+04 6.2884e+03
(1.2289e�025) (52.3272) (3.0124e+06) (4.1076e+03) (1.4318e+03)

Gaussian PSO 7.3661e�026 0.0988 1.1669e+07 2.3982e+04 8.0279e+03
(5.9181e�025) (0.3362) (2.5153e+07) (1.2512e+04) (2.3704e+03)

Gaussian Bare Bones PSO 1.7869e�025 16.8751 7.7940e+06 1.1405e+04 9.5814e+03
(8.4585e�025) (16.2021) (4.3240e+06) (6.7712e+03) (3.0227e+03)

PSO-E 5.2531e�024 20.2750 6.2852e+06 8.2706e+03 7.2562e+03
(2.2395e�023) (15.2414) (2.8036e+06) (3.6254e+03) (1.8666e+03)

Lévy PSO 1.1880e�024 36.9986 1.7366e+07 7.4842e+03 8.2543e+03
(1.1455e�023) (29.1360) (1.9001e+07) (6.6588e+03) (2.2297e+03)

CLPSO 3.5515e�008 5.3394e+03 5.1434e+07 1.6069e+04 5.4958e+003
(2.2423e�008) (1.2207e+03) (1.3489e+07) (3.4776e+03) (888.9618)

DMS-PSO 7.2525e�006 844.9978 1.2841e+07 2.7125e+003 2.9189e+003
(2.2114e�005) (350.2620) (4.9745e+06) (972.8958) (811.5164)

FIPS 3.3157e�027 75.4903 1.0409e+07 1.0529e+04 4.3452e+003
(2.5732e�028) (76.1305) (4.4786e+06) (3.8510e+03) (978.6149)

QPSO-Type 1 (a = 1.00) 3.5936e�028 40.2282 4.8847e+06 6.2397e+03 8.0749e+03
(1.5180e�028) (23.3222) (2.1489e+06) (2.4129e+03) (1.7099e+03)

QPSO-Type 1 (a = 1.00 ? 0.90) 5.0866e�029 4.5003 3.2820e+06 6.4303e+03 7.8471e+03
(4.4076e�029) (2.9147) (1.9953e+06) (2.9744e+03) (1.7878e+03)

QPSO-Type 2 (a = 0.75) 1.9838e�027 0.1771 1.6559e+06 3.1321e+03 5.7853e+03
(5.2716e�028) (0.1137) (7.1264e+05) (2.0222e+03) (1.2483e+03)

QPSO-Type 2 (a = 1.0 ? 0.5) 1.2672e�027 120.6051 4.4257e+06 4.0049e+03 3.3684e+003
(3.7147e�028) (62.2340) (2.3302e+06) (2.7218e+03) (975.6551)

QPSO-RM (a = 0.54) 3.1554e�036 0.0715 1.8544e+06 3.1443e+03 5.7144e+03
(2.3913e�036) (0.0530) (6.4710e+05) (3.8785e+03) (1.4898e+003)

QPSO-RM (a = 0.6 ? 0.5) 2.6728e�035 1.4099 2.1737e+06 2.1835e+003 4.3398e+03
(6.5932e�035) (7.8582) (1.0089e+06) (2.8487e+003) (1.4313e+03)

QPSO-RO (a = 0.68) 1.5414e�027 0.1784 1.6309e+006 1.9489e+003 5.2202e+003
(2.9964e�028) (0.1217) (8.7302e+005) (1.6002e+003) (1.2661e+003)

QPSO-RO (a = 0.9 ? 0.5) 1.0747e�027 50.9939 4.7718e+006 2.1540e+003 2.7469e+003
(2.3154e�028) (48.6055) (2.0760e+006) (1.3635e+003) (723.4961)



Table 8
Experimental results of mean best fitness values and standard deviations by algorithms and problems, F6 to F10 (best results in bold).

Algorithms F6 F7 F8 F9 F10

In-PSO (Std. Dev.) 263.7252 0.9907 0.0414 39.5528 239.5814
(437.4145) (4.7802) (0.2393) (16.1654) (72.2521)

Co-PSO 123.0243 0.0255 5.1120 96.7296 171.6488
(266.2520) (0.0327) (4.5667) (28.0712) (58.5713)

Standard PSO 153.5178 0.0218 0.2744 79.1219 128.9865
(246.1049) (0.0165) (0.6795) (20.2619) (32.3662)

Gaussian PSO 150.7872 0.0224 2.7722 103.6245 184.2657
(303.3368) (0.0178) (1.4603) (28.6113) (57.3675)

Gaussian Bare Bones PSO 144.1377 0.0205 3.5460 80.9496 164.2914
(165.2616) (0.0208) (6.1929) (22.0621) (72.8542)

PSO-E 189.8292 0.0493 3.5881 66.5112 163.7187
(375.8636) (0.0538) (5.5286) (20.9853) (55.0921)

Lévy PSO 133.9526 0.0446 2.2168 74.0446 154.3838
(293.8460) (0.1182) (1.3575) (21.6913) (76.3070)

CLPSO 117.3987 2.4151 1.1582e�04 0.6990 151.2854
(54.8846) (0.7533) (6.7878e�05) (0.7983) (23.4628)

DMS-PSO 296.0911 0.3985 0.1213 39.9694 112.8426
(347.1682) (0.2502) (0.3716) (10.2384) (71.2957)

FIPS 188.8304 0.0330 0.3843 64.6289 198.3699
(294.0374) (0.0464) (0.5713) (14.5907) (21.7958)

QPSO-Type 1 (a = 1.00) 138.0746 0.0218 0.1217 56.4232 137.0334
(209.1735) (0.0204) (0.4504) (16.7090) (38.5269)

QPSO-Type 1 (a = 1.10 ? 0.90) 139.9815 0.0209 0.0916 54.4278 126.1298
(206.8138) (0.0203) (0.3166) (16.6044) (44.9531)

QPSO-Type 2 (a = 0.75) 82.9908 0.0203 0.0683 39.0991 128.5351
(119.836) (0.0164) (0.3080) (12.4904) (57.6255)

QPSO-Type 2 (a = 1.0 ? 0.5) 88.0494 0.0208 2.0961e�014 29.9218 118.4549
(159.7481) (0.0130) (1.9099e�014) (10.5736) (53.0216)

QPSO-RM (a = 0.54) 105.7474 0.0163 0.0762 42.4817 185.6351
(155.4583) (0.0134) (0.3075) (12.1384) (46.6356)

QPSO-RM (a = 0.6 ? 0.5) 89.6543 0.0150 7.5318e�015 43.8327 207.0548
(151.6908) (0.0119) (1.7046e�015) (17.881) (14.4658)

QPSO-RO (a = 0.68) 63.9916 0.0219 0.0536 34.5288 159.9417
(65.7906) (0.0292) (0.2653) (15.0725) (36.2107)

QPSO-RO (a = 0.9 ? 0.5) 61.0752 0.0196 1.9611e�014 23.3014 143.4452
(72.2629) (0.0152) (1.5498e�014) (7.6051) (43.9709)

Table 9
Ranking by algorithms and problems.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total rank Average rank

PSO-In 16 =16 17 =12 =9 =17 17 =1 =5 18 128 12.8
PSO-Co =10 =1 =11 =15 =11 =7 =4 18 =17 =11 105 10.5
Standard PSO =10 =13 =9 =15 =11 =7 =4 =10 =14 =1 94 9.4
Gaussian PSO =10 =1 =11 18 =15 =7 =4 =14 =17 =11 108 10.8
Gaussian Bare Bones PSO =13 =8 =11 =12 18 =7 =4 =14 =14 =11 112 11.2
PSO-E =13 =8 =9 11 =11 =7 =13 =14 =12 =11 109 10.9
Lévy PSO 15 =10 16 =8 =15 =7 =13 =14 =14 =6 118 11.8
CLPSO 17 18 18 17 =6 =7 18 =10 1 =6 118 11.8
DMS-PSO 18 =16 =11 =4 =1 =17 16 =1 =5 =1 90 9.0
FIPS 9 =13 =11 =12 =4 =7 =13 13 =12 16 110 11.0
QPSO-Type 1 (a = 1.00) 4 =10 =6 =8 =15 =7 =4 =10 =10 =6 80 8.0
QPSO-Type 1 (a = 1.00 ? 0.90) 3 7 5 =8 =11 =7 =4 =1 =10 =1 57 5.7
QPSO-Type 2 (a = 0.75) 8 =4 =1 =4 =9 =1 =4 =1 =5 =1 38 3.8
QPSO-Type 2 (a = 1.00 ? 0.5) 6 15 =6 7 3 =1 =4 =1 =3 =1 47 4.7
QPSO-RM (a = 0.54) 1 =1 =1 =4 =6 =1 =1 =1 =5 17 38 3.8
QPSO-RM (a = 0.6 ? 0.5) 2 =4 4 =1 =4 =1 =1 =1 =5 =11 34 3.4
QPSO-RO (a = 0.68) 7 =4 =1 =1 =6 =1 =4 =1 =3 =6 34 3.4
QPSO-RO (a = 0.9 ? 0.5) 5 =10 =6 =1 =1 =1 =1 =1 2 =6 34 3.4
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the better performance than the other QPSO-based algorithms. F10 is the Shifted Rotated Rastrigrin’s Function, which appears
to be a more difficult problem than F9. For this benchmark, the QPSO-Type 2, QPSO-Type 1 with time-varying a and the stan-
dard PSO outperformed the other competitors in a statistically significant manner.

Table 9 shows that the QPSO-RO obtained a better overall performance than all the other tested algorithms, for the total
and average ranks of QPSO-RO with both parameter control methods are smaller than those of the other algorithms.
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Although the total and average ranks of QPSO-RO with fixed a and QPSO-RO with time-varying a are the same, the former
obtained relatively more stable performance than the latter. It can be observed that QPSO-RO with fixed a yielded the best
result for four of the tested benchmark problems in a statistically significant manner, with the worst rank being 6 for F5 and
F10, and that QPSO-RO with time-varying agenerated the best result for half of all the tested functions, and the worst rank is
10 for F2. Compared with the QPSO algorithm, including QPSO-Type 1 and QPSO-Type 2, the QSPO-RO achieved a remarkable
improvement of the overall algorithmic performance.

The second best-performing algorithm was the QPSO-RM algorithm, as indicated by the total and average ranks. Between
the two parameter control methods, QPSO-RM with the time-varying a yielded a comparable overall performance with
QPSO-RO. It can be seen that the performance of QPSO-RM with time-varying ais more stable than that of QPSO-RM with
fixed a, for the worst ranks of the two versions of QPSO-RM are 11 and 17 for F10, respectively. It is obvious that QPSO-
RM has slightly better overall performance than the two types of the original QPSO.

The two types of the original QPSO algorithm, as shown by the total ranks, achieved better overall performance than other
PSO variants. Besides the evaluation of the convergence rate and time complexity of QPSO, these results further provided
stronger evidence that the QPSO is a promising tool for optimization problems. Between QPSO-Type 2 and QPSO-Type 1,
the former showed to have a better and more stable overall performance than the latter. Among the other PSO variants,
the DMS-PSO and the standard PSO yielded better overall performance than the remainder competitors. It is evident from
the ranking list that the standard PSO and PSO-Co were two great improvements over the PSO-In algorithm, which did
not show comparable performance with the other competitors. The other four probabilistic algorithms did not work so effec-
tively as the QPSO-based algorithm, DMS-PSO and the standard PSO. What should be noticed is that the CLPSO is very effec-
tive in solving separable functions such as F9, but has slower convergence speed, as has been indicated in the related
publication [43].

7. Conclusions

In this paper, we first investigated the convergence of the QPSO algorithm by establishing a Menger space for the algo-
rithm, in which the algorithm is shown to be a contraction mapping, and its orbit is probabilistic bounded. Thus, we proved
the fixed point theorem of the QPSO algorithm in the Menger space, showing that the algorithm converges to the global opti-
mum in probability.

Then, the effectiveness of the algorithm was evaluated by time complexity on the Sphere function. The linear correlation
between complexity and the dimension of the problem was observed and analyzed. Besides, we also evaluated the perfor-
mance of the QPSO algorithm with respect to the convergence rate, which was defined by the ratio of conditional expectation
of the distance of objective function value to the global optimum at the next iteration and the distance at the current iter-
ation. It was found that the algorithms ran in sub-linear convergence and the QPSO had smaller convergence rate than the
PSO, which means the QPSO can converge faster with given parameters.

Two improvements of the QPSO, the QPSO-RO and QPSO-RM were proposed next. The QPSO algorithm, along with the
two improved versions and other PSO variants were tested on a set of benchmark problems for an overall performance eval-
uation. The experimental results show that the QPSO is comparable with or even better than other forms of PSO in finding
the optimal solutions of the tested benchmark functions, and also show that the two modified QPSO algorithms achieved
remarkable improvement over the original QPSO algorithm.
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Appendix A

Theorem 1. Let a self-mapping T: (E, F, D) ? (E, F, D) be the contraction mapping in Definition 7. If for every x 2 E, OT(x; 0,1) is
probabilistic bounded, then there exists a unique common fixed point x⁄ in E for T, and for every x0 2 E, the iterative sequence {Tnx0}
converges to x⁄ in T .
Proof. The proof of the theorem is achieved through the following two steps.

(1) First, we prove that for every x0 2 E, the sequence fxmg1m¼0 is a T -Cauchy Sequence in E, where
fxmg1m¼0 ¼ fx0; x1 ¼ Tnðx0Þx0; . . . ; xmþ1 ¼ TnðxmÞxm; . . .g: ðA1Þ
Let ni = n(xi), where i = 0, 1, 2, . . ., and let m and i are two arbitrary positive integers. From (18) and (A1), we have
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nmþi�1þ���þnm xm�2

t

k2

� �
P � � �

P Fx0 ;T
nmþi�1þ���þnm x0

t
km

� �
P inf

z2fTsx0g1s¼0

Fx0 ;z
t

km

� �
P sup

u<t=km
inf

z2fTsx0g1s¼0

Fx0 ;zðuÞ; 8t P 0: ðA2Þ
Considering that "t P 0, t
km is strictly increasing with t and limm!1

t
km ¼ 1, and that OT(x0; 0,1) is probabilistic bounded,

from (A2) we can obtain
lim
m!1

Fxm ;xmþi
ðtÞP lim

m!1
sup

u<t=km
inf

z2fTsx0g1s¼0

Fx0 ;zðuÞ ¼
sup
u>0

inf
z2fTsx0g1s¼0

Fx0 ;zðuÞ; if t > 0;

0; if t ¼ 0;

8<
: ¼

1; if t > 0;
0; if t ¼ 0;

�
ðA3Þ
which means that the sequence fxmg1m¼0 is a T -Cauchy Sequence in E. Thus (E,F,D) is T -Complete and there exists a point x⁄
in E such that xn!

T
x�.

(2) Now we prove that x⁄ is the fixed point of Tn� , where n⁄ = n(x⁄). For any positive integer i and "t P 0, according to (18),
the following inequality holds.
Fxi ;T
n� xi
ðtÞP Fxi�1 ;T

n� xi�1

t
k

� �
P � � �P Fx0 ;T

n� x0

t

ki

� �
P sup

u<t=ki

Fx0 ;T
n� x0
ðuÞ: ðA4Þ
Taking the limit as i ?1 on both sides of the above inequality, we find that
lim
i!1

Fxi ;T
n� xi
ðtÞP lim

i!1
sup

u<t=ki

Fx0 ;T
n� x0
ðuÞP

sup
u>0

Fx0 ;T
n� x0
ðuÞ; if t > 0

0 if t ¼ 0

(
¼

1 if t > 0;
0 if t ¼ 0:

�
ðA5Þ
Since xn!
T

x�, limn!1Fxn ;x� ðtÞ ¼ HðtÞ. Thus we have
lim
i!1

Fxi ;T
n� xi
ðtÞP lim

i!1
D Fx� ;xi

t
2

� �
; Fxi ;T

n� xi

t
2

� �� �
¼ 1; 8t > 0: ðA6Þ
From (18) and (A6), we obtain
Fx� ;Tn� x� ðtÞP D Fx� ;Tn� xi

t
2

� �
; FTn� x� ;Tn� xi

t
2

� �� �
P D Fx� ;Tn� xi

t
2

� �
; Fx� ;xi

t
2k

� �� �

P D Fx� ;Tn� xi

t
2

� �
; Fx� ;xi

t
2

� �� �
! 1ði!1Þ; 8t > 0; ðA7Þ
namely, Fx� ;Tn� x� ðtÞ ¼ 1; 8t > 0. As a result, x� ¼ Tn�x�.
If there exists another point y⁄ 2 E such that y� ¼ Tn�x�, then
Fx� ;y� ðtÞ ¼ FTn� x� ;Tn� y� ðtÞP Fx� ;y�

t
2

� �
; 8t P 0:
Iteratively, we have
Fx� ;y� ðtÞP Fx� ;y�

t
kn

� �
; 8t P 0: ðA8Þ
Taking the limit as n ?1 on the right side of the above inequality and considering that limn!1
t

kn ¼ 1, we can obtain that
Fx� ;y� ðtÞ ¼ 1; 8t P 0, implying that x⁄ = y⁄. As such, x⁄ is the unique fixed point of Tn� in E. Since Tx� ¼ TTn�x� ¼ Tn�Tx�, Tx⁄ is
also a fixed point of Tn� . Thus Tx⁄ = x⁄, which means that x⁄ is a fixed point of T. It is evident that x⁄ is the unique fixed point of
T.

(3) Finally we have to prove that for every x0 2 E, the iterative sequence {Tnx0} converges to x⁄ in T . For every positive
integer n > n⁄ and n = mn⁄ + s where 0 6 s < n⁄, from (18), we have,
Fx� ;Tnx0
ðtÞ ¼ FTn� x� ;Tmn�þsx0

ðtÞP Fx� ;Tðm�1Þn�þsx0

t
k

� �
P � � �P Fx� ;Tsx0

t
km

� �
; 8t P 0: ðA9Þ
Let m ?1 on the rightmost side of (A9). Thus n ?1 on the leftmost side the inequality, and we obtain
lim
n!1

Fx� ;Tnx0
ðtÞP lim

m!1
Fx� ;Tsx0

t
km

� �
¼ 1; 8t P 0; ðA10Þ
which implies that Tnx0!
T

x�.
This completes the proof of the theorem. h



J. Sun et al. / Information Sciences 193 (2012) 81–103 99
Theorem 2. Consider the ordered pair (V, F), where F is a mapping of V � V into D. For every x, y 2 V, if the distribution function
Fx,y is defined by Fx,y(t) = P{jx � yj < t}, "t 2 R, then (V, F) is a PM-space.
Proof. To achieve the proof of the theorem, we only need to show that the mapping F satisfies conditions (PM-1) to (PM-4).

(1) For every x, y 2 V, since jx � yjP 0, Fx,y(0) = P{jx � yj < 0} = 0, implying that F satisfies condition (PM-1).
(2) For every x, y 2 V, if Fx,y(t) = H(t) for every t > 0, we have Fx,y(t) = P{jx � yj < t} = 1, which implies that for every positive

integer m, P jx� yj < 1
m

� �
¼ 1. Therefore, P

T1
m¼1 jx� yj < 1

m

� �� �
¼ Pfjx� yj ¼ 0g ¼ 1, namely, x = y. Contrarily, if x = y,

namely jx � yj = 0, then for every t > 0 Fx,y(t) = P{jx � yj < t} = 1; or for every t < 0, Fx,y (t) = P{jx � y < t} = 0. Thus
Fx,y(t) = H(t), that is, F satisfies (PM-2).

(3) By the definition of F, we find it evident that F satisfies (PM-3).
(4) For ever x,y,z 2 V, if Fx,y(t1) = 1 and Fy,z(t2) = 1, then Fx,y(t1) = P{jx � yj < t1} = 1 and Fy,z(t2) = P{jy � zj < t2} = 1. Since
jx � zj 6 jx � yj + jy � zj, so
Fx;zðt1 þ t2Þ ¼ Pfjx� zj 6 t1 þ t2gP Pfjx� yj þ jy� zj < t1 þ t2gP Pfðjx� yj < t1Þ \ ðjy� zj < t2Þg ¼ Pfjx� yj
< t1g þ Pfjy� zj < t2g � Pfðjx� yj < t1Þ [ ðjy� zj < t2Þg ¼ 2� Pfðjx� yj < t1Þ [ ðjy� zj < t2ÞgP 1:
Accordingly, Fx,z(t1 + t2) = P{jx � zj < t1 + t2} = 1, which implies that F satisfies (PM-4).
This completes the proof of the theorem. h
Theorem 3. Triplet (V, F, D) is a Menger space, where D = D1.
Proof. To achieve the proof, we only need to prove that (V, F, D) satisfies Menger’s triangle inequality (PM-4)0. For every
x, y, z 2 V and every t1 P 0, t2 P 0, since
jx� zj 6 jx� yj þ jy� zj;
we have
fjx� zj < t1 þ t2g � fjx� yj þ jy� zj < t1 þ t2g � fjx� yj < t1g \ fjy� zj < t2g: ðA11Þ
Hence
Fx;zðt1 þ t2Þ ¼ Pfjx� zj < t1 þ t2gP Pfjx� yj þ jy� zj < t1 þ t2gP Pfðjx� yj < t1Þ \ ðjy� zj < t2Þg ¼ Pfjx� yj
< t1g þ Pfy� zj < t2g � Pfðjx� yj < t1Þ [ ðjy� zj < t2ÞgP Pfjx� yj < t1g þ Pfy� zj < t2g � 1

¼ Fx;yðt1Þ þ Fy;zðt2Þ � 1 ¼maxfFx;yðt1Þ þ Fy;zðt2Þ � 1;0g ¼ D1ðFx;yðt1Þ; Fy;zðt2Þg
implying that (V, F, D), where D = D1, satisfies Menger’s triangle inequality (PM-4)0. Therefore, (V, F, D) is a Menger space.
This completes the proof of the theorem. h
Theorem 4. The mapping T is a contraction mapping of the Menger space (V, F, D).
Proof. If t = 0, it is evident that T satisfies the contractive condition in Definition 7. In the rest part of the proof, we assume
that t > 0. Given f0 2 V, "f00 2 V and "t > 0, we suppose that
Ff 0 ;f 00 ðtÞ ¼ Pfjf 0 � f 00j < tg ¼ 1� d; ðA12Þ
where 0 < d < 1. Let V(t) = {f: f 2 V, f � f⁄ < t}, where f⁄ is the global minimum of f(X). V(t) is measurable and its Lebesgue mea-
sure v[V(t)] > 0. Letting S(t) = {X: f(X) 2 V(t)}, we have that v[S(t)] > 0, due to the almost everywhere continuity of f(X).

For the start point f0, let a0(t) = P{f0 2 V(t)} = g0(t). At the precedent iterations, for every random variable fn = Tnf0,
according to the update equation of QPSO, we can let
gnðtÞ ¼ 1�
YM
i¼1

1�
Z

SðtÞ
hXi;n
ðGn�1; Pi;n�1; xÞdx

" #
;

where
hXi;n
ðGn�1; Pi;n; xÞ ¼

YN
j¼1

Z Gj
n

Pj
i;n

1

Lj
i;n

exp �2jx� pj=Lj
i;n

� �
dp

�����
�����:
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Thus we have
anðtÞ ¼ Pffn 2 VðtÞ; fk R VðtÞ; k ¼ 1;2; . . . ; n� 1g ¼ gnðtÞ
Yn�1

i¼0

½1� gn�1ðtÞ	: ðA13Þ
Accordingly,
Ffn ;f� ðtÞ ¼ Pfjfn � f�j < tg ¼ Pffn 2 VðtÞg ¼
Xn

i¼0

anðtÞ ¼ 1�
Yn

i¼1

½1� giðtÞ	: ðA14Þ
Since for every 0 6 n <1, we have Xj
i;n

��� ��� <1, C � Xj
i;n

��� ��� <1 or p� Xj
i;n

��� ��� <1. According to (14) or (15), we have

0 < Li,j,n <1, which implies that hi;nðŷn; yi;n; xi;nÞ is Lebesgue integrable and 0 < gi(t) < 1. We thus immediately have that
supn>0Ffn ;f� ðtÞ ¼ 1, according to (A14). Hence, for the given d and f0, there exists a positive integer n1(f0) such that whenever
n P n1(f0),
FTnf 0 ;f� ðtÞ ¼ PfjTnf 0 � f�j < tg ¼ PfTnf 0 2 VðtÞg > 1� d
2
;

and there also exists a positive integer n2(f0) such that whenever n P n2(f0),
FTnf 00 ;f� ðtÞ ¼ PfjTnf 00 � f�j < tg ¼ PfTnf 00 2 VðtÞg > 1� d
2
:

Let n(f0) P max{n1(f0), n2(f0)}. Thus both of the following two inequalities are satisfied
FTnðf 0 Þf 0 ;f�
ðtÞ ¼ PfjTnðf 0 Þf 0 � f�j < tg ¼ PfTnðf 0 Þf 0 2 VðtÞg ¼ PfTnðf 0 Þf 0 � f� < tg > 1� d

2
;

FTnðf 0 Þf 00 ;f�
ðtÞ ¼ PfjTnðf 0 Þf 00 � f�j < tg ¼ PfTnðf 0Þf 00 2 VðtÞg ¼ PfTnðf 0Þf 00 � f� < tg > 1� d

2
:

Since the diameter of V(t) is t, that is, supx,y2V(t)jx � yj = t. If Tnðf 0 Þf 0; Tnðf 0 Þf 00 2 VðtÞ, jTnðf 0 Þf 0 � Tnðf 0 Þf 00j < t. As a result, it is sat-
isfied that
fjTnðf 0 Þf 0 � Tnðf 0 Þf 00j < tg � fðTnðf 0Þf 0 2 VðtÞÞ \ Tnðf 0 Þf 00 2 VðtÞg ¼ fðTnðf 0 Þf 0 � f� < tÞ \ ðTnðf 0 Þf 00 � f� < tÞg:
Thus we have that
FTnðf 0 Þf 00 ;Tnðf 0 Þf 00 ðtÞ ¼ PfjTnðf 0Þf 0 � Tnðf 0 Þf 00j < tgP PfðTnðf 0Þf 0 � f� < tÞ \ ðTnðf 0 Þf 00 � f� < tÞg ¼ PfTnðf 0Þf 0 � f� < tg þ PfTnðf 0 Þf 00 � f�

< tg � PfðTnðf 0 Þf 0 � f� < tÞ [ ðTnðf 0 Þf 00 � f� < tÞg > 1� d
2
þ 1� d

2
� PfðTnðf 0 Þf 0 � f� < tÞ [ ðTnðf 0 Þf 00 � f� < tÞg

> 2� d� 1 ¼ 1� d;
and accordingly
FTnðf 0 Þf 0 ;Tnðf 0 Þ f 00 ðtÞ > Ff 0 ;f 00 ðtÞ: ðA15Þ
Since F is monotonically increasing with t, there must exist k 2 (0, 1) such that
FTnðfiÞ f 0 ;Tnðfi Þ f 00 ðtÞP Ff 0 ;f 00
t
k

� �
: ðA16Þ
It implies that T satisfies the contractive condition in Definition 7.
This completes the proof of the theorem. h
Theorem 5. f⁄ is the unique fixed point in V such that for every f0 2 V, the iterative sequence {Tnf0} converges to f⁄.
Proof. For Menger space (V, F, D), where D = D1, T is a contraction mapping as shown by Theorem 4. Given f0 2 V, we have
fn = Tnf0 2 [f⁄, f0] for every n P 1. This implies that OTðf0; 0;1Þ ¼ ffn ¼ Tnf0g1n¼0 � ½f�; f0	. Thus for every t > f0 � f⁄,
inf f 0 ;f 002OT ðf0 ;0;1ÞFf 0 ;f 00 ðtÞ ¼ 1. Accordingly, we have
sup
t>0

inf
f 0 ;f 002OT ðf0 ;0;1Þ

Ff 0 ;f 00 ðtÞ ¼ 1; ðA17Þ
which means that the orbit generated by T at f0 is probabilistic bounded. By Theorem 1, there exists a unique common fixed
point in E for T. Since f⁄ = Tf⁄, f⁄ is the fixed point. Consequently, for every f0 2 V, the iterative sequence {Tnf0} converges to f⁄ in
T .

This completes the proof of the theorem. h
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Theorem 6. The sequence of function values {fn, n P 0} generated by QPSO converges to f⁄ in probability.
Proof. Since {fn, n P 0} converges to f⁄ in T , by Definition 5 and the definition given in Theorem 4, for every e > 0, k > 0, there
exists K = K(e, k) such that whenever n P K,
Ffn ;f� ðeÞ ¼ Pfjfn � f�j < eg ¼ Pffn 2 V eg > 1� k: ðA18Þ
Due to the arbitrariness of k, (A18) implies that fn!
P

f�.
This completes the proof of the theorem. h
Theorem 7. Let �c ¼
Qn

i¼1�ci
� �1=n where �ci ¼ EðciÞ. If {cn, n > 0} and {fn � f⁄, n > 0} are two negatively correlated (or positively cor-

related or uncorrelated) sequences of random variables, then c < �c (or c > �c or c ¼ �cÞ.
Proof. According to the properties of conditional expectations, we have
E½ðfn � f�Þ	 ¼ E½E½ðfn � f�Þjfn�1		; ðA19Þ
for all n > 0. If {cn, n > 0} and {fn � f⁄, n > 0} are negatively correlated, it follows that
Covðcn; fn � f�Þ ¼ E½cnðfn � f�Þ	 � EðcnÞEðfn � f�Þ < 0;
namely
E½cnðfn � f�Þ	 < EðcnÞEðfn � f�Þ; ðA20Þ
for all n > 0. By (A19) and (A20), we therefore have
en ¼ Eðfn � f�Þ ¼ EfE½ðfn � f�Þjfn�1	g ¼ E½cnðfn�1 � f�Þ	 < EðcnÞEðfn�1 � f�Þ ¼ �cnEðfn�1 � f�Þ ¼ �cnEfE½ðfn�1 � f�Þjfn�2	g

¼ �cnE½cn�1ðfn�2 � f�Þ	 < �cn�cn�1Eðfn�2 � f�Þ ¼ � � � < �cn�cn�1�cn�2 . . . �c1Eðf0 � f�Þ ¼
Yn

i¼1

�ci

 !
Eðf0 � f�Þ ¼ �cne0; ðA21Þ
implying that c ¼ ðen=e0Þ1=n
< �c.

If {cn, n > 0} and {fn � f⁄, n > 0} are positively correlated,
Covðcn; fn � f�Þ ¼ E½cnðfn � f�Þ	 � EðcnÞEðfn � f�Þ > 0:
Similarly, we have c > �c.
If {cn, n > 0} and {fn � f⁄, n > 0} are uncorrelated,
Covðcn; fn � f�Þ ¼ E½cnðfn � f�Þ	 � EðcnÞEðfn � f�Þ ¼ 0:
Replacing each sign of inequality in (A21) by an equal sign, we find that c ¼ �c.
This completes the proof of the theorem. h
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