
Quantum-Behaved Particle Swarm
Optimization: Analysis of Individual Particle

Behavior and Parameter Selection

Jun Sun sunjun wx@hotmail.com
Key Laboratory of Advanced Process Control for Light Industry (Ministry of
Education), Jiangnan University, Wuxi, Jiangsu 214122, China

Wei Fang wxfangwei@hotmail.com
Key Laboratory of Advanced Process Control for Light Industry (Ministry of
Education), Jiangnan University, Wuxi, Jiangsu 214122, China

Xiaojun Wu wu xiaojun@yahoo.com.cn
Key Laboratory of Advanced Process Control for Light Industry (Ministry of
Education), Jiangnan University, Wuxi, Jiangsu 214122, China

Vasile Palade vasile.palade@cs.ox.ac.uk
Department of Computer Science, University of Oxford, Oxford, OX1 3QD,
United Kingdom

Wenbo Xu xwb@jiangnan.edu.cn
Key Laboratory of Advanced Process Control for Light Industry (Ministry of
Education), Jiangnan University, Wuxi, Jiangsu 214122, China

Abstract
Quantum-behaved particle swarm optimization (QPSO), motivated by concepts from
quantum mechanics and particle swarm optimization (PSO), is a probabilistic optimiza-
tion algorithm belonging to the bare-bones PSO family. Although it has been shown to
perform well in finding the optimal solutions for many optimization problems, there
has so far been little analysis on how it works in detail. This paper presents a com-
prehensive analysis of the QPSO algorithm. In the theoretical analysis, we analyze the
behavior of a single particle in QPSO in terms of probability measure. Since the parti-
cle’s behavior is influenced by the contraction-expansion (CE) coefficient, which is the
most important parameter of the algorithm, the goal of the theoretical analysis is to
find out the upper bound of the CE coefficient, within which the value of the CE coeffi-
cient selected can guarantee the convergence or boundedness of the particle’s position.
In the experimental analysis, the theoretical results are first validated by stochastic
simulations for the particle’s behavior. Then, based on the derived upper bound of
the CE coefficient, we perform empirical studies on a suite of well-known benchmark
functions to show how to control and select the value of the CE coefficient, in order
to obtain generally good algorithmic performance in real world applications. Finally,
a further performance comparison between QPSO and other variants of PSO on the
benchmarks is made to show the efficiency of the QPSO algorithm with the proposed
parameter control and selection methods.

C© 2012 by the Massachusetts Institute of Technology Evolutionary Computation 20(3): 349–393

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Keywords
Particle swarm optimization, quantum behavior, probabilistic boundedness, conver-
gence, parameter selection.

1 Introduction

The particle swarm optimization (PSO) algorithm is a population-based optimization
technique, originally developed by Kennedy and Eberhart in 1995. It was motivated by
the social behavior of bird flocking or fish schooling and shares many similarities with
evolutionary computation techniques. A PSO system is initialized with a population of
random solutions and searches for optima by updating generations. However, unlike
evolutionary algorithms, PSO has no evolution operators such as crossover and muta-
tion. In PSO, the potential solutions, called particles, fly through the problem space by
following their own experiences and the current best particles. It has been shown that
the PSO algorithm is comparable in performance with and may be considered as an
alternative method to evolutionary algorithms (Angeline, 1998a).

During the last decade, PSO gained increasing popularity since it can get better
results for optimization problems in a faster and cheaper way compared with other
methods, but has fewer parameters to be adjusted. In order to investigate in detail
the mechanism of PSO, a lot of theoretical analyses have been done on the algorithm
(Kennedy, 1998; Ozcan and Mohan, 1999; Clerc and Kennedy, 2002; van den Bergh,
2002; Shi and Eberhart, 1998b; Trelea, 2003; Emara and Fattah, 2004; Gavi and Passino,
2003; Kadirkamanathan et al., 2006; Jiang et al., 2007; Poli, 2008). These theoretical anal-
yses were focused on the behavior of the individual particle, which is essential to the
understanding of the search mechanism of the algorithm and to parameter selection.
For example, Kennedy (1998) carried out an analysis of simplified particle behavior
and showed the different trajectories of particles for a range of design choices aiming
to gain some insights into the behavior of particles through simulations, and Clerc and
Kennedy (2002) undertook the first formal analysis of the particle trajectory and of the
stability properties of the algorithm.

Besides the theoretical analyses, there has been a considerable amount of work
done in developing the original version of PSO through empirical simulations. In order
to accelerate the convergence of the particle, Shi and Eberhart (1998a) introduced the
concept of an inertia weight into the original PSO, and Clerc (1999) proposed an alterna-
tive version of PSO incorporating a parameter known as the constriction factor which
should replace the restriction on velocities. Some researchers employed the operations
of other evolutionary algorithms in PSO to enhance its performance, the most impor-
tant work being done by Angeline (1998b). Another general form of particle swarm,
referred to as the lbest model, was first proposed by Eberhart and Kennedy (1995), and
then was studied in depth by many other researchers in order to find other topologies
to improve the performance of PSO (Suganthan, 1999; Kennedy, 1999, 2002; Mendes
et al., 2004; van den Bergh and Engelbrecht, 2004; Janson and Middendorf, 2005; Liang
and Suganthan, 2005; Mohais et al., 2005; Parrott and Li, 2006). Bratton and Kennedy
defined a standard PSO, which is an extension of the original PSO algorithm while
taking into account the previous developments that can improve the performance of
the algorithm (Bratton and Kennedy, 2007).

Some researchers have attempted to experiment with various ways to simulate
the particle trajectory by directly sampling, using a random number generator, from
a distribution of some theoretical interest, and thus have proposed many probabilistic

350 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

PSO algorithms (Kennedy, 2003, 2004, 2006; Secrest and Lamont, 2003; Krohling, 2004;
Sun, Feng, et al., 2004; Sun, Xu, et al., 2004; Sun et al., 2005; Krohling and Coelho, 2006;
Richer and Blackwell, 2006), the most popular being the bare-bones PSO (BBPSO) family.
In BBPSO, each particle has no velocity vector and its new position is sampled around
a supposed good one according to a probability distribution. In the original BBPSO,
this distribution is Gaussian (Kennedy, 2003). A moment analysis was proposed to
determine the characteristics of the sampling distribution of BBPSO and other PSO
algorithms (Poli, 2008).

The focus of this paper is on a probabilistic algorithm, quantum-behaved particle
swarm optimization (QPSO), which was proposed by Sun, Feng et al. (2004). The inspi-
ration of QPSO came from quantum mechanics and the trajectory analysis of PSO (Clerc
and Kennedy, 2002). The trajectory analysis showed that each particle in PSO oscillates
around and converges to its local attractor, or to put it in other words, each particle
is in a bound state. In QPSO, the particle is assumed to have quantum behavior and
to be in a bound state, and is further assumed to be attracted by a quantum potential
well centered on its local attractor, thus having a new stochastic update equation for its
position (Sun, Feng et al., 2004). Later, a global point known as the mean best position
was introduced into the algorithm in order to enhance the global search ability of the
QPSO algorithm (Sun, Xu et al., 2004; Sun et al., 2005).

The QPSO algorithm essentially belongs to the BBPSO family, but samples the new
position with a double exponential distribution. Besides, its update equation uses an
adaptive strategy and has fewer parameters to be adjusted, leading to a good perfor-
mance of the algorithm as an overall result. The QPSO algorithm has aroused the interest
of many researchers from different communities. It has been shown to successfully solve
a wide range of continuous optimization problems. Among these applications, it has
been used to tackle the problems of constrained optimization (Sun et al., 2007), multi-
objective optimization (Omkara et al., 2009), neural network training (Li et al., 2007),
electromagnetic design (Mikki and Kishk, 2006; Coelho and Alotto, 2008), semiconduc-
tor design (Sabata et al., 2009), clustering (Sun et al., 2006), system identification (Gao,
2008), engineering design (Coelho, 2008, 2010), image processing (Lei and Fu, 2008),
power systems (Coelho and Mariani, 2008; Sun et al., 2009; Zhang, 2010; Sun and Lu,
2010), bioinformatics (Chen et al., 2008; Cai et al., 2008), to name only a few.

In addition to the applications, many efficient strategies have been proposed to
improve the performance of QPSO. For example, Liu et al. (2005) introduced the mu-
tation operation into QPSO to improve the search ability of the algorithm. Wang and
Zhou (2007) proposed a local QPSO (LQPSO) as a generalized local search operator
and incorporated LQPSO into a main QPSO algorithm, which leads to a hybrid QPSO
scheme QPSO-LQPSO, with enhanced searching qualities. In Coelho (2008), it was
shown that the chaotic mutation operation could diversify the population of QPSO and
thus improve the performance of the algorithm. Pant et al. developed a new variant
of QPSO, which used an interpolation-based recombination operator for generating a
new solution vector in the search space (Pant et al., 2008). They also proposed a new
mutation operator called the Sobal mutation to improve the performance of the QPSO
algorithm (Pant et al., 2009). Xi et al. (2008) accelerated the convergence speed of QPSO
by introducing a weighted mean best position into the algorithm. Huang et al. (2009)
proposed an improved QPSO, employing a selection operation on the particles in order
to filter the particle swarm and accelerate its convergence.

While empirical evidence has shown that the QPSO algorithm works well, thus far
there has been little insight into how it works. In this paper, we make a comprehensive

Evolutionary Computation Volume 20, Number 3 351

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

analysis of individual particle behavior for QPSO from the perspective of probability
measure and show how to select the contraction-expansion (CE) coefficient, which is
the most important algorithmic parameter. To achieve this goal, the work presented in
the paper is mainly divided into the following two parts.

The first part includes the theoretical analysis of the algorithm. Since the behavior
of the individual particle in QPSO exerts great influence on the convergence of the par-
ticle swarm and in turn on the convergence of the algorithm, we analyze the individual
particle behavior for two different versions of QPSO. In QPSO, the CE coefficient con-
trols the behavior of the individual particle, just as the inertia weight and acceleration
coefficients influence the behavior of the particle in PSO. Therefore, this part of the
work comes down to deriving the upper bound of the value of the CE coefficient that
guarantees the convergence or boundedness of the particle.

The upper bound of the CE coefficient only provides the condition that leads to
the convergence of the particle swarm, not the condition that ensures the efficiency of
QPSO in practical applications. Thus, the second part of the paper involves empirical
studies on how to select the value of the CE coefficient within the upper bound to lead
the QPSO algorithm to good performance in general. With regard to this, we firstly
perform stochastic simulations in order to visualize the influence of the value of the
CE coefficient on particle convergence speed or the expected range of particle random
vibration, as well as to verify the derived theoretical results of the parameter’s upper
bound. Secondly, we execute the QPSO algorithm with two parameter control methods
on some well-known benchmark functions to find the parameters’ values resulting in
good solutions in general. Finally, the QPSO algorithms with the parameters’ values
found for both parameter control methods are tested on a suite of benchmark functions
proposed by Suganthan at CEC 2005 (Suganthan et al., 2005), and the performances are
compared with those of other PSO variants.

The rest of the paper is organized as follows. In Section 2, the basic principles of
QPSO are introduced. Section 3 presents a theoretical analysis of individual particle be-
havior. Section 4 provides the experimental analysis of the algorithm. Some concluding
remarks are given in the last section.

2 Quantum-Behaved Particle Swarm Optimization

In the PSO with M individuals, each individual is treated as a volumeless particle in
an N -dimensional space, with the current position vector and the velocity vector of
particle i (1 ≤ i ≤ M) at the nth iteration represented as Xi,n = (X1

i,n, X
2
i,n, . . . , X

N
i,n) and

Vi,n = (V 1
i,n, V

2
i,n, . . . , V

N
i,n), respectively. The particle moves according to the following

equations:

V
j

i,n+1 = V
j

i,n + c1r
j

i,n(P j

i,n − X
j

i,n) + c2R
j

i,n(Gj
n − X

j

i,n), (1)

X
j

i,n+1 = X
j

i,n + V
j

i,n+1, (2)

for j = 1, 2, . . . , N , where c1 and c2 are known as the acceleration coefficients. Vec-
tor Pi,n = (P 1

i,n, P
2
i,n, . . . , P

N
i,n) is the best previous position (the position giving the best

objective function value or fitness value) of particle i, called the personal best (pbest)
position, and vector Gn = (G1

n,G
2
n, . . . ,G

N
n) is the position of the best particle among all

the particles in the population, called the global best (gbest) position. Without loss of

352 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

generality, we consider the following minimization problem:

Minimize f (X), s.t. X ∈ S ⊆ RN, (3)

where f (X) is an objective function continuous almost everywhere and S is the feasible
space. Accordingly, Pi,n can be updated by

Pi,n =
{

Xi,n if f (Xi,n) < f (Pi,n-1)

Pi,n-1 otherwise
, (4)

and Gn can be found by Gn = Pg,n, where g = arg min1≤i≤M{f (Pi,n)}. The parameters r
j

i,n

and R
j

i,n, varying with n for each i and j , are two different random numbers distributed
uniformly on (0, 1), which is denoted by r

j

i,n, R
j

i,n ∼ U (0, 1). Generally, the value of V
j

i,n

is restricted in the interval [−Vmax, Vmax].
Trajectory analysis (Clerc and Kennedy, 2002) demonstrated the fact that conver-

gence of the PSO algorithm may be achieved if each particle converges to its local
attractor, pi,n = (p1

i,n, p
2
i,n, . . . , p

N
i,n), defined at the coordinates

p
j

i,n = c1r
j

i,nP
j

i,n + c2R
j

i,nG
j
n

c1r
j

i,n + c2R
j

i,n

, (5)

or

p
j

i,n = ϕ
j

i,nP
j

i,n + (1 − ϕ
j

i,n)Gj
n, (6)

for 1 ≤ j ≤ N , where ϕ
j

i,n = c1r
j

i,n

c1r
j

i,n+c2R
j

i,n

, with regard to the random numbers r
j

i,n and R
j

i,n

in Equations (1) and (5). In PSO, the acceleration coefficients c1 and c2 are generally set
to be equal, that is, c1 = c2 , and thus ϕ

j

i,n is a sequence of random numbers uniformly
distributed on (0, 1). As a result, Equation (6) can be restated as

p
j

i,n = ϕ
j

i,nP
j

i,n + (1 − ϕ
j

i,n)Gj
n, ϕ

j

i,n ∼ U (0, 1). (7)

The above equation indicates that pi,n, the stochastic attractor of particle i, lies
in the hyper-rectangle with Pi,n and Gn being the two ends of its diagonal so that it
moves following Pi,n and Gn. In fact, as the particles are converging to their own local
attractors, their current position, personal best positions, local attractors, and the global
best positions are all converging to one point, leading the PSO algorithm to convergence.
From the point view of Newtonian dynamics, in the process of convergence, the particle
moves around and careens toward pi,n with its kinetic energy (or velocity) declining
to zero, like a returning satellite orbiting the earth. As such, the particle in PSO can
be considered as the one flying in an attraction potential field centered at pi,n in the
Newtonian space. It has to be in a bound state for the sake of avoiding explosion and
guaranteeing convergence. If these conditions are generalized to the case in which the
particle in PSO has quantum behavior moving in an N -dimensional Hilbert space, it
is also indispensable that the particle moves in a quantum potential field to ensure
the bound state. From the perspective of quantum mechanics, the bound state in the

Evolutionary Computation Volume 20, Number 3 353

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

quantum space, however, is entirely different from that in the Newtonian space, which
may lead to a very different form of PSO. This is the motivation of the proposed QPSO
algorithm which is described below (Sun, Feng et al., 2004).

In the quantum time-space framework, the quantum state of a particle is described
by the wave function �(X, t) (Cohen-Tannoudji et al., 1997). In a three-dimensional
space, the wave function �(X, t) of a particle satisfies the relation

|�|2 dxdydz = Q dxdydz, (8)

where Qdxdydz is the probability that the particle will appear in the infinitesimal
element about the point (x, y, z). In other words, |�|2 = Q represents the probability
density function satisfying

∫ +∞

−∞
|�|2 dxdydz =

∫ +∞

−∞
Qdxdydz = 1. (9)

Equation (8) or (9) gives the statistical interpretation for the wave function. Gener-
ally, �(X, t) varies in time according to the following equation

i�
∂

∂t
�(X, t) = Ĥ�(X, t), (10)

where � is Planck’s constant and Ĥ is the Hamiltonian operator defined by

Ĥ = − �
2

2m
∇2 + V (X) (11)

for a single particle of mass m in a potential field V (X). Equation (10) is known as the
time-dependent Schrödinger equation.

We assume that each single particle in QPSO is treated as a spin-less particle moving
in an N -dimensional Hilbert space with a given energy, and thus its state is characterized
by a wave function which only depends on the position of the particle. Inspired by the
convergence analysis of the particle in PSO (Clerc and Kennedy, 2002), we further
assume that, at the nth iteration, particle i flies in the N -dimensional Hilbert space with
a δ potential well centered at p

j

i,n on the j th dimension (1 ≤ j ≤ N). In order to facilitate
the description, we consider a particle in an one-dimensional space firstly and denote
the position of the particle as X and pi,n as p. With point p being the center of the
potential well, the potential energy of the particle in the one-dimensional δ potential
well is represented as

V (X) = −γ δ(X − p) = −γ δ(Y), (12)

where Y = X − p and γ is the intensity of the potential well. Hence, for this bound state
problem, the Hamiltonian operator is

Ĥ = − �
2

2m

d2

dY 2 − γ δ(Y). (13)

354 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

The particle’s state is subject to the following stationary Schrödinger equation:

d2ψ

dY 2 + 2m

�2 [E + γ δ(Y)]ψ = 0, (14)

where E is the energy of the particle and ψ is the wave function of the particle which only
depends on its position. As presented in Theorem 1 below, we can obtain the normalized
wave function of the particle in the bound state by solving the above equation with the
bound condition: ψ → 0, as |Y | → +∞.

THEOREM 1: For the particle that moves in the one-dimensional δ potential well formulated
by Equation (12), its normalized wave function in the bound state is given by

ψ(Y) = 1√
L

e- |Y |
L , (15)

where L = �
2

mγ
.

PROOF: Integrating Equation (14) with respect to Y from −ε to ε and taking ε → 0+

leads to

ψ ′(0+) − ψ ′(0-) = −2mγ

�2 ψ(0). (16)

For Y �= 0, Equation (14) can be written as

d2ψ

dY 2 − β2ψ = 0, (17)

where β =
√

−2mE
�

(E < 0). To satisfy the bound condition

ψ → 0, as |Y | → +∞, (18)

the solution of Equation (17) must be

ψ(Y) ∝ e-β|Y |, (Y �= 0). (19)

Note that it can be proved that only an even wave function satisfies the bound
condition in Equation (18), and then the solution of Equation (17) can be written as

ψ(Y) =
{

Ae-βY Y > 0

AeβY Y < 0
, (20)

where A is the normalization constant. According to Equation (16), we have

−2Aβ = −2mγ

�2 A.

Evolutionary Computation Volume 20, Number 3 355

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Thus

β = mγ

�2 , (21)

and

E = E0 = −�
2β2

2m
= −mγ 2

2�2 . (22)

The function ψ(Y) satisfies normalization condition

∫ +∞

−∞
|ψ(Y)|2 dY = |A|2

β
= 1, (23)

leading to |A| = √
β. L = 1

β
= �

2

mγ
is the characteristic length of the δ potential well.

Inserting |A| = √
β = 1

L
and β = 1

L
into Equation (20), the normalized wave function

can then be written as

ψ(Y) = 1√
L

e- |Y |
L . (24)

This completes the proof of the theorem. �

In terms of the statistical interpretation of the wave function, the probability density
function of Y is given by

Q(Y) = |ψ(Y)|2 = 1
L

e
-2|Y |

L , (25)

and the corresponding probability distribution function is

F (Y) = 1 − e
-2|Y |

L . (26)

With the given probability distribution function, we can measure the position of
the particle using Monte Carlo inverse transformation. This technique is described in
the proof of Theorem 2. Such a process of measuring the particle’s position in quantum
mechanics is essentially achieved by collapsing the quantum state to the classical state.

THEOREM 2: If a particle moves in the bound state in the one-dimensional δ potential well as
described by Equation (12), its position can be determined by using the stochastic equation

X = p ± L

2
ln

(1
u

)
, (27)

where u is a random number uniformly distributed on (0, 1), that is, u ∼ U (0, 1).

356 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

PROOF: Let v be a random number uniformly distributed on (0, 1), that is

v ∼ U (0, 1).

Substituting v for F (Y) in Equation (26) and following Monte Carlo inverse transfor-
mation, we obtain

1 − v = e
-2|Y |

L . (28)

Since 1 − v ∼ U (0, 1), putting u = 1 − v leads to u ∼ U (0, 1). Thus Equation (28) can be
written as

u = e
−2|Y |

L , (29)

from which we can immediately obtain

Y = ±L

2
ln(1/u).

Because Y = X − p, we have

X = p ± L

2
ln(1/u), u ∼ U (0, 1). (30)

This completes the proof of the theorem. �

Now we generalize Equation (27) to the case in the N -dimensional Hilbert space
where each dimension of the particle’s position is bounded in a δ potential well and
updated independently. Considering that the particle’s position, its local attractor, the
characteristic length of the δ potential well and the random variable u develop with the
iteration number n, we can use the following equation to measure the j th (1 ≤ j ≤ N)
component of the position of particle i (1 ≤ i ≤ M) at the (n + 1)th iteration.

X
j

i,n+1 = p
j

i,n ± L
j

i,n

2
ln(1/u

j

i,n+1), (31)

where u
j

i,n+1 is a sequence of random numbers uniformly distributed on (0, 1), varying
with n for each i and j .

The value of L
j

i,n in Equation (31) can be determined by either of the following two
equations (Sun, Feng et al., 2004; Sun, Xu et al., 2004):

L
j

i,n = 2α|Xj

i,n − p
j

i,n|, (32)

or

L
j

i,n = 2α|Xj

i,n − Cj
n |, (33)

where Cn = (C1
n, C

2
n, . . . , C

N
n) is known as the mean best (mbest) position which is de-

fined by the average of the pbest positions of all particles, that is, Cj
n = 1

M

∑M
i=1 P

j

i,n (1 ≤

Evolutionary Computation Volume 20, Number 3 357

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

j ≤ N) . Therefore, the position of the particle is updated by using either of the following
two equations:

X
j

i,n+1 = p
j

i,n ± α|Xj

i,n − p
j

i,n| ln(1/u
j

i,n+1), (34)

or

X
j

i,n+1 = p
j

i,n ± α|Xj

i,n − Cj
n | ln(1/u

j

i,n+1). (35)

The parameter α in Equations (32)–(35) is a positive real number, the CE coefficient,
which can be adjusted to balance the local and global search of the algorithm during the
search process. The PSO with Equation (34) or (35) is the QPSO. To distinguish them,
we denote the QPSO with Equation (34) as QPSO-Type 1 and that with Equation (35)
as QPSO-Type 2.

The QPSO algorithm starts with the initialization of the particles’ current positions
and their pbest positions (setting Pi,0 = Xi,0), followed by the iterative update of the
particle swarm. At each iteration of the procedure, the mbest position of the particle
swarm is computed (for QPSO-Type 2) and the current position of each particle is
updated according to Equation (34) or (35) with the coordinates of its local attractor
evaluated by Equation (7). Before each particle updates its current position, its fitness
value is evaluated together with an update of its pbest position and the current gbest
position. In Equation (34) or (35), the probability of using either the + operation or the −
operation is equal to 0.5. The iterative process continues until the termination condition
is met.

The procedure of the QPSO algorithm is outlined in Algorithm 1. Note that randi(·),
i = 1, 2, 3, is used to denote the random numbers that are separately generated and
uniformly distributed on (0, 1).

3 Theoretical Analysis

The weighting of the CE coefficient α in the QPSO algorithm may result in a kind of
explosion as the position coordinates careen toward infinity. This section demonstrates
that properly selected α can prevent explosion, and further, this coefficient can induce
the particle to converge to its local attractor (in QPSO-Type 1) or to be probabilistic
bounded (in QPSO-Type 2).

As in the PSO algorithm, an important source of the swarm’s search capability is
the interactions among particles as they react to one another’s findings. However, the
theoretical analysis in this paper does not involve the analysis of interparticle effects
but is focused on the stochastic movements of single particles.

3.1 Preliminaries

This section provides a brief introduction to mathematical preliminaries on probability
measure and sequences of random variables, which are essential to the theoretical
analysis of a single particle’s behavior. To study this knowledge in depth, one may refer
to the related references such as Dudley (2003) and Shiryayev (1984).

358 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

Algorithm 1 The QPSO algorithm
begin

Initialize the current positions and the pbest positions of all the particles;
Set n = 0;
while the termination condition is not met do

Compute the mean best position Cn (for QPSO-Type 2);
Select a suitable value for α;
for i = 1 toM do

Evaluate the objective function value f(Xi,n);
Update Pi,n and Gn;
for j = 1 to N do

ϕj
i,n = rand1(·);

pj
i,n = ϕj

i,nP j
i,n + (1 − ϕj

i,n)Gj
n;

ui,n+1 = rand2(·);
if rand3(·) < 0.5 then

Xj
i,n+1 = pj

i,n + α|Xj
i,n − pj

i,n| ln(1/uj
i,n+1) (for QPSO-Type 1);

(or Xj
i,n+1 = pj

i,n + α|Xj
i,n − Cj

n| ln(1/uj
i,n+1) (for QPSO-Type

2));
else

Xj
i,n+1 = pj

i,n − α|Xj
i,n − pj

i,n| ln(1/uj
i,n+1) (for QPSO-Type 1);

(or Xj
i,n+1 = pj

i,n − α|Xj
i,n − Cj

n| ln(1/uj
i,n+1) (for QPSO-Type

2));
end

end
end
Set n = n + 1;

end
end

DEFINITION 1: The set � containing all possible outcomes of a random experiment is called
the space of elementary events or the sample space. Each outcome or a point ω in � is known as
an elementary event or a sample point.

DEFINITION 2: The space � together with a σ -algebra F of its subsets is a measurable space
which is denoted by (�,F).

DEFINITION 3: An ordered triple (�,F , P) where
(a) � is a set of points ω,
(b) F is a σ -algebra of subsets of �,
(c) P is a probability measure on F ,
is called a probabilistic model or a probability space. Here � is the sample space or the space
of elementary events, each set A in F is known as an event, and P (A) is the probability of the
event A.

Let R = (−∞,+∞) be the real line. (R,B(R)) or (R,B) is a measure space. B(R) or
B is called the Borel algebra of subsets.

Evolutionary Computation Volume 20, Number 3 359

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

DEFINITION 4: A real function ξ = ξ (ω) defined on (�,F , P) is an F-measurable function
or a random variable, if {ω : ξ (ω) ∈ B) ∈ F for every B ∈ B(R); or equivalently, if the inverse
image ξ -1(B) ≡ {ω : ξ (ω) ∈ B} is a measurable set in �.

DEFINITION 5: Let ξ1, ξ2, . . . be random variables defined on a probability space (�,F , P).
The sequence {ξn} is called a sequence of independent identically distributed (i.i.d.) random
variables, if each random variable ξi has the same probability distribution as the others and all
are mutually independent.

Just as in analysis, there are various kinds of convergence of random variables
in probability theory. Four of these are particularly important: with probability one, in
probability, in distribution, and in mean of order r (Shiryayev, 1984).

DEFINITION 6: Let {ξn} and ξ be random variables defined on a probability space (�,F , P).
The sequence {ξn} converges almost surely (with probability one, almost everywhere) to the
random variable ξ if

P
{

lim
n→∞ ξn(ω) = ξ

}
= 1, (36)

that is, if the set of sample points ω for which ξn(ω) does not converge to ξ has probability zero.
This convergence is denoted by ξn → ξ (P -a.s.), or ξn

a.s.−→ ξ or ξn
a.e.−→ ξ .

DEFINITION 7: Let {ξn} and ξ be random variables defined on a probability space (�,F , P).

The sequence {ξn} converges in probability to the random variable ξ (notation: ξn
P−→ ξ) if for

every ε > 0,

lim
n→∞ P {|ξn(ω) − ξ | > ε} = 0, (37)

or

lim
n→∞ P {|ξn(ω) − ξ | < ε} = 1. (38)

DEFINITION 8: Let {ξn} and ξ be random variables defined on a probability space (�,F , P) with
distribution function Fn(x) and F (x) respectively. The sequence {ξn} converges to a distribution

to the random variable ξ (notation: ξn
d−→ ξ) if for every continuous point x,

lim
n→∞ Fn(x) = F (x) (39)

is satisfied.

DEFINITION 9: Let {ξn} and ξ be random variables defined on a probability space (�,F , P)
with E|ξn|r < ∞, 0 < r < ∞. The sequence {ξn} converges to a mean of order r to the random
variable ξ (notation: ξn

r−→ ξ) if

lim
n→∞ E|ξn − ξ |r = 0. (40)

360 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

The following theorem indicates the relationships between the four kinds of con-
vergence. It should be noted that the converses of Equations (41), (42), and (43) are false
in general.

THEOREM 3: We have the following implications:

ξn
a.s.−→ ξ ⇒ ξn

P−→ ξ, (41)

ξn
P−→ ξ ⇒ ξn

d−→ ξ, (42)

ξn
r−→ ξ ⇒ ξn

P−→ ξ, r > 0, (43)

The following two theorems present the strong and weak laws of large numbers,
respectively.

THEOREM 4 (KOLMOGOROV’S STRONG LAW OF LARGE NUMBERS): Let ξ1, ξ2, . . . be a sequence
of independent identically distributed random variables with E|ξ1| < ∞. Then

1
n

n∑
i=1

ξi
a.s.−→ E|ξ1|. (44)

THEOREM 5 (KHINTCHINE’S WEAK LAW OF LARGE NUMBERS): Let ξ1, ξ2, . . . be a sequence of
independent identically distributed random variables with E|ξ1| < ∞. Then for every ε > 0,

lim
n→∞ P

{∣∣∣∣∣1
n

n∑
i=1

ξi − E|ξ1|
∣∣∣∣∣ < ε

}
= 1, (45)

or

1
n

n∑
i=1

ξi
P−→ E|ξ1|. (46)

3.2 Simplification of the Iterative Equations

It is obvious that the convergence or boundedness of the position of an individual
particle is consistent with the convergence or boundedness of its component in each
dimension. In detail, for QPSO-Type 1, the necessary and sufficient condition for Xi,n

to converge to pi,n in any kind of convergence is that X
j

i,n converges to p
j

i,n for each
1 ≤ j ≤ N in that kind of convergence; for QPSO-Type 2, the necessary and sufficient
condition for Xi,n to be probabilistic bounded is that X

j

i,n is probabilistic bounded for
each 1 ≤ j ≤ N .

Furthermore, it appears from Equation (34) or (35) that each dimension of the
particle’s position is updated independently following the same equation. The only
link between the dimensions of the problem space relies on the objective function, and
in turn, through the locations of the personal and global best positions found so far,
or the mean best position among particles. As a result, to investigate the convergence

Evolutionary Computation Volume 20, Number 3 361

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

or boundedness of an individual particle, we only need to analyze the convergence
or boundedness of the component in any dimension. Without loss of universality, the
issue of the convergence or boundedness for a particle in the N -dimensional space can
be reduced to the one for a single particle in the one-dimensional space, and we only
need to investigate the behavior of the particle in the one-dimensional space using the
iterative equation given by

Xn+1 = p ± α|Xn − p| ln(1/un+1), un+1 ∼ U (0, 1), (47)

or

Xn+1 = p ± α|Xn − C| ln(1/un+1), un+1 ∼ U (0, 1). (48)

In the above equations, the local attractor of the particle and the mean best position
are replaced by p and C, which are treated as probabilistic bounded random variables,
instead of constants as in Clerc and Kennedy (2002). Here, the probabilistic boundedness
of p and C means that P {sup |p| < +∞} = 1 and P {sup |C| < +∞} = 1. The position
sequence {Xn} is a sequence of random variables and {un} is a sequence of independent
random variables with un ∼ U (0, 1) for all n > 0. For convenience, we denote a particle
moving according to Equation (34) or (47) as a Type-1 particle, and a particle moving
according to Equation (35) or (48) as a Type-2 particle. The remainder of this section
focuses on the behaviors of the two types of particles.

Moreover, it is obvious that the sequence {un} in Equation (47) or (48) is a sequence
of independent identically distributed random variables, since each random variable
ui is generated independently and has the same probability distribution, that is, the
uniform distribution on (0, 1), as the others.

3.3 Convergence of the Type-1 Particle

Rewriting Equation (47) as

|Xn+1 − p| = α|Xn − p| ln(1/un+1) = λn+1|Xn − p|, un+1 ∼ U (0, 1), (49)

where λn+1 = α ln(1/un+1), we obtain

|Xn − p| = |X0 − p|
n∏

i=1

λi, (50)

where X0 is the initial position of the particle. As such, the convergence analysis of the
sequence of random variables {Xn} can be reduced to that of the infinite product

βn =
n∏

i=1

λi = αn

n∏
i=1

ln(1/ui). (51)

The following theorem gives an integral which is of significance to the succedent
analysis of the convergence of {βn} and {Xn}.

362 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

THEOREM 6: The improper integral

∫ 1

0
ln

[
ln

(
1
x

)]
dx = −γ, (52)

holds with the Euler-Mascheroni constant γ ≈ 0.5772156649.

PROOF: Let s = 1
x

, and thus we have

∫ 1

0
ln

[
ln

(
1
x

)]
dx =

∫ +∞

0
e-s ln s ds.

Since

�(m) =
∫ 1

0
xm-1e-x dx,

where �(·) is the Gamma function,

�′(m) =
∫ 1

0
xm-1e-x ln x dx.

From Courant (1989) we have that

�′(1) =
∫ 1

0
e-x ln x dx = −γ,

which implies that

∫ 1

0
ln

[
ln

(
1
x

)]
dx =

∫ +∞

0
e-s ln s ds = �′(1) = −γ.

This completes the proof of the theorem. �

With the above preliminaries, in the following part of this section, we derive the
sufficient and necessary condition for {Xn} to converge to random variable p in each
kind of convergence. The detailed proof of the almost sure convergence is provided in
the text, while those of other kinds of convergence are presented in the Appendix.

3.3.1 Almost Sure Convergence

LEMMA 1: If {un} is a sequence of independent identically distributed random variables with
un ∼ U (0, 1) for all n > 0 and ζn = ln[ln(1/un)], then

1
n

n∑
i=1

ζi
a.s.−→ −γ. (53)

Evolutionary Computation Volume 20, Number 3 363

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

PROOF: Since {un} is a sequence of independent identically distributed (i.i.d.) random
variables, {ξn} is also a sequence of i.i.d. random variables. Theorem 6 implies that

E(ζ1) = E

{
ln

[
ln

(
1
u1

)]}
=

∫ 1

0
ln

[
ln

(1
x

)]
dx = −γ.

Thus, by Theorem 4 (Kolmogorov’s strong law of large numbers), we have

1
n

n∑
i=1

ζi
a.s.−→ E(ξ1) = −γ.

This completes the proof of the lemma. �

THEOREM 7: The necessary and sufficient condition for the position sequence of a Type-1
particle {Xn} to converge almost surely to p (i.e., Xn

a.s.−→ p) is that α < eγ .

PROOF: Before the proof, we provide the following two groups of equivalent proposi-
tions at first.

(a) If Xn
a.s.−→ p, then

P
{

lim
n→∞ |Xn − p| = 0

}
= 1,

which is equivalent to

P
{

lim
n→∞ |Xn − p| = 0

}
= 1

⇔ P
{

lim
n→∞ βn = 0

}
= 1

⇔ P

{
lim
n→∞ ln

[
αn

n∏
i=1

ln
(

1
ui

)]
= −∞

}
= 1

⇔ P

{
lim
n→∞

(
n ln α +

n∑
i=1

ln
[

ln
(

1
ui

)])
= −∞

}
= 1

⇔ P

{
lim
n→∞

(
n ln α +

n∑
i=1

ζi

)
= −∞

}
= 1

⇔ ∀m ∈ Z+, ∃K1 ∈ Z+ such that P

{
k ln α +

k∑
i=1

ζi < −m

}
= 1, whenever k ≥ K1.

⇔ ∀m ∈ Z+, ∃K1 ∈ Z+ such that P

{
ln α + 1

k

k∑
i=1

ζi < −m

k

}
= 1, whenever k ≥ K1.

⇔ P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
ln α + 1

k

k∑
i=1

ζi < −m

k

)}
= 1, (54)

364 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

where Z+ is the set of all positive integers.

(b) Lemma 1 has the following equivalences

1
n

n∑
i=1

ζi
a.s.−→ −γ

⇔ P

{
lim
n→∞

∣∣∣∣∣1
n

n∑
i=1

ζi + γ

∣∣∣∣∣ = 0

}
= 1

⇔ ∀m ∈ Z+, ∃K2 ∈ Z+ such that P

{∣∣∣∣∣1
k

k∑
i=1

ζi + γ

∣∣∣∣∣ <
1
m

}
= 1, whenever k ≥ K2.

⇔ ∀m ∈ Z+, ∃K2 ∈ Z+ such that P

{
−γ − 1

m
<

1
k

k∑
i=1

ζi < −γ + 1
m

}
= 1,

whenever k ≥ K2.

⇔ ∀m ∈ Z+, ∃K2 ∈ Z+ such that P

{
ln α − γ − 1

m
< ln α + 1

k

k∑
i=1

ζi < ln α − γ

+ 1
m

}
= 1, whenever k ≥ K2.

PROOF OF NECESSITY: If Xn
a.s.−→ p, the propositions in (a) hold. Since the propositions in

(b) also hold due to Lemma 1, for any positive integer m, there exists K = max(K1,K2)
such that whenever k ≥ K ,

P

{
ln α + 1

k

k∑
i=1

ζi < −m

k

}
= 1

and

P

{
ln α − γ − 1

m
< ln α + 1

k

k∑
i=1

ζi < ln α − γ + 1
m

}
= 1 (55)

holds simultaneously, and thus it follows that P {ln α − γ − 1
m

< −m
k
} = 1. That is, ∀m ∈

Z+, ∃K = max(K1,K2), such that whenever k ≥ K ,

P

{
ln α < γ + 1

m
− m

k

}
= 1.

Evolutionary Computation Volume 20, Number 3 365

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

This proposition is equivalent to

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
ln α < γ + 1

m
− m

k

)}
= 1

⇔ P

{ ∞⋂
m=1

∞⋃
n=1

(
ln α < γ + 1

m
− m

n

)}
= 1

⇔ P

{ ∞⋂
m=1

(
ln α < γ + 1

m

)}
= 1

⇔ P {ln α < γ } = 1 ⇔ ln α < γ

⇔ α < eγ .

This ends the proof of necessity.

PROOF OF SUFFICIENCY

(i) From the equivalences of Lemma 1, we have that ∀m ∈ Z+, ∃K1 ∈ Z+ such that
whenever k ≥ K1

P

{
ln α − γ − 1

m
< ln α + 1

k

k∑
i=1

ζi < ln α − γ + 1
m

}
= 1. (56)

Since α < eγ , ln α < γ , we have

ln α − γ + 1
m

<
1
m

, (57)

and therefore {
ln α + 1

k

k∑
i=1

ζi <
1
m

}

⊃
{

ln α + 1
k

k∑
i=1

ζi < ln α − γ + 1
m

}

⊃
{

ln α − γ − 1
m

< ln α + 1
k

k∑
i=1

ζi < ln α − γ + 1
m

}
.

From Equation (56), we have

P

{
ln α + 1

k

k∑
i=1

ζi <
1
m

}

≥ P

{
ln α + 1

k

k∑
i=1

ζi < ln α − γ + 1
m

}

≥ P

{
ln α − γ − 1

m
< ln α + 1

k

k∑
i=1

ζi < ln α − γ + 1
m

}
= 1,

366 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

and thus

P

{
ln α + 1

k

k∑
i=1

ζi <
1
m

}
= 1. (58)

Since −m
k

< 1
m

, we find that

{
ln α + 1

k

k∑
i=1

ζi < −m

k

}
=

{
ln α + 1

k

k∑
i=1

ζi <
1
m

}
−

{
−m

k
≤ ln α + 1

k

k∑
i=1

ζi <
1
m

}
,

resulting in the fact that

P

{
ln α + 1

k

k∑
i=1

ζi < −m

k

}

= P

{
ln α + 1

k

k∑
i=1

ζi <
1
m

}
− P

{
−m

k
≤ ln α + 1

k

k∑
i=1

ζi <
1
m

}

= 1 − P

{
−m

k
≤ ln α + 1

k

k∑
i=1

ζi <
1
m

}
. (59)

(ii) ∀m ∈ Z+, ∃K2 = m2 such that whenever k ≥ K2, −m
k

≥ − 1
m

, from which we have

{
−m

k
≤ ln α + 1

k

k∑
i=1

ζi <
1
m

}
⊂

{
− 1

m
< ln α + 1

k

k∑
i=1

ζi <
1
m

}
,

and thus have

P

{
−m

k
≤ ln α + 1

k

k∑
i=1

ζi <
1
m

}
≤ P

{
− 1

m
< ln α + 1

k

k∑
i=1

ζi <
1
m

}
. (60)

From Equations (59) and (60), we have that ∀m ∈ Z+, ∃K = max(K1,K2) such that
whenever k ≥ K ,

P

{
ln α + 1

k

k∑
i=1

ζi < −m

k

}

= 1 − P

{
−m

k
≤ ln α + 1

k

k∑
i=1

ζi <
1
m

}
≥ 1 − P

{
− 1

m
< ln α + 1

k

k∑
i=1

ζi <
1
m

}
,

Evolutionary Computation Volume 20, Number 3 367

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

which is equivalent to

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
ln α + 1

k

k∑
i=1

ζi < −m

k

)}

≥ 1 − P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
− 1

m
< ln α + 1

k

k∑
i=1

ζi <
1
m

)}

= 1 − P

{
lim
n→∞

1
n

n∑
i=1

ζi = − ln α

}
. (61)

Since 1
n

∑n
i=1 ζi

a.s.−→ −γ , we obtain

P

{
lim
n→∞

1
n

n∑
i=1

ζi = − ln α

}
= P {ln α = −γ }.

The condition that α < eγ implies that P {ln α = γ } = 0, so

P

{
lim
n→∞

1
n

n∑
i=1

ζi = − ln α

}
= 0. (62)

From the inequality in Equation (61) and from Equation (62), we obtain

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
ln α + 1

k

k∑
i=1

ζi < −m

k

)}

≥ 1 − P

{
lim
n→∞

1
n

n∑
i=1

ζi = − ln α

}
= 1 − 0 = 1,

and thus

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
ln α + 1

k

k∑
i=1

ζi < −m

k

)}
= 1.

Considering Equation (54), we find that

P
{

lim
n→∞ |Xn − p| = 0

}
= 1. (63)

This ends the proof of sufficiency.
This completes the proof of the theorem. �

368 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

3.3.2 Convergence in Probability

THEOREM 8: The necessary and sufficient condition for the position sequence of a Type-1

particle {Xn} to converge to p in probability (Xn
P−→ p) is that α < eγ .

PROOF: See the proof in the Appendix. �

3.3.3 Convergence in Distribution

THEOREM 9: The necessary and sufficient condition for the position sequence of a Type-1

particle {Xn} to converge to p in distribution (Xn
d−→ p) is that α < eγ .

PROOF: See the proof in the Appendix. �

3.3.4 Convergence in Mean of Order r

THEOREM 10: The necessary and sufficient condition for the position sequence of a Type-1
particle {Xn} to converge to p in mean of order r (Xn

r−→ p, 0 < r < ∞) is that α < eγ .

PROOF: See the proof in the Appendix. �

3.3.5 Some Discussion

The above analysis indicates that the sufficient and necessary condition for the position
sequence of a Type-1 particle to converge to p in any of four kinds of convergence is that
α < eγ . In other words, the four kinds of convergence in this case are equivalent condi-
tionally. This conclusion does not conflict with Theorem 3. It is shown by Equation (41)
that almost sure convergence implies convergence in probability, while the converse is
in general not true. Under some special circumstances, the converse of Equation (41)
may hold. Kolmogorov’s strong law and Khintchine’s weak law of large numbers reveal
that a convergence in probability may imply almost sure convergence for certain cases,
leading to the equivalence between the two kinds of convergence of the Type-1 particle.

In any case, it is due to the probabilistic boundedness of p and its uniform distribu-
tion on (P,G) or (G,P) that the converse of Equation (42) holds for the Type-1 particle,
as shown in the proof of Theorem 9. Owing to the equivalence between the conver-
gence in probability and the convergence in distribution, the point p can be treated as
a constant as we do in the stochastic simulations in the next section. Furthermore, as
shown by the proof of Theorem 10 in the Appendix, since {Xn} is uniformly integrable,
the sufficient and necessary condition for its convergence in the mean of order r is the
same as for its convergence in probability.

It is shown in the proof of Theorem 9 that when α = eγ , the position of the Type-1
particle can be any real number but infinity, which means that the position is proba-
bilistically bounded as n tends to infinity. Therefore, we may conclude that if α ≤ eγ ,
the position of the particle is probabilistically bounded; otherwise, it is divergent.

Evolutionary Computation Volume 20, Number 3 369

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

3.4 Boundedness of the Type-2 Particle

Now we turn our attention to the behavior of a Type-2 particle, beginning by rewriting
Equation (48) as

Xn+1 − C = p − C ± α|Xn − C| ln(1/un+1) = p − C ± λn+1|Xn − C|, (64)

where λn+1 = α ln(1/un+1) and un+1 ∼ U (0, 1). From the above equation, we have the
following two inequalities:

|Xn − C| ≤ |C − p| + λn|Xn-1 − C|, (65)

and

|Xn − C| ≥ −|C − p| + λn|Xn-1 − C|. (66)

Based on the inequalities in Equations (65) and (66), the proofs of the following the-
orems derive the necessary and sufficient condition for the probabilistic boundedness
of the Type-2 particle’s position, which is also related to the probabilistic boundedness
of βn = ∏n

i=1 λi .

THEOREM 11: The necessary and sufficient condition for βn = ∏n
i=1 λi to be probabilistically

bounded (i.e., P {sup
n>0 βn < +∞} = 1) is that α ≤ eγ .

PROOF: The proof is essentially given by the first two parts of Theorem 10 in the
Appendix. �

THEOREM 12: The necessary and sufficient condition for the position sequence of a Type-2
particle {Xn} to be probabilistically bounded (i.e., P {sup

n>0 Xn < +∞} = 1), is that α ≤ eγ .

PROOF: Since λn is a continuous random variable, it is evident that P {λn = 1, n > 0} =
0. Therefore, P {sup |C − p| < +∞} = 1 implies that

P

{
sup
n>0

(|C − p|
1 − λn

)
< +∞

}
= 1.

Denoting sup
n>0

(
|C−p|
1−λn

)
= r, where 0 < r < +∞, we have that for every n > 0,

|C−p|
1−λn

≤ r , namely

|C − p| ≤ r(1 − λn). (67)

PROOF OF SUFFICIENCY: By replacing |C − p| in Equation (65) by that in the inequality
in Equation (67), we obtain the following inequality:

|Xn − C| − r ≤ λn(|Xn−1 − C| − r), (for every n > 0),

370 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

from which we find that

|Xn − C| − r ≤ λn(|Xn-1 − C| − r) ≤ λnλn−1(|Xn-2 − C| − r)

≤ λnλn-1λn-2(|Xn-3 − C| − r) ≤ · · · ≤ (|X0 − C| − r)
n∏

i=1

λi.

Thus the following inequality holds:

|Xn − C| ≤ r + (|X0 − C| − r)
n∏

i=1

λi. (68)

Since βn = ∏n
i=1 λi > 0,

sup
n>0

|Xn − C| ≤ sup
n>0

[
r + (|X0 − C| − r)

n∏
i=1

λi

]

≤ r + sup(|X0 − C| − r) sup
n>0

(
n∏

i=1

λi

)
= r + sup(|X0 − C| − r) sup

n>0
(βn).

By Theorem 11, we have that, whenever α ≤ eγ ,

P

{
sup
n>0

βn < +∞
}

= P

{
sup
n>0

(
n∏

i=1

λi

)
< +∞

}
= 1.

Considering that 0 < r < +∞, we have P {sup(|X0 − C| − r) < +∞} = 1. Therefore

P {sup
n>0

|Xn − C| < +∞}

≥ P

{
r + sup(|X0 − C| − r) sup

n>0

(
n∏

i=1

λi

)
< +∞

}

= P

{
sup(|X0 − C| − r) sup

n>0

(
n∏

i=1

λi

)
< +∞

}

≥ P

{
[sup(|X0 − C| − r) < +∞] ∩

(
sup
n>0

βn < +∞
)}

= P
{
sup(|X0 − C| − r) < +∞} + P

{
sup
n>0

βn < +∞
}

−P

{
[sup(|X0 − C| − r) < +∞] ∪

[
sup
n>0

βn < +∞
]}

= 1 + 1 − P

{[
sup(|X0 − C| − r) < +∞] ∪

[
sup
n>0

βn < +∞
]}

≥ 1,

Evolutionary Computation Volume 20, Number 3 371

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

from which we immediately have that P {sup
n>0 |Xn − C| < +∞} = 1, namely, |Xn − C|

is probabilistically bounded. This implies that Xn is also probabilistically bounded, that
is, P {sup

n>0 Xn < +∞} = 1. This ends the proof of sufficiency.

PROOF OF NECESSITY: Replacing |C − p| in Equation (66) by that in Equation (67), we
find that

|Xn − C| + r ≥ λn(|Xn-1 − C| + r), (for every n > 0), (69)

from which we obtain

|Xn − C| + r ≥ λn(|Xn-1 − C| + r) ≥ λnλn-1(|Xn-2 − C| + r)

≥ λnλn-1λn-2(|Xn-3 − C| + r) ≥ · · · ≥ (|X0 − C| + r)
n∏

i=1

λi. (70)

Thus we have that

sup
n>0

(|Xn − C| + r) ≥ sup
n>0

[
(|X0 − C| + r)

n∏
i=1

λi

]

= sup
n>0

[(|X0 − C| + r)βn] = sup(|X0 − C| + r) sup
n>0

βn.

As a result, it follows that

P

{
sup
n>0

(|Xn − C| + r) < +∞
}

≤ P

{
sup(|X0 − C| + r) sup

n>0
βn < +∞

}

= P

{
[sup(|X0 − C| + r) < +∞] ∩

[
sup
n>0

βn < +∞
]}

. (71)

If Xn is probabilistically bounded, |Xn − C| is also probabilistically bounded, that is,
P {sup

n>0 |Xn − C| < +∞} = 1. Since r < +∞, |Xn − C| + r is probabilistically bounded,
that is,

P

{
sup
n>0

|Xn − C| + r < +∞
}

= 1.

Considering the inequality in Equation (71), we have

P

{
[sup(|X0 − C| + r) < +∞] ∩

[
sup
n>0

βn < +∞
]}

≥ 1,

372 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

which immediately results in

P

{
[sup(|X0 − C| + r) < +∞] ∩

[
sup
n>0

βn < +∞
]}

= 1. (72)

Due to the probabilistic boundedness of |X0 − C| + r , we have

P {sup(|X0 − C| + r) < +∞} = 1. (73)

From Equations (72) and (73), we obtain P {sup
n>0 βn < +∞} = 1 which means α ≤ eγ

as shown by Theorem 11. This implies that α ≤ eγ is the necessary condition for the
probabilistic boundedness of Xn. This ends the proof of necessity.

This completes the proof of the theorem. �

Theorem 12 reveals that the sufficient and necessary condition for the probabilistic
boundedness of a Type 2 particle is the same as that for the probabilistic boundedness
of a Type 1 particle, since the behaviors of both types of particles are related to the
probabilistic boundedness of βn. Besides, the behavior of the Type 2 particle is also
influenced by point C. In practice, when the QPSO algorithm is running, the personal
best positions of all the particles converge to the same point. This implies that |C − p|
converges to zero almost surely, and thus sup

n>0[|C − p|/(1 − λn)] = r also converges
to zero almost surely. Hence, if and only if α < eγ , P {limn→∞ βn = 0} = 1. According
to the inequality in Equation (68), we can find that P {limn→∞ |Xn − C| = 0} = 1 or
P {limn→∞ |Xn − p| = 0} = 1.

4 Experimental Analysis

4.1 Stochastic Simulations on the Particle’s Behavior

It has been demonstrated that the behavior of an individual particle in QPSO is subject
to how the value of α is selected. In order to verify the correctness of the previous
analysis, we carried out stochastic simulations for the behavior of the particle. Two
groups of simulations were implemented, one for a Type-1 particle and the other for a
Type-2 particle.

The value of α for either group of simulations was selected from a series of numbers
in [0.5, 2.0] and the corresponding maximum number of iterations (nmax) executed was
sufficiently large for the purpose of convergence, boundedness, and divergence. When
the stochastic simulation was executed, the logarithmic value of the distance between
the current position Xn and the point p was recorded as the ordinate, and the number
of iterations was the abscissa. Without loss of generality, in the simulations for a Type-1
particle, p was fixed at the origin, and the initial position of the particle was set as
X0 = 1000; in the simulations for a Type-2 particle, C was fixed at X = 0.001, and p and
the initial position were the same as those in the simulations for the Type 1 particle.
The simulations were performed on Matlab 7.0 and the results are shown in Figures 1
and 2.

Figure 1 shows the simulation results for the position of the Type-1 particle. When
ln |Xn − p| is smaller than −700 or is larger than 700, |Xn − p| reaches the minimum
or maximum positive value that the computer can identify, and thus we can consider
that |Xn − p| converges to zero (Xn converges to p) or diverges to infinity. It can be

Evolutionary Computation Volume 20, Number 3 373

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Figure 1: Simulation results for a Type-1 particle. When α ≤ 1.775, ln |Xn − p| → −∞
(i.e., |Xn − p| → 0) as n increased, and the smaller α resulted in a faster convergence
speed. When α ≥ 1.785, ln |Xn − p| → +∞ (i.e., |Xn − p| → +∞) as n increased, and
the larger α led to a faster divergence speed.

374 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

Figure 2: Simulation results for a Type-2 particle. When α ≤ 1.775, ln |Xn − p| was
bounded as n increased, and the smaller α resulted in a narrower oscillation range.
When α ≥ 1.785, ln |Xn − p| → +∞ (i.e., |Xn − p| → +∞) as n increased, and the larger
α led to a faster divergence speed.

Evolutionary Computation Volume 20, Number 3 375

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

seen from Figure 1 that the particle’s position Xn converged to p when α ≤ 1.775, and
diverged when α ≥ 1.785. When Xn converged to p, the smaller the value of α, the faster
Xn converged. On the other hand, when Xn diverged, the larger value of α resulted in
a faster speed at which the position careened to infinity.

As for a Type-2 particle, according to Figure 2, its position oscillated around p and C

when α ≤ 1.775, while the position exploded when α ≥ 1.785. The results also show that
when Xn was probabilistically bounded, the smaller value of α resulted in a narrower
oscillation range of the particle’s position. When Xn diverged, the larger value of α led
to a faster divergence speed.

It can be concluded that there exists an α0 within (1.775, 1.785) such that whenever
α ≤ α0, the position of the Type-1 particle converges (when α < α0) or is probabilistic
bounded (when α = α0), and that of the Type-2 particle is probabilistic bounded; oth-
erwise the position of either type of particles diverges. Therefore, it is obvious that the
simulation results are consistent with the theoretical results in the previous section that
setting α ≤ eγ � 1.781 can prevent explosion of the particle’s position.

The fact that the smaller value of α results in the faster convergence speed of a
Type-1 particle and the narrower oscillation range of a Type-2 particle can be illustrated
as follows. For a Type-1 particle, according to Equation (47), we define the convergence
speed at the nth iteration by

cn = E

[|Xn − p|
|Xn-1 − p|

∣∣∣∣Xn-1

]
= E[α ln(1/un)] = −αE[ln un] = −α

∫ 1

0
ln u du = α. (74)

Thus we have

E
[|Xn − p|∣∣Xn-1

] = cn|Xn-1 − p| = α|Xn-1 − p|, (75)

and note that the velocity at which |Xn − p| declines, increases with the smaller cn,
namely, the smaller α. For a Type-2 particle, according to Equation (48), we find that

E[|Xn − p|∣∣Xn-1] = α|Xn-1 − C|, (76)

implying that a smaller value of α results in a smaller conditional expected value of
|Xn − p| and thus a narrower oscillation range of Xn. It is obvious that the slower con-
vergence of a Type-1 particle or the wider oscillation range of a Type-2 particle means
a stronger global search ability of the particle, while the faster convergence or the nar-
rower oscillating scope implies a stronger local search ability. Excessive global search
may result in slow convergence of the QPSO algorithm, and on the other hand, exces-
sive local search may cause premature convergence of the algorithm. It is significant,
therefore, to balance the global search (exploration) and local search (exploitation) to
obtain a generally good performance of the algorithm. The parameter α, whose value
selection is studied empirically in the rest of this section, plays a major role in balancing
the exploration and exploitation of the particles in QPSO.

4.2 Methods of Parameter Control

When an algorithm is employed to solve a problem at hand, one of the most important
issues is how to select its parameters. It is evident that α is the most influential parame-
ter on the convergence properties of QPSO, except for the population size. Although it

376 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

was demonstrated in Section 3 that it is necessary and sufficient to set α ≤ eγ to prevent
the individual from explosion and guarantee the convergence of the particle swarm,
this does not mean that any value of α less than or equal to eγ can lead to a satisfactory
performance of QPSO in practical applications. In the remainder of this section, we aim
at finding out through empirical study how to control and select the value of α so that
QPSO may yield good performance in general. We also provide a performance com-
parison with other forms of PSO. To do so, we tested the algorithms on 12 benchmark
functions F1 to F12 presented by Suganthan et al. (2005), which are not listed here due
to space limitations.

When QPSO is applied to practical problems, there are several control methods for
the parameter α. A simple approach is to set α to be a fixed value when the algorithm
is running. Another efficient method is to decrease the value of α linearly in the course
of search. That is, α is determined by

α = (α1 − α2)(nmax − n)
nmax

+ α2,

where α1 and α2 (α1 > α2) are the initial and final values of α, respectively, n is the
current iteration number, and nmax is the maximum number of allowable iterations.

We also propose a variant of QPSO-Type 2 in which the mean best position Cn in
Equation (15) is replaced by the pbest position of a randomly selected particle in the
swarm at each iteration. To distinguish between them, we denote the QPSO-Type 2 with
Cn as QPSO-Type 2-I and that with a randomly selected pbest position as QPSO-Type
2-II.

4.3 Empirical Studies on Parameter Selection

When either control strategy for α is used in QPSO, the value of α in the fixed-value
method or α1 and α2 in the linear time-varying approach must be determined. To
select the values that can yield generally good algorithmic performance, we tested
QPSO-Type 1, QPSO-Type 2-I and QPSO-Type 2-II on three frequently used functions
in Suganthan’s benchmark suite: Shifted Rosenbrock Function (F6), Shifted Rotated
Griewank’s Function (F7), and Shifted Rastrigin’s Function (F9), using the two methods
of controlling α. Rastrigin and Griewank are two difficult multimodal problems and
Rosenbrock is a unimodal problem. For each of these functions, N = 30. The expressions
and bounds of the functions are shown in Suganthan et al. (2005). For each α setting,
each algorithm using 20 particles was tested for 100 runs on each problem. In each trial
run, the initial positions of the particles were determined randomly within the search
bounds. To determine the effectiveness of each algorithm for the α setting of each control
method on each problem, the best objective function value (i.e., the best fitness value)
found after 3,000 iterations was averaged over 100 runs of the algorithm for the same
α setting and the same benchmark function. The results were compared by α settings
across the three benchmarks. The best α setting of each control method was selected by
ranking the averaged best objective function values for each problem, adding the ranks,
and taking the value that had the lowest summed rank, provided that the performance
is acceptable (in the top half of the rankings) in all the tests for a particular setting of α.

The results for QPSO-Type 1 are presented in Table 1. When the fixed-value method
was used, α was set to different values smaller than eγ ≈ 1.781 in each case. The results
obtained for α outside the range [1.2, 0.85] are very poor and are not listed in the table. It

Evolutionary Computation Volume 20, Number 3 377

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Table 1: Mean best fitness values obtained by QPSO-Type 1 on three benchmark
functions.

Fixed α

α Rosenbrock Rastrigin Griewank α Rosenbrock Rastrigin Griewank

1.2 1.9761e+03 73.2189 75.2146 0.97 140.7474 65.2704 0.0216
1.10 207.2907 51.3072 0.7604 0.96 128.861 63.8414 0.0229
1.05 179.4073 48.2471 0.0676 0.95 173.8644 69.3123 0.0211
1.02 178.5613 53.0128 0.0259 0.94 157.0963 71.4457 0.0254
1.01 151.0301 55.9349 0.0246 0.93 168.8516 70.5280 0.0208
1.00 138.0746 56.4232 0.0218 0.92 193.6964 75.5213 0.0281
0.99 188.3713 52.7332 0.0217 0.90 152.7539 84.4062 0.1007
0.98 170.1586 60.7105 0.0196 0.85 282.2530 96.1226 51.0799

Linearly-Decreasing α

α1 → α2 Rosenbrock Rastrigin Griewank α1 → α2 Rosenbrock Rastrigin Griewank
1.2 → 0.8 195.5114 60.3980 0.0688 1.0 → 0.8 174.0003 59.4232 0.0390
1.2 → 0.7 180.0561 64.5759 0.2481 1.0 → 0.7 200.9611 65.3739 0.2538
1.2 → 0.6 178.0053 63.8211 0.4468 1.0 → 0.6 204.2796 61.2373 0.6978
1.2 → 0.5 170.1478 63.3740 0.7066 1.0 → 0.5 261.7130 71.5227 0.9640
1.1 → 0.9 143.5103 50.7536 0.0276 0.9 → 0.8 208.1228 81.9640 2.1316
1.1 → 0.8 181.5607 57.9190 0.0346 0.9 → 0.7 262.8041 81.9872 7.3829
1.1 → 0.7 145.4834 55.5282 0.1123 0.9 → 0.6 311.9669 87.7742 12.0388
1.1 → 0.6 165.9128 61.5130 0.3720 0.9 → 0.5 506.0865 87.1547 21.0660
1.1 → 0.5 218.6484 58.8480 0.5683 0.8 → 0.7 7.6355e+06 119.1037 259.0206
1.0 → 0.9 139.9815 54.4278 0.0209 0.8 → 0.6 3.3683e+06 111.3555 282.3997

can be observed from Table 1 that if the value of α was fixed during the search process,
QPSO-Type 1 generated quite different objective function values for different values of
α, particularly for the Shifted Rosenbrock Function, although the difference between
two adjacent values of α is not significant. The results indicate that the performance of
QPSO-Type 1 was somewhat sensitive to the value of α. The best results were obtained
when α = 1.0. When time-varying α was used, α1 and α2 (α1 > α2) were selected from
a series of different values less than eγ ≈ 1.781. Only acceptable results are listed in the
table. It can be seen that the algorithmic performance was sensitive to both α1 and α2.
It is also found that decreasing α linearly from 1.0 to 0.9 led to the best performance in
general.

Table 2 records the results for QPSO-Type 2-I. For the case in which the fixed-value
method was used, the results of the algorithm for α outside the range [0.6, 1.2] are not
listed because of poor quality. It can be observed from the results that the performance
of QPSO-Type 2-I was less sensitive to α than that of QPSO-Type 1. The results seemed
fairly stable when α was valued in the interval [0.8, 0.7]. The value of α that generated
the best results in this case was 0.75. When α decreased linearly in the course of search,
the objective function values obtained by QPSO-Type 2-I with different α settings were
not so different from each other as those obtained by QPSO-Type 1. It has been identified
that varying α linearly from 1.0 to 0.5 could yield the best quality results.

The results for QPSO-Type 2-II are summarized in Table 3. It is clear from the results
that the value of α, whether it was fixed or time-varying, should be set to be relatively
smaller so that the algorithm was comparable in performance with the other types of

378 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

Table 2: Mean best fitness values obtained by QPSO-Type 2-I on three benchmark
functions.

Fixed α

α Rosenbrock Rastrigin Griewank α Rosenbrock Rastrigin Griewank

1.20 5.0457e+007 209.4031 35.3916 0.75 82.9908 39.0991 0.0203
1.00 2.9384e+004 164.7224 1.5544 0.74 119.3931 41.9011 0.0205
0.95 1.5836e+003 150.1191 0.9811 0.73 167.4110 45.8569 0.0196
0.90 153.7730 127.1872 0.1448 0.72 162.2084 49.3278 0.0251
0.85 129.7591 97.7650 0.0193 0.71 275.5061 49.9125 0.0745
0.80 115.6558 50.7660 0.0216 0.70 217.7180 58.0127 1.8027
0.78 138.0215 39.3672 0.0184 0.65 1.0587e+005 73.1374 322.2796
0.76 108.5730 35.5272 0.0228 0.60 1.8762e+007 102.6281 877.2902

Linearly-Decreasing α

α1 → α2 Rosenbrock Rastrigin Griewank α1 → α2 Rosenbrock Rastrigin Griewank

1.2 → 0.6 199.7309 39.4630 0.0243 1.0 → 0.4 113.5787 30.6210 0.0391
1.2 → 0.5 157.9285 33.7100 0.0422 1.0 → 0.3 138.9362 31.6721 0.0667
1.2 → 0.4 192.3246 31.8872 0.0709 0.9 → 0.6 106.3916 30.2193 0.0186
1.2 → 0.3 159.6439 34.1352 0.1024 0.9 → 0.5 124.7271 31.0468 0.0246
1.1 → 0.6 210.3639 35.8151 0.0233 0.9 → 0.4 149.4981 31.4059 0.0442
1.1 → 0.5 165.3690 30.8869 0.0343 0.9 → 0.3 177.1897 35.1173 0.0885
1.1 → 0.4 157.2430 32.1224 0.0491 0.8 → 0.6 179.4460 32.9276 0.0226
1.1 → 0.3 184.4184 33.5440 0.0697 0.8 → 0.5 169.4544 36.3398 0.0471
1.0 → 0.6 74.5490 33.7418 0.0190 0.8 → 0.4 206.0009 38.5983 0.1958
1.0 → 0.5 88.0494 29.9218 0.0208 0.8 → 0.3 400.7041 37.8844 0.5162

QPSO. The results for α outside the range [0.4, 0.8] were of poor quality and are not
listed in the table. As shown in Table 3, α were set in the range of 0.5 to 0.6 when the
fixed-value method was used. The best results were obtained by setting α = 0.54. On
the other hand, the algorithm exhibited the best performance when α decreased linearly
from 0.6 to 0.5 for the linear time-varying method.

4.4 Performance Comparison

To determine whether QPSO can be as effective as other variants of PSO, PSO with
inertia weight (PSO-In; Shi and Eberhart, 1998a, 1998b, 1999), PSO with constriction
factor (PSO-Co; Clerc, 1999; Clerc and Kennedy, 2002), the standard PSO (Bratton and
Kennedy, 2007), Gaussian PSO (Secrest and Lamont, 2003), Gaussian bare-bones PSO
(Gaussian BBPSO; Kennedy, 2003, 2004), PSO with the exponential distribution (PSO-E;
Krohling and Coelho, 2006), Lévy PSO (Richer and Blackwell, 2006), and QPSO were
all compared by running a series of experiments on the first 12 functions from the
CEC2005 benchmark suite (Suganthan et al., 2005). Functions F1 to F6 are unimodal,
while functions F7 to F12 are multimodal. Each algorithm was run 100 times on each
problem using 20 particles to search the global best fitness value. In each run, the
particles in the algorithm started in new and randomly-generated positions, which
were uniformly distributed within the search bounds. Each run of each algorithm
lasted 3,000 iterations and the best fitness value (objective function value) for each run
was recorded.

Evolutionary Computation Volume 20, Number 3 379

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Table 3: Mean best fitness values obtained by QPSO-Type 2-II on three benchmark
functions.

Fixed α

α Rosenbrock Rastrigin Griewank α Rosenbrock Rastrigin Griewank

0.80 7.7628e+05 195.3315 2.8068 0.55 167.7840 45.7357 0.0193
0.70 176.5589 165.4325 0.2060 0.54 105.7474 42.4817 0.0163
0.65 93.9793 132.4897 0.0162 0.53 111.5862 47.1062 0.0198
0.60 107.5629 71.4177 0.0206 0.52 182.5722 53.4841 0.0225
0.59 120.8616 64.2002 0.0195 0.51 176.2885 51.7469 0.0296
0.58 145.5502 47.8130 0.0196 0.50 173.9438 56.2267 0.0217
0.57 145.3949 45.4865 0.0177 0.45 1.1344e+05 85.6050 169.9241
0.56 126.0142 46.9918 0.0232 0.40 9.3422e+07 113.9682 1.2831e+03

Linearly-Decreasing α

α1 → α2 Rosenbrock Rastrigin Griewank α1 → α2 Rosenbrock Rastrigin Griewank

1.0 → 0.5 270.1094 123.8036 0.0366 0.8 → 0.3 81.5586 44.3686 0.0234
1.0 → 0.4 205.8190 54.4520 0.0152 0.8 → 0.2 293.5975 47.4461 0.0202
1.0 → 0.3 285.8976 48.9965 0.0549 0.7 → 0.5 131.1352 69.5491 0.0166
1.0 → 0.2 554.4213 46.6750 0.0341 0.7 → 0.4 176.7990 42.3857 0.0193
0.9 → 0.5 185.8477 109.5310 0.0173 0.7 → 0.3 131.4735 45.0470 0.0164
0.9 → 0.4 206.1129 49.5677 0.0165 0.7 → 0.2 234.9833 43.7979 0.0343
0.9 → 0.3 142.1582 49.8265 0.0315 0.6 → 0.5 89.6543 43.8327 0.0150
0.9 → 0.2 264.8597 44.7424 0.0579 0.8 → 0.7 157.4971 41.0110 0.0208
0.8 → 0.5 187.7583 92.9885 0.0118 0.6 → 0.3 209.7387 42.6532 0.0190
0.8 → 0.4 127.4620 44.5099 0.0143 0.6 → 0.2 306.1035 46.4197 0.0394

For the three types of QPSO, both methods of controlling α were used and
the parameters for each case were set as those values that generated the best results in
the previous experiments. The parameter configurations of other PSO variants were the
same as those recommended by the existing publications. For PSO-In, Shi and Eberhart
(1998b) showed that the PSO-In with linearly decreasing inertia weight performs better
than the one with fixed inertia weight. They varied the inertia weight linearly from 0.9
to 0.4 over the course of the run and fixed the acceleration coefficients (c1 and c2) at 2.0
in their empirical study (Shi and Eberhart, 1999). For PSO-Co, Clerc and Kennedy found
that the values of the constriction factor χ and acceleration coefficients (c1 and c2) need
to satisfy some constraints in order for the particle’s trajectory to converge without
a restriction on velocity (Clerc, 1999; Clerc and Kennedy, 2002). They recommended
using a value of 4.1 for the sum of c1 and c2, which results in a value of the constriction
factor χ = 0.7298 and c1 = c2 = 2.05. Eberhart and Shi (2000) also used these values of
the parameters when comparing the performance of PSO-Co with that of PSO-In. In
our experiments, we also employed these parameter values for PSO-In and PSO-Co,
although they may not be optimal. For the standard PSO, the LBEST ring topology was
used with other parameters set as those in PSO-Co (Bratton and Kennedy, 2007). For
PSO-E, except for the population size and the maximum number of iterations, all the
other parameters were configured as those in Krohling and Coelho (2006). The param-
eter configurations for Gaussian PSO, Gaussian BBPSO, and Lévy PSO were the same
as those in Secrest and Lamont (2003), in Kennedy (2003), and in Richer and Blackwell
(2006), respectively.

380 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

The mean best fitness value and standard deviation out of 100 runs of each algorithm
on each problem is presented in Table 4. To investigate whether the differences in
mean best fitness values between algorithms were significant, the mean values for each
problem were analyzed using a multiple comparison procedure, an ANOVA with 0.05
as the level of significance. Unlike Tukey’s honestly significant (THS) difference test
used in Richer and Blackwell (2006), the procedure employed in this work is called a
stepdown procedure which takes into account that all but one of the comparisons are
less extreme than the range. When doing all pairwise comparisons, this approach is the
best available if confidence intervals are not needed and sample sizes are equal (Day
and Quinn, 1989).

The algorithms were ranked to determine which algorithm could reliably be said
to be the most effective for each problem. The algorithms that were not statistically
different from each other were given the same rank; those that were not statistically
different from more than one other group of algorithms were ranked with the best-
performing of these groups. For each algorithm, the resulting rank for each problem
and the total rank are shown in Table 5.

For the Shifted Sphere Function (F1), QPSO-Type 2-II with either fixed or time-
varying α generated better results than other methods. The results for Shifted Schwe-
fel’s Problem 1.2 (F2) show that QPSO-Type 2-II with fixed α and PSO-Co got the best
results but the performances of PSO-In and QPSO-Type 2-I with linearly decreasing α

were inferior to those of the other competitors. For the Shifted Rotated High Condi-
tioned Elliptic Function (F3), the QPSO-Type 2-I with fixed α seemed to outperform the
other methods at a level of statistical significance. QPSO-Type 2-II showed to be the
winner among all the tested algorithms for Shifted Schwefel’s Problem 1.2 with Noise
in Fitness (F4). F5 is Schwefel’s Problem 2.6 with Global Optimum on the Bounds, and
for this benchmark, QPSO-Type 2-I with linearly decreasing α yielded the best results.
For benchmark F6, Shifted Rosenbrock Function, the performance of PSO-In and PSO-E
was inferior to those of the other algorithms, among which there was no statistically
significant difference. The results for the Shifted Rotated Griewank’s Function with-
out Bounds (F7) suggest that QPSO-Type 2-II, either with fixed or with time-varying
α, was able to find the solution for the function with the best quality among all the
algorithms. Benchmark F8 is Shifted Rotated Ackley’s Function with Global Optimum
on the Bounds. All the QPSO methods except QPSO-Type 1 with time-varying α, along
with PSO-Co, showed a better performance for this problem than the others. As far
as Shifted Rastrigin’s Function (F9) is concerned, the QPSO-Type 2-I with linearly de-
creasing α yielded the best result, and the results obtained by PSO-In and all other
QPSO-based methods rank tied for the second best. F10 is Shifted Rotated Rastrigin’s
Function which appears to be a more difficult problem than F9. For this benchmark,
QPSO-Type 2-II, QPSO-Type 1 with time-varying α and the standard PSO outperformed
the other competitors in a statistically significant manner. The best results for Shifted
Rotated Weierstrass Function (F11) were obtained by QPSO-Type 2 when α was fixed
during the search process. When searching the optima of Schewefel’s Problem 2.13 (F12),
QPSO-Type 2-II, whether it employed fixed α or time-varying α, was found to have the
best performance.

As shown by the total ranks listed in Table 5, the methods based on QPSO-Type 2
obtained a better overall performance than all the other tested algorithms. For each of
the benchmark functions, their performance were as good as or significantly better than
that of the other algorithms. It is also revealed by the total ranks that QPSO-Type 2-II
performed slightly better than QPSO-Type 2-I. However, more detailed comparisons

Evolutionary Computation Volume 20, Number 3 381

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Table 4: Mean (SD) of the best fitness values over 100 trial runs of different algorithms.

Algorithms F1 F2 F3 F4 F5 F6

PSO-In 3.8773e-13 785.0932 3.9733e+7 1.1249e+4 6.0547e+3 263.7252
(1.6083e-12) (661.2154) (4.6433e+7) (5.4394e+3) (2.0346e+3) (437.4145)

PSO-Co 1.5713e-26 0.1267 8.6472e+6 1.3219e+4 7.6892e+3 123.0243
(1.4427e-25) (0.3796) (9.1219e+6) (6.0874e+3) (2.3917e+3) (266.2520)

Standard PSO 8.2929e-26 78.2831 6.6185e+6 1.3312e+4 6.2884e+3 153.5178
(1.2289e-25) (52.3272) (3.0124e+6) (4.1076e+3) (1.4318e+3) (246.1049)

Gaussian PSO 7.3661e-26 0.0988 1.1669e+7 2.3982e+4 8.0279e+3 150.7872
(5.9181e-25) (0.3362) (2.5153e+7) (1.2512e+4) (2.3704e+3) (303.3368)

Gaussian 1.7869e-25 16.8751 7.7940e+6 1.1405e+4 9.5814e+3 144.1377
BBPSO (8.4585e-25) (16.2021) (4.3240e+6) (6.7712e+3) (3.0227e+3) (165.2616)
PSO-E 5.2531e-24 20.2750 6.2852e+6 8.2706e+3 7.2562e+3 189.8292

(2.2395e-23) (15.2414) (2.8036e+6) (3.6254e+3) (1.8666e+3) (375.8636)
Lévy PSO 1.1880e-24 36.9986 1.7366e+07 7.4842e+3 8.2543e+3 133.9526

(1.1455e-23) (29.1360) (1.9001e+7) (6.6588e+3) (2.2297e+3) (293.8460)
QPSO-Type 1 3.5936e-28 40.2282 4.8847e+6 6.2397e+3 8.0749e+3 138.0746
(α = 1.00) (1.5180e-28) (23.3222) (2.1489e+6) (2.4129e+3) (1.7099e+3) (209.1735)
QPSO-Type 1 5.0866e-29 4.5003 3.2820e+6 6.4303e+3 7.8471e+3 139.9815
(α = 1.0 → 0.9) (4.4076e-29) (2.9147) (1.9953e+6) (2.9744e+3) (1.7878e+3) (206.8138)
QPSO-Type 2-I 1.9838e-27 0.1771 1.6559e+6 3.1321e+3 5.7853e+3 82.9908
(α =0.75) (5.2716e-28) (0.1137) (7.1264e+5) (2.0222e+3) (1.2483e+3) (119.836)
QPSO-Type 2-I 1.2672e-27 120.6051 4.4257e+6 4.0049e+3 3.3684e+3 88.0494
(α = 1.0 → 0.5) (3.7147e-28) (62.2340) (2.3302e+6) (2.7218e+3) (975.6551) (159.7481)
QPSO-Type 2-II 3.1554e-36 0.0715 1.8544e+6 3.1443e+3 5.7144e+3 105.7474
(α = 0.54) (2.3913e-36) (0.0530) (6.4710e+5) (3.8785e+3) (1.4898e+3) (155.4583)
QPSO-Type 2-II 2.6728e-35 1.4099 2.1737e+6 2.1835e+3 4.3398e+3 89.6543
(α = 0.6 → 0.5) (6.5932e-35) (7.8582) (1.0089e+6) (2.8487e+3) (1.4313e+3) (151.6908)

Algorithms F7 F8 F9 F10 F11 F12

PSO-In 0.9907 0.0414 39.5528 239.5814 41.0529 3.6785e+4
(4.7802) (0.2393) (16.1654) (72.2521) (6.0318) (4.0943e+4)

PSO-Co 0.0255 5.1120 96.7296 171.6488 36.0339 9.9648e+3
(0.0327) (4.5667) (28.0712) (58.5713) (7.2659) (1.6158e+4)

Standard PSO 0.0218 0.2744 79.1219 128.9865 30.3424 1.8178e+4
(0.0165) (0.6795) (20.2619) (32.3662) (2.7409) (1.4866e+4)

Gaussian PSO 0.0224 2.7722 103.6245 184.2657 33.5448 6.8875e+4
(0.0178) (1.4603) (28.6113) (57.3675) (6.5823) (6.5610e+4)

Gaussian 0.0205 3.5460 80.9496 164.2914 29.8088 3.4327e+4
BBPSO (0.0208) (6.1929) (22.0621) (72.8542) (3.2671) (6.2435e+4)
PSO-E 0.0493 3.5881 66.5112 163.7187 29.2666 1.7161e+4

(0.0538) (5.5286) (20.9853) (55.0921) (3.2083) (1.0862e+4)
Lévy PSO 0.0446 2.2168 74.0446 154.3838 28.9923 1.6282e+4

(0.1182) (1.3575) (21.6913) (76.3070) (5.0212) (2.5184e+4)
QPSO-Type 1 0.0218 0.1217 56.4232 137.0334 28.2096 1.2145e+4
(α = 1.00) (0.0204) (0.4504) (16.7090) (38.5269) (3.0216) (9.7844e+3)
QPSO-Type 1 0.0209 0.0916 54.4278 126.1298 29.4137 1.0576e+4
(α = 1.0 → 0.9) (0.0203) (0.3166) (16.6044) (44.9531) (2.8907) (9.0572e+3)
QPSO-Type 2-I 0.0203 0.0683 39.0991 128.5351 19.8616 7.2794e+3
(α = 0.75) (0.0164) (0.3080) (12.4904) (57.6255) (7.0620) (8.2210e+3)
QPSO-Type 2-I 0.0208 2.0961e-14 29.9218 118.4549 28.1887 1.2938e+4
(α = 1.0 → 0.5) (0.0130) (1.9099e-14) (10.5736) (53.0216) (6.2233) (1.3787e+4)
QPSO-Type 2-II 0.0163 0.0762 42.4817 185.6351 19.0976 4.6519e+3
(α = 0.54) (0.0134) (0.3075) (12.1384) (46.6356) (6.7920) (4.3177e+3)
QPSO-Type 2-II 0.0150 7.5318e-15 43.8327 207.0548 23.0303 5.6134e+3
(α = 0.6 → 0.5) (0.0119) (1.7046e-15) (17.881) (14.4658) (8.7874) (4.6511e+3)

382 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

Table 5: Ranking by algorithms and problems.

Total
Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 rank

PSO-In 13 13 13 =9 =3 =12 13 =1 =2 13 13 =11 116
PSO-Co =6 =1 =9 =11 =7 =1 =3 13 =12 =9 12 =3 87
Standard PSO =6 11 =7 =11 =3 =1 =3 =7 =9 =1 10 =9 78
Gaussian PSO =6 =1 =9 13 10 =1 =3 =9 =12 =9 11 13 97
Gaussian BBPSO =10 =7 =9 =9 13 =1 =3 =9 =9 =6 =4 =11 91
PSO-E 12 =7 =7 8 =7 =12 =11 =9 8 =6 =4 =9 100
Lévy PSO =10 =9 12 =5 =10 =1 =11 =9 =9 =6 =4 =5 91
QPSO-Type 1 4 =9 =5 =5 =10 =1 =3 =7 =6 5 =4 =5 64
(α = 1.00)
QPSO-Type 1 3 6 4 =5 =7 =1 =3 =1 =6 =1 =4 =5 46
(α = 1.0 → 0.9)
QPSO-Type 2-I =6 =4 1 =2 =3 =1 =3 =1 =2 =1 =1 =3 28
(α = 0.75)
QPSO-Type 2-I 5 12 =5 =2 1 =1 =3 =1 1 =1 =4 =5 41
(α = 1.0 → 0.5)
QPSO-Type 2-II 1 =1 2 =2 =3 =1 =1 =1 =2 =9 =1 =1 25
(α = 0.54)
QPSO-Type 2-II 2 =4 3 1 2 =1 =1 =1 =2 12 3 =1 33
(α = 0.6 → 0.5)

reveal that for F10, the results obtained by QPSO-Type 2-II had poorer quality than those
by QPSO-Type 2-I even than those by other PSO variants, and that the QPSO-Type 2-I
with fixed α had the most stable performance across all of the benchmark functions
with the worst rank being 6 for F6. It can also be observed that for either version of
QPSO-Type 2, time-varying α led the algorithm to an overall performance no better
than for fixed α, particularly for QPSO-Type 2-I.

The second best performing algorithm was the QPSO-Type 1 algorithm as indicated
by the total ranks. It can be seen that there is a great deal of difference between the
performance of the two parameter control methods. However, in contrast with QPSO-
Type 2, QPSO-Type 1 appeared to work better by using the time-varying control method.
The standard PSO was the next best algorithm, and it enhances the search ability of
PSO by incorporating the lbest ring topology into PSO-Co, which was ranked fourth
in overall performance. It is evident from the ranking list that the standard PSO and
PSO-Co were both a great improvement over the PSO-In algorithm. The other four
probabilistic algorithms did not work so effectively as the QPSO algorithms and the
standard PSO. Among the four methods, Gaussian BBPSO and Lévy PSO showed better
search ability than PSO-E and Gaussian PSO.

5 Conclusion

In this paper, after describing the background of the QPSO algorithm, which belongs
to the bare-bones PSO family, we theoretically analyzed the behavior of the individ-
ual particle in QPSO. Then, through empirical studies on a well-known benchmark
suite, we provided guidelines for parameter selection for the algorithm, as well as the
performance comparison between QPSO and some other forms of PSO.

Evolutionary Computation Volume 20, Number 3 383

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Two types of particles, corresponding to two search strategies of the QPSO al-
gorithm, were analyzed by using the theory of probability measure. We derived the
sufficient and necessary condition for the position of a single particle to be convergent
or probabilistically bounded. Since the behavior of the particle is determined by the CE
coefficient α, the derivation of the condition is reduced to find out how to select the
value of α to guarantee the convergence or probabilistic boundedness of the particle’s
position. For a Type-1 particle, if α < eγ , the position sequence of the particle converges
to its local attractor in probability (or almost surely, in distribution, in mean of order r);
if α = eγ , the position is probabilistically bounded; otherwise, the position diverges. For
a Type-2 particle, if α ≤ eγ , the position is probabilistically bounded, or else it diverges.
Therefore, eγ ≈ 1.781 provides an upper bound for the value of α selected when the
QPSO algorithm is used to solve real-world applications.

For further investigation of the parameter selection issue in QPSO, based on the
presented theoretical analysis, two methods of controlling α were proposed, one em-
ploying fixed-value α and the other a time-varying one. The methods were tested by
using different parameter settings on several benchmark functions from a well-known
set of test problems proposed at CEC2005. The parameter settings resulting in the best
performance were identified by ranking the generated results and thus were used in
QPSO for performance comparison with other variants of PSO on 12 test problems from
the CEC2005 benchmark. It was shown that QPSO, particularly QPSO-Type 2, is com-
parable with or even better than other forms of PSO in finding the optimal solutions of
the tested benchmark functions.

The search mechanism of the individual particle in QPSO has been theoretically
investigated in this paper, and it provides a solid foundation for different applications
of QPSO. However, how to control and determine the values of parameters of QPSO
to further improve the performance of the algorithm is still a challenging problem.
Furthermore, investigation into the interaction between particles is an immediate task
of our future research on the mechanism of QPSO.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Project
Number: 61170119, 60973094), the Natural Science Foundation of Jiangsu Province,
China (Project Number: BK2010143), by the Fundamental Research Funds for the Cen-
tral Universities (Project Number: JUSRP21012, JUSRP11023), and by the Foundation of
Key Laboratory of Advanced Process Control for Light Industry (Jiangnan University),
Ministry of Education, Peoples’ Republic of China.

References

Angeline, P. J. (1998a). Evolutionary optimization versus particle swarm optimization: Philosophy
and performance differences. In Proceedings of the 7th International Conference on Evolutionary
Programming, pp. 601–610.

Angeline, P. J. (1998b). Using selection to improve particle swarm optimization. In Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 84–89.

Bratton, D., and Kennedy, J. (2007). Defining a standard for particle swarm optimization. In
Proceedings of IEEE Swarm Intelligence Symposium, pp. 120–127.

Cai, Y., Sun, J., Wang, J., Ding, Y., Tian, N., Liao, X., and Xu, W. (2008). Optimizing the codon
usage of synthetic gene with QPSO algorithm. Journal of Theoretical Biology, 254(1):123–127.

384 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

Chen, W., Sun, J., Ding, Y., Fang, W., and Xu, W. (2008). Clustering of gene expression data with
quantum-behaved particle swarm optimization. In Proceedings of the Twenty-First Interna-
tional Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
(IEA/AIE 2008), pp. 388–396.

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle swarm
optimization. In Proceedings of Congress on Evolutionary Computation, pp. 1951–1957.

Clerc, M., and Kennedy, J. (2002). The particle swarm-explosion, stability and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(2):58–
73.

Coelho, L. (2008). A quantum particle swarm optimizer with chaotic mutation operator. Chaos,
Solitons & Fractals, 37(5):1409–1418.

Coelho, L. (2010). Gaussian quantum-behaved particle swarm optimization approaches for
constrained engineering design problems. Expert Systems with Applications, 37(2):1676–
1683.

Coelho, L., and Alotto, P. (2008). Global optimization of electromagnetic devices using an ex-
ponential quantum-behaved particle swarm optimizer. IEEE Transactions on Magenetics,
44(6):1074–1077.

Coelho, L., and Mariani, V. (2008). Particle swarm approach based on quantum mechanics
and harmonic oscillator potential well for economic load dispatch with valve-point effects.
Energy Conversion and Management, 49(11):3080–3085.

Cohen-Tannoudji, C., Diu, B., and Laloe, F. (1997). Quantum mechanics, Vol. 1. New York: John
Wiley.

Courant, R. (1989). Introduction to calculus and analysis. Berlin: Springer-Verlag.

Day, R. W., and Quinn, G. P. (1989). Comparisons of treatments after an analysis of variance in
ecology. Ecological Monographs, 59:433–463.

Dudley, R. M. (2003). Real analysis and probability (2nd ed.). Cambridge, UK: Cambridge University
Press.

Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.
39–43.

Eberhart, R. C., and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle
swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation (CEC ’00),
Vol. 1, pp. 84–88.

Emara, H. M., and Fattah, H. A. A. (2004). Continuous swarm optimization technique with
stability analysis. In Proceedings of American Control Conference, pp. 2811–2817.

Gao, F. (2008). Parameters estimation on-line for Lorenz system by a novel quantum-behaved
particle swarm optimization. Chinese Physics B, 17(4):1196–1201.

Gavi, V., and Passino, K. M. (2003). Stability analysis of social foraging swarms. IEEE Transactions
on Systems, Man, and Cybernetics, 34(1):539–557.

Huang, Z., Wang, Y., Yang, C., and Wu, C. (2009). A new improved quantum-behaved particle
swarm optimization model. In Proceedings of the 5th IEEE Conference on Industrial Electronics
and Applications, pp. 1560–1564.

Janson, S., and Middendorf, M. (2005). A hierarchical particle swarm optimizer and its adaptive
variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(6):1272–
1282.

Evolutionary Computation Volume 20, Number 3 385

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Jiang, M., Luo, Y., and Yang, S. (2007). Stochastic convergence analysis and parameter selection of
the standard particle swarm optimization algorithm. Information Processing Letters, 102:8–16.

Kadirkamanathan, V., Selvarajah, K., and Fleming, P. J. (2006). Stability analysis of the particle
dynamics in particle swarm optimizer. IEEE Transactions on Evolutionary Computation, 10:245–
255.

Kennedy, J. (1998). The behavior of particles. In Proceedings of 7th Annual Conference on Evolutionary
Programming, pp. 581–589.

Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle
swarm performance. In Proceedings of Congress on Evolutionary Computation, pp. 1931–1938.

Kennedy, J. (2002). Stereotyping: Improving particle swarm performance with cluster analysis.
In Proceedings of Congress on Computational Intelligence, pp. 1671–1676.

Kennedy, J. (2003). Bare bones particle swarms. In Proceedings of IEEE Swarm Intelligence Sympo-
sium, pp. 80–87.

Kennedy, J. (2004). Probability and dynamics in the particle swarm. In Proceedings of Congress on
Evolutionary Computation, pp. 340–347.

Kennedy, J. (2006). In search of the essential particle swarm. In Proceedings of IEEE World Congress
on Computational Intelligence, pp. 1694–1701.

Kennedy, J., and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE
International Conference on Neural Networks, pp. 1942–1948.

Krohling, R. A. (2004). Gaussian swarm: A novel particle swarm optimization algorithm. In
Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, pp. 372–376.

Krohling, R. A., and Coelho, L. (2006). PSO-E: Particle swarm with exponential distribution. In
Proceedings of IEEE Congress on Evolutionary Computation, pp. 1428–1433.

Lei, X., and Fu, A. (2008). Two-dimensional maximum entropy image segmentation method
based on quantum-behaved particle swarm optimization algorithm. In Proceedings of the
Fourth International Conference on Nature Computation, pp. 692–696.

Li, S.-Y., Wang, R.-G., Hu, W.-W., and Sun, J.-Q. (2007). A new QPSO based BP neural network
for face detection. In B.-Y. Cao (Ed.), Fuzzy information and engineering (pp. 355–363). Berlin:
Springer-Verlag.

Liang, J., and Suganthan, P. (2005). Dynamic multiswarm particle swarm optimizer (DMS-PSO).
In Proceedings of IEEE Swarm Intelligence Symposium, pp. 124–129.

Liu, J., Xu, W., and Sun, J. (2005). Quantum-behaved particle swarm optimization with muta-
tion operator. In Proceedings of the 17th IEEE International Conference on Tools with Artificial
Intelligence, pp. 237–240.

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully informed particle swarm: Simpler, maybe
better. IEEE Transactions on Evolutionary Computation, 8(3):204–210.

Mikki, S., and Kishk, A. (2006). Quantum particle swarm optimization for electromagnetics. IEEE
Transactions on Antennas and Propagation, 54(10):2764–2775.

Mohais, A., Mendes, R., Ward, C., and Postoff, C. (2005). Neighborhood re-structuring in particle
swarm optimization. In Proceedings of 18th Australian Joint Conference on Artificial Intelligence,
pp. 776–785.

Omkara, S., Khandelwala, R., Ananthb, T., Naika, G. N., and Gopalakrishnana, S. (2009). Quantum
behaved particle swarm optimization (QPSO) for multi-objective design optimization of
composite structures. Expert Systems with Applications, 36(8):11312–11322.

386 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

Ozcan, E., and Mohan, C. K. (1999). Particle swarm optimization: Surfing the waves. In Proceedings
of 1999 IEEE Congress on Evolutionary Computation, pp. 1939–1944.

Pant, M., Thangaraj, R., and Abraham, A. (2008). A new quantum behaved particle swarm opti-
mization. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,
pp. 87–94.

Pant, M., Thangaraj, R., and SinghSobol, V. P. (2009). Sobal mutated quantum particle swarm
optimization. International Journal of Recent Trends in Engineering, 1(1): 95–99.

Parrott, D., and Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Transactions on Evolutionary Computation, 10(4):440–458.

Poli, R. (2008). Dynamics and stability of the sampling distribution of particle swarm optimisers
via moment analysis. Journal of Artificial Evolution and Applications, Article ID 761459.

Richer, T. J., and Blackwell, T. M. (2006). The Levy particle swarm. In Proceedings of Congress on
Evolutionary Computation, pp. 808–815.

Sabata, S., Coelho, L. S., and Abrahamc, A. (2009). MESFET DC model parameter extraction using
quantum particle swarm optimization. Microelectronics Reliability, 49(6):660–666.

Secrest, B., and Lamont, G. (2003). Visualizing particle swarm optimization-Gaussian particle
swarm optimization. In Proceedings of IEEE Swarm Intelligence Symposium, pp. 198–204.

Shi, Y., and Eberhart, R. C. (1998a). A modified particle swarm optimizer. In Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 69–73.

Shi, Y., and Eberhart, R. C. (1998b). Parameter selection in particle swarm optimization. In
Proceedings of 7th Conference on Evolutionary Programming VII (EP ’98), pp. 591–600.

Shi, Y., and Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Proceedings
of the 1999 Congress on Evolutionary Computation (CEC ’99), Vol. 3, pp. 1945–1950.

Shiryayev, A. (1984). Probability. Berlin: Springer-Verlag.

Suganthan, P. (1999). Particle swarm optimizer with neighborhood operator. In Proceedings of
Congress on Evolutionary Computation, pp. 1958–1962.

Suganthan, P., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., and Tiwari, S. (2005). Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization. Technical report, Nanyang Technological University, Singapore, May 2005
and KanGAL Report #2005005, IIT Kanpur, India.

Sun, C., and Lu, S. (2010). Short-term combined economic emission hydrothermal scheduling
using improved quantum-behaved particle swarm optimization. Expert Systems with Appli-
cations, 37(6):4232–4241.

Sun, J., Fang, W., Wang, D., and Xu, W. (2009). Solving the economic dispatch problem with a
modified quantum-behaved particle swarm optimization method. Energy Conversion and
Management, 50(12):2967–2975.

Sun, J., Feng, B., and Xu, W. (2004). Particle swarm optimization with particles having quantum
behavior. In Proceedings of Congress on Evolutionary Computation, pp. 326–331.

Sun, J., Liu, J., and Xu, W. (2007). Using quantum-behaved particle swarm optimization algorithm
to solve non-linear programming problems. International Journal of Computer Mathematics,
84(2):261–272.

Sun, J., Xu, W., and Feng, B. (2004). A global search strategy of quantum-behaved particle swarm
optimization. In Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, pp.
111–116.

Evolutionary Computation Volume 20, Number 3 387

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

Sun, J., Xu, W., and Feng, B. (2005). Adaptive parameter control for quantum-behaved particle
swarm optimization on individual level. In Proceedings of IEEE International Conference on
Systems, Man, and Cybernetics, pp. 3049–3054.

Sun, J., Xu, W., and Ye, B. (2006). Quantum-behaved particle swarm optimization clustering algo-
rithm. In Proceedings of the International Conference on Advanced Data Mining and Applications,
pp. 340–347.

Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and pa-
rameter selection. Information Processing Letters, 85(6):317–325.

van den Bergh, F. (2002). An analysis of particle swarm optimizers. Ph.D. dissertation, University of
Pretoria, Pretoria, South Africa.

van den Bergh, F., and Engelbrecht, A. P. (2004). A cooperative approach to particle swarm
optimization. IEEE Transactions on Evolutionary Computation, 8(3):225–239.

Wang, J., and Zhou, Y. (2007). Quantum-behaved particle swarm optimization with generalized
local search operator for global optimization. In Proceedings of International Conference on
Intelligent Computing, pp. 344–352.

Xi, M., Sun, J., and Xu, W. (2008). An improved quantum-behaved particle swarm optimiza-
tion algorithm with weighted mean best position. Applied Mathematics and Computation,
205(2):751–759.

Zhang, Z. (2010). Quantum-behaved particle swarm optimization algorithm for economic load
dispatch of power system. Expert Systems with Applications, 37(2):1800–1803.

Appendix

LEMMA 2: If {un} is a sequence of independent identically distributed random variables with
un ∼ U (0, 1) for all n > 0 and ζn = ln[ln(1/un)], then

1
n

n∑
i=1

ζi
P−→ −γ. (A1)

PROOF: Similar to the proof of Lemma 1, by Theorem 5 (Khintchine’s weak law of
large numbers), we find that the lemma holds. �

THEOREM 9: The necessary and sufficient condition for the position sequence of a Type-1

particle {Xn} to converge to p in probability (Xn
P−→ p) is that α < eγ .

PROOF: PROOF OF NECESSITY

(i) If Xn
P−→ p , then for every ε > 0, limn→∞ P {Xn − p < ε} = 1 or

limn→∞ P
{
αn

∏n
i=1 ln(1/ui) < ε

} = 1, which is equivalent to the proposition that
∀m ∈ Z+,

lim
n→∞ P

{
ln α + 1

n

n∑
i=1

ζi < −m

n

}
= 1,

388 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

that is, ∀m ∈ Z+ and ∀δ > 0, ∃K1 ∈ Z+ such that whenever k ≥ K1,

P

{
ln α + 1

k

k∑
i=1

ζi < −m

k

}
> 1 − δ

2
. (A2)

(ii) Lemma 2 indicates that 1
n

∑n
i=1 ζi

P−→ −γ , so ∀m ∈ Z+ and ∀δ > 0, ∃K2 ∈ Z+ such
that whenever k ≥ K2,

P

{∣∣∣∣∣1
k

k∑
i=1

ζi + γ

∣∣∣∣∣ <
1
m

}
> 1 − δ

2

or

P

{
ln α − γ − 1

m
< ln α + 1

k

k∑
i=1

ζi < ln α − γ + 1
m

}
> 1 − δ

2
. (A3)

Hence, by conditions (i) and (ii), ∀m ∈ Z+ and ∀δ > 0, ∃K = max(K1,K2) such that
whenever k ≥ K , Equations (A2) and (A3) are satisfied simultaneously. Let

A =
{

ln α + 1
k

k∑
i=1

ζi < −m

k

}

and

B =
{

ln α − γ − 1
m

< ln α + 1
k

k∑
i=1

ζi < ln α − γ + 1
m

}
,

and thus we have from Equations (A2) and (A3) that

P (AB) = P (A) + P (B) − P (A ∪ B) > 2 − δ − P (A ∪ B) ≥ 1 − δ. (A4)

Since P (AB) = P {ln α − γ − 1
m

< −m
k
}, we obtain that P {ln α − γ − 1

m
< −m

k
} > 1 −

δ, which means that ∀δ > 0,

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
ln α < γ + 1

m
− m

k

)}
> 1 − δ,

from which we immediately have P {ln α < γ } > 1 − δ. Due to the arbitrariness of δ, we
have that P {ln α < γ } = 1, that is, α < eγ . This ends the proof of necessity.

PROOF OF SUFFICIENCY: If α < eγ , we can infer from Theorem 3 that Xn
a.s.−→ p. Since

Xn
a.s.−→ p implies Xn

P−→ p, this ends the proof of sufficiency.
This completes the proof of the theorem. �

Evolutionary Computation Volume 20, Number 3 389

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

THEOREM 10: The necessary and sufficient condition for the position sequence of a Type-1

particle {Xn} to converge to p in distribution (Xn
d−→ p) is that α < eγ .

PROOF: Consider the following three possible cases.

(i) If α < eγ , by Theorem 8, we have Xn
P−→ p. Thus by Theorem 3, we have that

Xn
d−→ p and βn = ∏n

i=1 ζi
P−→ p.

(ii) If α = eγ , then ln α = γ . Since 1
n

∑n
i=1 ζi

a.s.−→ −γ ,

P

{
lim
n→∞

∣∣∣∣∣1
n

n∑
i=1

ζi + γ

∣∣∣∣∣ = 0

}
= 1

and consequently

P

{
lim
n→∞

∣∣∣∣∣1
n

n∑
i=1

ζi + ln α

∣∣∣∣∣ = 0

}
= 1,

which means that ∀m ∈ Z+, ∃K ∈ Z+, such that whenever k ≥ K ,

P

{∣∣∣∣∣1
k

k∑
i=1

ζi + ln α

∣∣∣∣∣ <
1
m

}
= 1,

namely

P

{∣∣∣∣∣
k∑

i=1

ζi + k ln α

∣∣∣∣∣ <
k

m

}
= P

{∣∣∣∣∣ln
[
αk

k∏
i=1

ln
(

1
ui

)]∣∣∣∣∣ <
k

m

}
= P

{
| ln βk <

k

m
|
}

= 1.

(A5)
The above proposition is equivalent to the following one that

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
| ln βk| <

k

m

)}

= P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
− k

m
< ln βk <

k

m

)}
= P

{
−∞ < sup

n

ln βn < +∞
}

= 1,

scilicet that P
{
0 < sup

n>0 βn < +∞} = 1. According to Equations (50) and (51), we
have

P

{
0 < sup

n>0
|Xn − p| < +∞

}
= 1, (A6)

which means that when n → ∞, Xn neither converges to p nor diverges. That means the
particle can appear at any location except point p and the infinite points. Noting that
the distribution function of the particle is Fn(x) = 1 − exp[−2|x − p|/α|Xn−1 − p|], we
can find that the limit of Fn(x) is uncertain. However, the random variable p distributes

390 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

uniformly on the interval (P,G) or (P,G), where P and G are the pbest position of the
particle and the gbest position in the one-dimensional case. Thus limn→∞ Fn(x) �= Fp(x),
implying that Xn does not converge to p in distribution.

(iii) If α > eγ , ln α > γ . Since 1
n

∑n
i=1 ζi

a.s.−→ −γ , we have

P

{
lim
n→∞

1
n

n∑
i=1

ζi + ln α > 0

}
= 1,

implying that ∃b > 0, such that

P

{
lim
n→∞

1
n

n∑
i=1

ζi + ln α = b

}
= 1. (A7)

And it is then easy to deduce that ∀m ∈ Z+ , ∃K ∈ Z+, such that whenever k ≥ K ,

P

{∣∣∣∣∣1
k

k∑
i=1

ζi + ln α − b

∣∣∣∣∣ <
1
m

}
= 1,

namely,

P

{
b − 1

m
<

1
k

k∑
i=1

ζi + ln α <
1
m

+ b

}
= 1.

Thus we have that

P

{
kb − k

m
<

k∑
i=1

ζi + k ln α < kb + k

m

}

= P

{
kb − k

m
< ln

[
αk

k∏
i=1

ln
(

1
ui

)]
< kb + k

m

}

= P

{
kb − k

m
< ln βk < kb + k

m

}
= 1.

Since both kb − k
m

and kb + k
m

are arbitrarily large real numbers, the above proposition
leads to

P

{ ∞⋂
m=1

∞⋃
n=1

∞⋂
k=n

(
kb − k

m
< ln βk < kb + k

m

)}
= P

{
sup
n>0

βn = +∞
}

= 1.

Thus, according to Equations (50) and (51), we have

P

{
sup
n>0

|Xn − p| = +∞
}

. (A8)

Evolutionary Computation Volume 20, Number 3 391

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu

This proves that when n→∞, |Xn − p| is divergent. Since p is probabilistically bounded,
we have

lim
n→∞ Fn(x) �= Fp(x). (A9)

From the above three cases, we find that the theorem holds. This completes the
proof of the theorem. �

DEFINITION 10: Let {ξn} be a sequence of random variables defined on a probability space
(�,F , P). The sequence {ξn} is said to be uniformly integrable if

lim
a→∞ sup

n>0

∫
|ξn|≥a

|ξn| dP = 0. (A10)

LEMMA 3: A necessary and sufficient condition for the sequence of random variables {ξn} to
be uniformly integrable is that:
(i) for every ε > 0, ∃δ = δ(ε), such that for the every A ∈ F , whenever P (A) < δ,

∫
A

|ξn| dP < ε

for all n ≥ 1 ;
(ii) sup

n≥1 E|ξn| < +∞.

In Lemma 3, the first condition is known as the uniform absolute continuity of {ξn},
and the second one is the uniform boundedness of {ξn}.

LEMMA 4: The sequence of random variables {ξn} is uniformly integrable if there exists θ > 0
such that sup

n≥1 E|ξn|1+θ < +∞.

PROOF: Since ∫
|ξn|≥a

|ξn| dP ≤ a-θE|ξn|1+θ

and

sup
n≥1

E|ξn|1+θ = c < +∞,

for every ε > 0, we can choose a to be sufficiently large so that

sup
n≥1

∫
|ξn|≥a

|ξn| dP ≤ ca-θ < ε.

By Definition 9, this implies that {ξn} is uniformly integrable. �

LEMMA 5: The sequence of random variables {ξn} converges to the random variable ξ in mean
of order r , namely

lim
n→∞ E[|ξn − ξ |r] = 0, (A11)

392 Evolutionary Computation Volume 20, Number 3

QPSO: Analysis and Parameter Selection

if and only if {ξn} converges to ξ in probability and {|ξn|r , n ≥ 1} (r > 0) is uniformly
integrable.

THEOREM 11: The necessary and sufficient condition for the position sequence of a Type-1
particle {Xn} to converge to p in mean of order r (Xn

r−→ p, 0 < r < +∞) is that α < eγ .

PROOF: Since the necessary and sufficient condition for {Xn} to converge to p in
probability is that α < eγ , from Lemma 5, we only need to prove that {|Xn|r , n ≥ 1} (r >

0) is uniformly integrable.
It is easy to find that whenever α < eγ , |Xn − p| is bounded, that is to say, there

exists a real number c > 0 such that sup
n≥1 |Xn − p| = c < +∞. Thus for every n ≥ 1,

|Xn − p| < c, that is, |Xn| < c + |p|. Since p is bounded, |Xn| is also bounded. For every
0 < θ < +∞,

||Xn|r |1+θ = |Xn|r+rθ < (c + |p|)r+rθ .

Consequently ||Xn|r |1+θ is bounded, and thus sup
n≥1 E||Xn|r |1+θ < +∞. By Lemma 4

and Lemma 5, {|Xn|r , n ≥ 1} is uniformly integrable so that Xn
r−→ p.

This completes the proof of the theorem. �

Evolutionary Computation Volume 20, Number 3 393

