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Abstract: Classifier fusion techniques are gaining more popularity for their 
capability of improving the accuracy achieved by individual classifiers. A 
common approach is to combine the classifiers’ outcome using simple 
methods, such as majority voting. In this paper, we build a meta-classifier by 
fusing some already well-known classifiers for protein structure prediction. 
Each individual classifier outputs a unique structure for every input residue. We 
have used the confusion matrix of each protein secondary structure classifier, 
which is representative of classifiers’ expertness, as a general reusable pattern 
for converting its simple class-label assignment to class-preference score. The 
results obtained using several classifier fusion operators have been compared, 
on some standard datasets from the EVA server, with simple majority voting 
and with the results provided by the individual classifiers. The comparative 
analysis showed that the Choquet fuzzy integral operator had the highest 
improvement with respect to accuracy, multi-class sensitivity and specificity 
criteria over both the best performing individual classifier and the other fusion 
operators, while all of the classifier fusion techniques yielded some 
improvements too. 
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1 Introduction 

Prediction of protein structures is one of the main challenges in theoretical chemistry and 
bioinformatics today. It refers to finding the protein’s three-dimensional (tertiary) 
structure from its amino acid sequence (primary structure). Accurate predictions are 
essential in medicine and biotechnology to help design novel drugs and discover new 
enzymes. Because of the dramatic advances in high throughput sequencing technologies, 
the gap between the number of known protein sequences [~5 million (UniProt, 2008)] 
and their resolved structures [~50 k (Berman et al., 2000)] is rapidly increasing, despite 
significant improvements in structure resolving methods (Bairoch and Apweiler, 1999). 
As an initial step in predicting the tertiary structure, researchers usually examine the 
secondary structural composition of the protein. 

Protein secondary structures are recurring patterns formed by interaction between 
(neighboring) residues. They primarily consist of three patterns: alpha helices (H), beta 
strands (E) and coils (C). Since the patterns are determined by the properties of the 
contextual residues, we can think of the properties as features and of the secondary 
structures as classes, and frame the secondary structure prediction as a classification 
problem. 

Although there are many protein secondary structure prediction software  
publicly available today (Rost et al., 2004; Karplus et al., 2003; Pollastri and McLysaght, 
2005; Argos et al., 1978; Cai et al., 2003; Kim, 2004), it might be difficult and 
completely impractical to try to improve the performance of a single classifier over a 
certain limit in solving a complex problem. Rather, the solution may be found in  
the combination of existing reasonably performing classifiers, with the aim of improving 
the overall classification result. Different classifiers performing on different parts of  
the input space may implement different aspects of the problem (Kazemian et al., 2007), 
and assuming enough coverage of the input space by individual classifiers, their 
combination should reduce the overall classification error (Ho, 1994). Information fusion 
techniques have been intensively investigated in recent years and their applicability to 
classification problems has been widely examined as a natural need for better 
classification accuracy (Ruta and Gabrys, 2000; Xu et al., 1992; Ranawana and Palade, 
2005). 

Based on the output of the underlying classifiers used in the combination process, 
classifier fusion methods can be divided into three main categories (Xu et al., 1992): 
methods that are dealing with the class labels (Type 1), methods that are using the rank 
list of the preferred class-labels (Type 2) and methods working with the preference score 
(‘probability’) of the class-labels (Type 3). One common approach for combining  
Type 1 classifiers is majority voting, which has its own limitations (e.g., in the absence of 
a clear majority winner, it is not obvious how a majority voter should decide) (Kuncheva 
et al., 2003). Several better techniques have been developed for fusing classifiers’ 
decisions, but most of them require the classifiers’ output to be of the Type 2 or Type 3 
form (Robles et al., 2004). It is notable that most protein secondary structure classifiers 
belong to the Type 1 classification category. In this paper we combine several  
well-known existing protein secondary classifiers, in a multi-classifier system, by first 
converting the individual classifier outputs from Type 1 to Type 3 and, then, use several 
classifier fusion techniques to combine the outputs of individual classifiers. 
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The paper is organized as follows. The general architecture of the proposed  
meta-classifier have been explained in Section 2. Section 3 describes three different 
classifier fusion techniques including ordered weighted averaging, Dempster’s 
combination rule and Choquet fuzzy integral operator, and also demonstrates the 
application of these methods in the protein secondary structure classifier fusion context. 
The individual classifiers and the datasets are briefly described in Section 4. Section 5 
presents some criteria for measuring the accuracy of the classifiers. Section 6 reveals the 
results of the fusion methods used and, finally, some conclusions are drawn in Section 7. 

2 The meta-classifier system 

2.1 Converting and organizing classifiers’ outputs 

Confusion matrices are the most common visualization tool for characterizing the 
behavior of a classifier. They represent the predicted classes (rows of the matrix) versus 
the actual classes (columns of the matrix). The (i,j)th element in the matrix shows the 
number of times the label i is assigned to the actual label j. Therefore, higher diagonal 
values correspond to better classification. 

As it was mentioned before, the outputs of most protein secondary structure 
classifiers are of the Type 1 form. (Xu et al., 1992) suggested that, under certain 
assumptions, the confusion matrix of a Type 1 classifier can be used to convert its  
class-label output to class-preference output, as explained below. The assumptions are 
that, firstly, the confusion matrix can capture the classifier’s behavior, and, secondly, the 
classifier’s behavior does not change over time. Here, we used the same approach to alter 
the output of our classifiers. 

Given the output of a Type 1 classifier (let say l) and assuming that the output is 
correct, we normalized the column l of the confusion matrix to get the corresponding 
class-preference scores. Subsequently, we organized the outputs of all classifiers in a 
decision profile which is a compact representation of multiple classifiers’ outputs in a 
matrix format (Kuncheva et al., 2001). In decision profile (DP) matrices, each row 
represents an individual classifier’s output and each column represents the amount of 
‘confidence’ from all classifiers to a certain class. For example, in Type 1 classification, 
all elements in a row would be zero except the element that corresponds to the correct 
class-label. 

2.2 General architecture of the protein secondary structure meta-classifier 

Let X = {x1,x2, …, xL} be the set of L classifiers, C = {H, E, C} be the set of class-labels 
corresponding to secondary structural elements, and P(xi) = {p(xi

H), p(xi
E), p(xi

C)} be the 
output of classifier i, where p(xi

c) indicates the preference score given by classifier xi to 
the class-label c∈C. We represent the output of multiple classifiers in a decision profile 
as DP(X) = [P(x1) P(x2) … P(xi) … P(xL)]T. The columns of DP(X) have been 
independently fused using some fusion operator (see Section 3). After the fusion process, 
the secondary structure of each certain amino acid is extracted from the maximum 
membership value of the fused result. The general architecture of the proposed  
multi-classifier approach is shown in Figure 1. 
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Figure 1 The meta-classifier system and the fusion scheme 

 

Note: For information about individual classifiers see Section 4.2. 

3 Fusion techniques 

Information fusion deals with synergistic combination of different data sources, such as 
databases, classifiers, etc., to provide a better understanding of the problem (Mongi and 
Rafael, 1992). Classifier fusion techniques can be categorized as conventional or 
intelligent approaches. Here, we demonstrate the ordered weighted averaging operator 
and the Dempster’s combination rule for the conventional approaches and the Choquet 
integral operator for the intelligent ones. 

3.1 Ordered weighted averaging 

The Ordered Weighted Averaging (OWA) operator was first introduced by Yager to 
solve the multi-criteria aggregation problem (Ronald, 1988). OWA’s versatility allows it 
to cover the range between satisfying all criteria (‘and’) or satisfying at least one criterion 
in a parameterized manner. OWA maps L-dimensional real-value inputs to a real-value 
output, which makes it an appropriate tool for combining Type 3 classifiers (Kazemian et 
al., 2005). OWA is defined in a general form as follows: 

1 2 ( )
1

( , ,..., )
L

L j j
j

OWA p p p w pσ
=

=∑  (1) 

where σ is a permutation that orders the input values in ascending order: pσ(1) ≤ pσ(2) ≤…≤ 
pσ(L) . All weights are non-negative (wi ≥0) and sum to one. By adjusting the weights, wj, 
in OWA, we can achieve a wide range of well-known operators such as max, min, 
median (Detyniecki, 2001). It is worthwhile to mention that OWA is always between the 
minimum and the maximum of the input values. The general algorithm for classifier 
fusion using OWA operator is shown in Figure 2. 



   

 

   

   
 

   

   

 

   

    Using classifier fusion techniques for protein secondary structure prediction 423    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 The general algorithm of OWA based classifier fusion 

1 Choose L weights such that: 

1

{1,2,..., }; 0,     1
L

i i
i

i L w and w
=

∀ ∈ ≥ =∑   

[we used exponential weights explained in (Filev and Yager, 1998)] 

2  each class-label c  {H,E,C}For ∈  

a. Sort p(xi
c), i=1,2,…,L in descending order, such that 

( ) ( )1 max , min  pc c
i L i

ii
a p x and a x= =  

b. Calculate the total preference score (µ(Xc)) for class c as: 

( )
1

L
c

i i
i

X w aμ
=

=∑  

3 Obtain the final class-label by: 

( )arg max k

k
Xμ  

To obtain the OWA weights, we used a certain family of OWA operators called 
optimistic exponential OWA (Filev and Yager, 1998). The weights were defined in a 
similar way to those used in the method of exponential smoothing, and parameterized by 
one variable, α ∈[0, 1] (Filev and Yager, 1998). In order to find the parameter α, we 
varied it from zero to one with step size of 0.01, calculated the corresponding correct 
classification rate, and then found the value of α for which the maximum correct 
classification rate has occurred. Figure 3 shows the correct classification rate as a 
function of α. 

Figure 3 Correct classification rate for varying α, in optimistic OWA 

 

3.2 Dempster’s rule of combination 

Dempster’s combination rule (DCR) is a generalization of Bayes’ rule (Dempster, 2008), 
which combines the evidences from multiple independent sources. It has been 
successfully applied to the multiple classifiers combination problem (Xu et al., 1992). In 
our classifier fusion benchmark, the evidences are the preference scores in each column 
of the decision profile matrix. 
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Let p(x1
c) and p(x2

c) denote the preference scores of class c given by two classifiers. 
The adapted version of Dempster’s combination rule can be written as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 2
12 1 2

1 2
{ , , }

c c
c c c

k k

k H E C

p x p x
p x p x p x

p x p x
∈

×
= ⊕ =

×∑
 (2) 

The associative and commutative properties of the DCR rule make it possible to 
sequentially combine multiple evidences from different classifiers. The general algorithm 
for classifier fusion using DCR operator is shown in Figure 4. 

Figure 4 Dempster’s combination rule for classifier fusion 

1  each  class-label c  {H,E,C}For ∈  

a. Set µ(Xc)=p(x1
c) 

b. For classifiers l = 2 to L 

( ) ( ) ( )c c c
lX X p xμ μ= ⊕  

2 Obtain the final class-label by: 

( )arg max k

k
Xμ  

3.3 Choquet fuzzy integral operator 

Fuzzy Integrals are defined as the integration of a function with respect to a fuzzy 
measure (or a λ-fuzzy measure). In this sense, they are analogous to Lebesgue integrals 
with respect to an ordinary measure. Choquet integral (Choquet, 1954) is one of the most 
common fuzzy integral operators that has been successfully applied to the classifier 
combination problem (Kuncheva, 2001, Wang et al., 1998). 

In the classifier fusion benchmark, the function that we are integrating over is the 
preference scores of the independent classifiers to a certain class-label, with respect to a 
λ-fuzzy measure defined over the space of the classifiers. 

( ) ( ) ( )( ) ( )( ) ( 1) ( )
1

 
L

c c c c
j j j

j

X p x p x g Aσ σ σμ −
=

= −∑  (3) 

where ( )c
ip x  is the preference score of classifier xi to class c; σ is a  

permutation that orders the preference scores in an ascending order 

( ) ( ) ( )( )(1) (2) ( )... ,c c c
Lp x p x p xσ σ σ≤ ≤ ≤  and ( )(0) 0.cp xσ =  Also 1{ , ,..., },c c c c

i i i LA x x x+=  

and g is a λ–fuzzy measure introduced by (Sugeno, 1977) and calculated recursively as 
follows: 

( ) ( )1 1( )  c i c i c
i i ig A p g A p g Aλ− −= + +  (4) 
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where pi is the importance of classifier xi, and λ is the unique root, greater than –1, of the 
following equation (Tahani and Keller, 1990); 

( ) 011
1

≠+=+ ∏
=

λλλ
L

j

jp  (5) 

We have calculated the importance of classifier xi as the correct classification rate of xi on 
the training data. On the other hand, the normalized summation of the diagonal elements 
of each classifier’s confusion matrix (on training data) represents the total importance of 
the classifier. The general algorithm for classifier fusion using Choquet fuzzy integral is 
shown in Figure 5 (Kuncheva, 2001). 

Figure 5 Choquet fuzzy integral operator in classifier fusion 

1 Estimate the importance of classifiers( p1, p2, …,pL) from training data as explained above  
2 Calculate λ using Eq.5 
3 Calculate fuzzy densities using Eq.4 
4 Calculate the total preference score for class c using Eq.3 
5 Obtain the final class-label by: 
 ( )arg max k

k
Xμ   

4 Datasets and classifiers used 

4.1 Datasets 

Our evaluation was carried out on few datasets from EVA1 server. EVA is a web service 
which continuously and automatically pulls newly resolved protein structures back from 
PDB2, sends the corresponding required information to the prediction servers, gets their 
results back, evaluates them extensively and displays the final results on a web interface 
(Rost and Eyrich, 2001; Koh et al., 2003). 
Table 1 The selected datasets from EVA server 

EVA data sets 
Name No of proteins No of residues Description 
Set 1 30 More than 4,000 Cumulative results from 1999 to October 2002 
Set 2 134 More than 16,000 Cumulative results from 1999 to October 2002 
Set 3 80 More than 8,000 Cumulative results from October 2002 
Set 4 175 More than 17,000 Cumulative results from October 2002 

Notes: The datasets are located at: 
http://cubic.bioc.columbia.edu/eva/sec_2002_10/common.html. The overlaps of 
Set 3 and Set 4 with Set 1 and Set 2 have been removed. 

We have randomly selected one third of the proteins in each dataset as the training data, 
for constructing the confusion matrix, finding the parameter α and calculating the 
importance of each individual secondary structure classifier. The remaining two thirds 
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have been used for evaluating the proposed approach and reporting the results (results on 
the training data are not shown). 

4.2 Classifiers used 

Table 2 shows some information about the selected protein secondary structure prediction 
(classification) servers used in our classifier fusion system. 
Table 2 Protein secondary structure classifiers used as individual classifiers 

Secondary structure prediction servers 

Name Location Prediction method 

APSSP2 Institute of Microbial Technology, India EBL3 + neural network 

PROFSEC Columbia University, USA Profile-based neural network 

PSIPRED University College London, UK Neural network 

SAM-T99 University of California, Santa Cruz, USA Hidden Markov model 

SSPRO2 University of California, Irvine, USA Recurrent neural network 

PHDPSI University of Columbia, USA Profile-based neural network 

PROF_KING University of Wales, UK Cascading different classifiers 

• APSSP2 combines the results of standard neural network (NN) and modified version 
of example based learning (EBL) trained on proteins with high resolution in PDB. It 
leverages the value of homology-based methods (e.g., EBL), considering the 
increasing number of known protein structures (Raghava, 2000). 

• PROFSEC employs a cascade of three NNs: the first one is a simple feed-forward 
NN, which maps a set of local and global protein characteristics to its corresponding 
secondary structure. The second NN improves the output of the first NN by applying 
the natural constraints between adjacent predictions, and the third NN corrects some 
obvious prediction errors (Rost, 2001; Rost, 1996; Rost, 2005). 

• PSIPRED utilizes two sequential NNs: The first NN receives PSI-BLAST’s profile 
as an input and provides an initial prediction. The second NN improves the results of 
the first NN by checking for invalid structures (Jones, 1999). 

• SAM-T99 uses multiple sequence alignment generated by profile hidden Markov 
models (HMM) to predict secondary structures (Karplus et al., 1998). 

• SSPRO2 combines bidirectional recurrent NNs and PSI-BLAST profiles for 
predicting the secondary structure (Pollastri et al., 2002). 

• PHDPSI improves the PHD method (Rost, 1996) by applying the information from 
multiple sequence alignment obtained by PSI-BLAST’s profiles (Przybylski and 
Rost, 2002). 

• PROF_KING cascades different types of classifiers together and combines their 
results using a NN and linear discrimination method. It improves the prediction 
results by “exploiting the production of uncorrelated errors” from different kinds of 
classifiers (Ouali and King, 2000). 
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5 Evaluation metrics 

• Three-class classification accuracy (Q3) criterion is the most common measure used 
for secondary structure prediction (Rost and Sander, 1993), and defined as follows: 

3

3
1

1100    ii
res i

Q M
N =

= × ×∑  (6) 

where Mii is the number of residues observed in class i and classified as i, and Nres is 
the total number of residues. 

• Per-class accuracy criterion for class i is defined as the percentage of correctly 
classified residues in the class i, to all residues observed in class i (Rost and Sander, 
1993). 

%  
100obs ii

i
i

M
Q

obs
= ×  (7) 

where Mii is the number of residues observed in class i and classified as i, and obsi is 
the total number of residues observed in class i. 

• Multi-class specificity (MC-sp) and Multi-class sensitivity (MC-sen): specificity and 
sensitivity are common metrics for assessing the performance of binary classifiers 
(Altman and Bland, 1994). Here, we have adapted the specificity (sensitivity) 
measure of a binary classifier to our multi-class classifier problem. We first break the 
multi-class classifier to several binary classifiers, we then calculate the specificity 
(sensitivity) of each binary classifier and, finally, we obtain the multi-class 
specificity (sensitivity) by averaging the specificity of the binary classifiers. Figure 6 
shows how we can break the confusion matrix of a three-class classifier when the 
actual class label is H. 

Figure 6 The confusion matrix of a three-class classifier is shown. The matrix has been pictured 
in a form of binary classifier, where H is the ‘positive’ class, and E and C belong to the 
‘negative’ class. TP(a11), FP(a21 + a31), FN(a12 + a13) and TN(a22 + a23 + a32 + a33) are 
true positives, false positives, false negatives, and true negatives regions, respectively. 

 

6 Results 

A summary of the classification results obtained using the selected classifiers, which 
were described in Section 4, is presented in Table 3. These results demonstrate that the 
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best classifier for all of the four datasets is PSIPRED. Although its classification accuracy 
is the highest among other secondary structure classifiers, our multi-classifier approach 
has further improved this. The results of ordered weighted averaging, Dempster’s 
combination rule, Choquet fuzzy integral and majority voting based classifier fusion 
methods are presented in Table 4. The multi-class specificity, multi-class sensitivity, and 
accuracy are also shown in Figures 7, 9, 11 and 13 for EVA set 1 to 4, respectively. 
These results show that the Choquet based classifier fusion provided the best results with 
respect to accuracy, multi-class specificity and sensitivity. While other fusion methods 
have provided some improvements too, the Choquet based classifier fusion method 
showed the best improvements: 2.24%, 2.57%, 2.14%, and 2.06% with respect to 
accuracy; 1.17%, 1.79%, 1.32% and 1.2% with respect to multi-class specificity; 2.35%, 
2.57%, 2.35%, and 2.06% with respect to multi-class sensitivity, compared to PSIPRED 
on the four chosen datasets. 

Good results have been achieved for α-helix and β-strand structure classification by 
ordered weighted averaging and Choquet fuzzy integral classifier fusion systems. The 
results of Choquet fusion method have been improved by 5.9% for alpha helix and 4.33% 
for β-strand compared to PSIPRED in the EVA set 1 (Figure 8). Similar results have been 
obtained for the other datasets (Figures 10, 12 and 14). 
Table 3 Prediction results of the individual classifiers on four EVA datasets 

 Q3 %obs
hQ  %obs

eQ  %obs
cQ  MC-sp MC-sen 

EVA set 1 
APSSP2 74.49 78.00 65.65 77.01 87.04 74.08 
PROFSEC 74.71 75.38 74.48 74.05 87.12 74.24 
PSIPRED 74.78 78.53 68.25 75.67 87.18 74.36 
SAM-T99 74.63 82.60 63.12 75.06 87.13 74.27 
SSPRO2 73.58 78.14 62.79 76.45 86.60 73.21 

EVA set 2 
PROFSEC 74.43 77.32 70.17 74.18 87.21 74.43 
PSIPRED 74.56 78.29 66.54 75.49 87.28 74.56 
SAM-T99 73.97 81.25 63.42 73.24 86.99 73.97 
SSPRO2 74.00 79.04 63.73 74.96 87.00 74.00 

EVA set 3 
PSIPRED 77.62 83.96 68.66 75.02 88.81 77.62 
PHDPSI 73.29 75.35 68.73 73.15 86.65 73.29 
PROFSEC 75.43 76.16 72.82 75.81 87.71 75.49 
SAMT99 77.48 85.79 61.90 75.69 88.74 77.48 
PROF_KING 73.54 73.25 69.08 75.75 86.77 73.54 

EVA set 4 
PSIPRED 78.08 84.85 69.06 75.37 89.04 78.08 
PHDPSI 74.49 79.91 67.16 72.38 87.25 74.49 
PROFSEC 76.54 78.19 72.23 76.90 88.27 76.54 
SAMT99 77.55 87.06 64.23 74.09 88.78 77.55 
PROF_KING 72.80 71.42 68.70 76.22 86.40 72.80 
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The comparison between majority voting and Choquet operator shows that the Choquet 
based fusion has an improvement of 1.34% compared to majority voting for the EVA  
set 1, which is not very impressive at a first look, but, by better analysing the results, we 
found out that the Choquet based fusion provided an improvement of 4.26% and 6.21% 
in α-helix and β-strand structures, respectively, compared to majority voting. For the 
other datasets, similar results are obtained and presented in Table 4. 
Table 4 Results for different classifier combination methods 

 Q3 %obs
hQ  %obs

eQ  %obs
cQ  MC-sp MC-sen 

EVA set 1 
Majority voting 75.68 80.17 66.37 77.68 87.88 75.77 
OWA 76.47 84.31 73.08 71.92 87.98 75.96 
DCR 76.42 81.12 71.52 75.81 87.87 75.75 
Choquet 77.02 84.43 72.58 73.43 88.35 76.71 

EVA set 2 
Majority voting 76.12 84.33 69.61 72.62 88.06 76.12 
OWA 76.72 84.47 77.99 69.08 88.36 76.72 
DCR 76.59 85.32 66.14 75.68 88.24 76.59 
Choquet 77.13 85.45 70.61 73.56 89.07 77.13 

EVA set 3 
Majority voting 78.77 83.42 70.91 77.40 89.38 78.77 
OWA 79.08 83.62 76.76 74.20 89.45 78.84 
DCR 79.58 84.84 61.34 82.05 89.79 79.58 
Choquet 79.76 87.99 68.28 76.96 90.13 79.97 

EVA set 4 
Majority voting 78.95 84.35 70.87 77.21 89.47 78.95 
OWA 79.75 86.83 71.95 77.56 89.97 79.78 
DCR 79.58 85.12 64.47 81.09 89.79 79.58 
Choquet 80.14 87.97 70.83 80.92 90.24 80.14 

Figure 7 The MC-sp, MC-sen and Q3 of the five individual classifiers and of the classifier fusion 
systems on EVA set 1 
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Figure 8 Comparison of obs
hQ% , obs

eQ% , obs
cQ%  and Q3 between the best performing individual 

classifier and the classifier fusion systems on EVA set 1 

 

Figure 9 The MC-sp, MC-sen and Q3 of the five individual classifiers and of the classifier fusion 
systems on EVA set 2 

 

Figure 10 Comparison of obs
hQ% , obs

eQ% , obs
cQ%  and Q3 between the best performing individual 

classifier and the classifier fusion systems on EVA set 2 
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Figure 11 The MC-sp, MC-sen and Q3 of the five individual classifiers and of the classifier 
fusion systems on EVA set 3 

 

Figure 12 Comparison of obs
hQ% , obs

eQ% , obs
cQ%  and Q3 between the best performing individual 

classifier and the classifier fusion systems on EVA set 3 

 

Figure 13 The MC-sp, MC-sen and Q3 of the five individual classifiers and of the classifier fusion 
systems on EVA set 4 
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Figure 14 Comparison of obs
hQ% , obs

eQ% , obs
cQ%  and Q3 between the best performing individual 

classifier and the classifier fusion systems on EVA set 4 

 

7 Conclusions and further research 

Classifier fusion is an important step towards building a meta-classifier. A meta-classifier 
combines the results of several existing classifiers and returns results that should be more 
accurate. In this paper, the decision profile of several well-known protein secondary 
structure classifiers have been extracted from their confusion matrices, and several 
classifier fusion techniques, including ordered weighted averaging, Dempster’s 
combination rule and Choquet fuzzy integral operator, have been used to combine these 
decisions. The results showed that the Choquet fuzzy integral operator provided the best 
accuracy overall. 

The combination of more existing individual classifiers led us to better prediction 
results for protein secondary structure. Improving existing individual models or 
developing new better models is more expensive than simply combining existing 
individual models. In addition, developing more models for the same problem might be 
more costly than using a single classifier, but if the individual classifiers are properly 
combined and diverse enough from one another, we can achieve better overall prediction 
results using less trained classifiers. Therefore, training individual classifiers to be 
integrated in a multi-classifier system can be less time consuming than training one single 
very well performing model. 

There are two key challenges in the classifier combination problem. First, classifier 
fusion, in which the results of individual classifiers are combined to achieve the final 
decision. In this regard, developing various intelligent classifier fusion methods is a good 
avenue for future research. Second, classifier selection, in which the best individual 
classifiers are selected to contribute to the final decision. In this paper, we focused on the 
first aspect of classifier combination only. The confusion matrix of each classifier was 
used as being representative of its expertness, and did not contain the confidence of each 
decision, separately. If the classifier confidences or more details of regional expertness 
are available, the fusion results can be expected to be improved even more than what has 
been reported in this paper. 
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