
Using Structural Information and Citation Evidence
to Detect Significant Plagiarism Cases in Scientific
Publications

Salha Alzahrani
Department of Computer Science, Taif University, Taif, Saudi Arabia. E-mail: s.zahrani@tu.edu.sa

Vasile Palade
Department of Computer Science, University of Oxford, Oxford, UK. E-mail: vasile.palade@cs.ox.ac.uk

Naomie Salim
Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, Johor Bahru, Johor,
Malaysia. E-mail: naomie@utm.my

Ajith Abraham
VSB Technical University of Ostrava, CZ. E-mail: ajith.abraham@ieee.org

In plagiarism detection (PD) systems, two important
problems should be considered: the problem of retriev-
ing candidate documents that are globally similar to
a document q under investigation, and the problem
of side-by-side comparison of q and its candidates to
pinpoint plagiarized fragments in detail. In this article,
the authors investigate the usage of structural informa-
tion of scientific publications in both problems, and the
consideration of citation evidence in the second prob-
lem. Three statistical measures namely Inverse Generic
Class Frequency, Spread, and Depth are introduced to
assign a degree of importance (i.e., weight) to struc-
tural components in scientific articles. A term-weighting
scheme is adjusted to incorporate component-weight
factors, which is used to improve the retrieval of potential
sources of plagiarism. A plagiarism screening process is
applied based on a measure of resemblance, in which
component-weight factors are exploited to ignore less
or nonsignificant plagiarism cases. Using the notion of
citation evidence, parts with proper citation evidence
are excluded, and remaining cases are suspected and
used to calculate the similarity index. The authors com-
pare their approach to two flat-based baselines, TF-IDF
weighting with a Cosine coefficient, and shingling with
a Jaccard coefficient. In both baselines, they use dif-
ferent comparison units with overlapping measures for
plagiarism screening. They conducted extensive experi-
ments using a dataset of 15,412 documents divided into
8,657 source publications and 6,755 suspicious queries,

Received April 8, 2011; revised August 2, 2011; accepted August 3, 2011

© 2011 ASIS&T • Published online in Wiley Online Library
(wileyonlinelibrary.com). DOI: 10.1002/asi.21651

which included 18,147 plagiarism cases inserted auto-
matically. Component-weight factors are assessed using
precision, recall, and F -measure averaged over a 10-
fold cross-validation and compared using the ANOVA
statistical test. Results from structural-based candidate
retrieval and plagiarism detection are evaluated statis-
tically against the flat baselines using paired-t tests on
10-fold cross-validation runs, which demonstrate the effi-
cacy achieved by the proposed framework. An empirical
study on the system’s response shows that structural
information, unlike existing plagiarism detectors, helps
to flag significant plagiarism cases, improve the similar-
ity index, and provide human-like plagiarism screening
results.

Introduction

Three types of textual documents have been widely used
in document retrieval (DR). The first type is structured doc-
uments, which have structural markers defined by a markup
language, such as HTML and XML, and can be segmented
into blocks. For example, web documents usually havemark-
ers, or tags, such as <p>, <br>, <hr>, <h1>, <h2>, etc.,
that canbeused to partition the page into headers,menus, nav-
igation bars, paragraphs, tables, and lists. The second type is
semistructured documents, such as scientific artciles, which
do not have structural markers, but different units of the doc-
ument are presented using physical properties, such as the
font type or size. The reader of a semistructured document
can easily, by looking to its visual appearance, recognize
different components, such as titles, sections, subsections,
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paragraphs, tables and lists. The third type is free-format doc-
uments,which have plain textswithout any structuralmarkers
and are unlikely to be presented by visual elements.

Structural information in scientific publications, in par-
ticular, plays an important role in presenting the content as
segments; each with a specific importance (or interest) to
the reader. Scientific publications begin usually with a title,
authors, abstract, and keywords, and spans into sections.
Each section begins with a head title and has a textual
body that could be subsections or different elements such
as paragraphs, lists, tables, figures, equations, and quotes.
These segments of scholarly documents, commonly referred
to in the literature as logical structure, can be extracted
(Anjewierden, 2001; Bounhas & Slimani, 2010; Burget,
2007; Councill, Giles, &Kan, 2008; Hagen, Harald, Ngen, &
Petra Saskia, 2004; K.H. Lee, Choy, & Cho, 2003; Li & Ng,
2004; Luong,Nguyen,&Kan, 2010;Nguyen&Luong, 2010;
Ratté, Njomgue, & Ménard, 2007; Stoffel, Spretke, Kinne-
mann, & Keim, 2010;Wang, Jin,Wang,Wang, & Gao, 2005;
Witt et al., 2010; K. Zhang,Wu, & Li, 2006), and can be used
to improve document indexing (Bounhas & Slimani, 2010),
to represent the semantic content of scientific publications
(Luong, Nguyen, & Kan, 2010; Ratté et al., 2007), to extract
key phrases and terminologies (Bounhas & Slimani, 2010;
Nguyen & Luong, 2010), and to improve document summa-
rization (Teufel & Moens, 2002). To improve indexing of
semistructured documents, for instance, a method of terms
weighting is applied according to their structural occurrences
(or their positions in different segments of the document),
instead of using the whole document as in flat weighting
methods (Bounhas & Slimani, 2010; de Moura, Fernandes,
Ribeiro-Neto, da Silva, & Gonçalves, 2010).

Besides structural information, citation evidence in scien-
tificpublications should acknowledgeprevious researchwork
and avoid plagiarism. Citation evidence usually involves
three main items: (a) quoting or citing a piece of text that is
taken from a previous publication, (b) in-text citation marker
using a numerical-numbering style or author-naming style
that links that piece of text to one of the references, and
(c) a list of references that contains several citation phrases
presented normally at the end of the document. Each citation
phrase starts in a new line and states the author names, publi-
cation title, year, and other information that guides the readers
to locate that specific reference. The list of citation phrases
can be parsed (Chen, Yang, Chen, & Ho, 2010; Councill
et al., 2008), and can be used to search the web for digi-
tal resources such as CiteSeer1 and ParaCit2, to study the
research evolution and trends in particular areas (M. Lee &
Chen, 2010), to mine citation information for useful infor-
mation such as influential scientists in particular areas (Fiala,
2010), and other applications in digital libraries (Chen, 1999;
Chudamani & Ilamathi Maran, 2004; Larsen & Ingwersen,
2006; Pentz, 2006; Van & Beigbeder, 2007).

1http://citeseer.ist.psu.edu/
2http://paracite.eprints.org/

Digital libraries, publishers, and conference management
systems have recently employed automatic antiplagiarism
tools to ensure academic integrity of published contents. For
example, Docoloc3 is a plagiarism detector integrated into
the EDAS conference management system (EDAS Confer-
ence Services, Leonia, NJ), and CrossCheck4 is a tool used
by more than 250 publishers including Cambridge Univer-
sity Press, Springer, and Elsevier. The technology behind
plagiarism detectors generally works as follows (Butakov &
Scherbinin, 2009; Karl, 2008): (a) A collection of scientific
publications are compiled into a database, (b) a submit-
ted document is compared with source documents in the
database, (c) portions of the submitted document that have
a high similarity score are highlighted, and (d) an overall
similarity index is calculated in accordance with the percent-
age of text detected as similar. However, existing tools have
some limitations. First, they focus on representing the docu-
ments as a “bag-of-words,” which may lead to highlighting
unnecessary parts as plagiarism.

Figure 1 shows that Docoloc highlights authors’ names,
affiliations, acknowledgments, bibliographies, and other
small matches, although to an investigator this is unlikely to
be plagiarism. In such cases, the bag-of-words representation
may increase the ratio of plagiarism, or the similarity index,
in scientific publications. Second, current tools need further
adjustments to fine-tune the detection results and exclude
texts with proper citation evidence (Meddings, 2010). Such
texts are insignificant to the detection, unless two identi-
cal citations are found in two different papers (H. Zhang,
2010). Third, available tools mostly deal with documents
as a whole and do not take into account structural informa-
tion presented by the publication. Structural representation,
however, is considered appropriate to represent the seman-
tic ideas or topically related information in the article, and
may yield significant improvements in plagiarism detection
results.

Thus, this work exploits the logical structural information
in scientific publications for better analysis of the text. Struc-
tural representation is a good metric to detect nontrivial (or
significant) plagiarism cases. Our hypothesis is as follows:
the distribution of terms in structural components through-
out a scientific publication can indicate the significance of
these components, and two publications having global sim-
ilarity as a whole may be completely different in terms of
the semantics and context by looking to their discrimina-
tive structural orientation. Subsequently, we propose that the
occurrence of plagiarism in certain sections of a scientific arti-
cle, such as the Methods, Results, or Discussion, is expected
to be more significant for the detection algorithm than the
occurrence ofmatching texts in sections such as the Introduc-
tion, Acknowledgments, or copyright notation. Using such
an assumption can assist in featuring and tracing significant
plagiarism cases, such as plagiarizing ideas of other authors.

3http://www.docoloc.de/
4http://www.crossref.org/crosscheck.html
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FIG. 1. Sample of plagiarism detection results using a Docoloc tool.

We also presume that the use of citation evidence should con-
siderably improve plagiarism analysis and comprehension
of detection results when compiled in a similarity index, as
will be discussed later in this article. Therefore, our proposed
approach aims to achieve a close resemblance to an individ-
ual’s way of analyzing, reasoning, and suspecting plagiarism
in scientific works.

The rest of this article is organized as follows. In the sec-
ond section, we provide a literature review in related areas
including logical structure extraction (LSE), citation parsing
(CP), text type structure (TTS), document retrieval (DR), can-
didate retrieval (CR), and plagiarism detection (PD). In the
third section, we discuss the approach we used for the seg-
mentation of scientific publications including LSE, TTS, and
CP. Then we explore different component-based weighting
functions of structural components in scientific publications
in the fourth section, and present the method we applied for
both of CR and PD in the fifth section. In the sixth section
we present our experimental results and compare them with
two baselines proposed in the literature. Finally, we present
our conclusions and suggestions for future work.

Related Work

Structure Extractors, Generic Classifiers, and Citation
Parsers

Methods for partitioning scholarly publications consider
that the structure is usually presented physically by various
visual elements, such as location, position, punctuation,

length, and font type/size. Somepartitioningmethods employ
keyword-based strategies to label specific content; for exam-
ple, using words like “Chapter,” “Introduction,” I, II, and
other numbering styles, to extract section headers. Parti-
tioning scholarly documents comes under a wide research
problem know as logical structure extraction (LSE) of
semistructured documents, and is not the focus of this work.
Fortunately, there are efficient LSE solutions addressed in
recent literature (Burget, 2007; Luong et al., 2010; Ratté
et al., 2007; Stoffel et al., 2010). In this work, we employ
Luong’s LSE (Luong et al., 2010) developed by the National
University of Singapore (NUS), and available for free use or
adaptation within other tools under the Lesser GNU Public
License (LGPL).5

Scholarly documents tend to have a consistent logical
structure. Thus, to unify the structure organization, different
studies have addressed a so-called text-type structure (TTS),
or generic classes in scientific works (Hagen et al., 2004;
Siddharthan&Teufel, 2007), also knownas zones afterTeufel
(1999). These studies aimed to develop methods (or anno-
tation schemes) that can be used to group (or generalize)
different sections in scientific publications under different
classes/types. Teufel and Moens (2002) defined seven types
of text, or argumentative zones, namely Own, Other, Back-
ground, Textual, Aim, Basis, and Contrast, according to the
rhetorical status. Hagen et al. (2004) increased the text types
to 16 types according to the topics and the problems, namely

5www.gun.org/licenses/lgpl.html.
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Research Topic, Background, Others’ Work, Rational, Tex-
tual, Theory, Concepts, Framework,Method, Data, Data Col-
lection, Data Analysis, Results, Interpretation, Conclusions,
and Resource. Luong et al. (2010) developed a generic classi-
fier (GC) able to generalize extracted sections from scientific
papers under seven classes according to the problem-solving
hierarchy, namely, Abstract, Introduction, Related Work,
Method, Evaluation, Conclusions, Acknowledgments, and
References. Using a dictionary-based and machine-learning
technique, Luong’s classifier was able to relate different
sections to their generic classes with encouraging results.

Citation parsers (CP), on the other hand, help to iden-
tify the intellectual ownership in scientific papers (Teufel &
Moens, 2000). Because scientific citation has many styles
such as the American Psychiatric Association (APA), Med-
ical Library Association (MLA), Institute of Electrical and
Electronics Engineers (IEEE) and others6, different studies
have suggested solutions for parsing different citation styles
(Chen et al., 2010; Councill et al., 2008). In this work, we
utilize ParsCit; a CP tool developed by Pennsylvania State
University and National University of Singapore (Councill
et al., 2008). It has the ability to extract two citation contexts:
numbering-like styles (e.g. [2,5]) and naming-like styles
(e.g., Councill et al., 2008,Councill, Gils&Kan, 2008,Coun-
cill, Gils & Kan, 2008). ParsCit is open source and available
for free use under the LGPL.

Document Retrieval (DR) and Candidate Retrieval (CR)

Most DR models represent documents as a bag-of-
words, wherein redundant and frequent words are excluded.
Fingerprinting-based (also called shingling) approaches have
been used widely for DR and near duplicate detection in
digital libraries (Heintze, 1996; Schleimer, Wilkerson, &
Aiken, 2003). In this model, documents are represented
as character/word n-grams, and a measure of resemblance,
e.g., the Jaccard coefficient, is used to find documents that
share considerable n-grams. The vector space model (VSM)
is a very popular one (Manning, Raghavan, & Schütze,
2009) that represents documents as vectors of unique and
nonfrequent terms called index terms, and rank documents
based on term frequency and inverse document frequency
(IDF-TF) weighting scheme. Latent semantic indexing (LSI)
is another weighting scheme based on the reduction of the
original VSM (i.e., TF-IDF weighting vectors) using singu-
lar value decomposition (SVD; Chris, 1999). These models
represent documents as flat, and do not take into consider-
ation the structural representation of the documents, or the
assumption that the occurrence of a term in a specific segment
of the document may change its weight. Nonetheless, studies
that consider structural representation of web documents for
term weighting have yielded comparable or superior results
in retrieval and ranking of search results (Bounhas&Slimani,
2010; de Moura et al., 2010; Marques Pereira, Molinari, &
Pasi, 2005), in comparison to the normal weighting schemes.

6http://en.wikipedia.org/wiki/Citation

We next review of several studies that have incorporated
structural information into term weighting and document
ranking.

Pasi (2002) introduced the concept of flexible information
retrieval (FIR), also called soft IR, which model vagueness
and uncertainty in web search and DR. Methods to represent
FIR include the following:

1. Flexible user queries that use fuzzy quantifiers within the
query. For example, the user can express the query using
words like “at least,” “very important,” “important” and
“alike,” in contrast to Boolean queries that allows only
“AND,” “OR,” and “NOT” notions.

2. Flexible indexing that encompasses the user’s understand-
ing of a document for terms weighting and document
indexing

3. Fuzzy IR, which incorporates thesauruses for retrieval of
documents that share global semantic similarity, rather
than retrieval of documents that have words in common
as in Boolean IR

4. Partial relevance and user feedback for adaptive retrieval

As a practical application of flexible indexing, Marques
Pereira et al. (2005) used structural HTML pages to improve
indexing andDR.TheHTMLpages are organized into blocks
using tags such as <p> for new paragraphs, <h1>,<h2>,
<h3> for headers,<hr>,<br>,<div> for horizontal split-
ters, and so on. Then, a numerical weight was assigned
to each block manually before the indexing phase to indi-
cate its importance in the page. The block’s weight was
expresses as bwi = (n − i + 1)/n where i is the block’s rank,
and n is total block classes. Table 1 shows the empirical
weights used in their work, wherein ranks (f ) are succes-
sive, and weights (bwi) are assigned values between 0, which
means the least important, and 1 which means the most
important. Term weighting was computed thereafter using
the formula F(d, t) = (

∑n
i=1 bwi × TFi) × IDFt , which indi-

cates the degree of significance of the term by cumulating
both term frequencies in different blocks of a web page and
block weights.

Another study (Marteau, Ménier, & Popovici, 2006) intro-
duced a naïve Bayes model for supervised classification of
semistructured documents. Their work exploited structural
knowledge from XML trees derived from a set of XML doc-
uments. Each element in the tree was weighted according to
its contribution to the whole tree, and a weight heuristic was
combined with the classification decision as follows:

bwi =
{ |Vi,ω|

|di| if di(innertext) �= null

1 otherwise

where |Vi,ω| is the cardinal of the vocabulary associated to
node i for the category ω, and |di| is the size of inner text of
the node i inside document d.

Bounhas and Slimani (2010) represented structural infor-
mation from web documents as a tree whereby the root is
assigned the highest level M, and leaf nodes are assigned
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TABLE 1. Ranking of different blocks found in HTML pages (Marques Pereira et al., 2005).

f bwi Block class HTML Tags or parameters f bwi Block class HTML Tags or parameters

1 1.00 Title TITLE, META keywords 7 0.50 Lists UL, OL, DL, MENUE, DIR
2 0.92 Header 1 H1, FONT SIZE= 7 8 0.42 Emphasized 2 BLOCKQOUTE, CITE, BIG, PRE, CENTER, TH, TT
3 0.83 Header 2 H2, FONT SIZE= 6 9 0.33 Header 4 H4, CAPTION, CENTER, FONT SIZE= 4
4 0.75 Header 3 H3, FONT SIZE= 5 10 0.25 Header 5 H5, FONT SIZE= 3
5 0.67 Linking A HREF 11 0.17 Header 6 H6, FONT SIZE= 2
6 0.58 Emphasized 1 EM, STRONG, B, I, U, STRIKE, 12 0.08 Delimiters P, TD, FONT SIZE= 1, text not included in any tag

S, BLINK, ALT

the lowest level N = 1. Then, the TF measure was com-
puted as the summative value of the term frequency in
each node multiplies by its level, as stated by the equa-
tion: TF(t, d) = ∑

TF(t, n) × level(n) where n indicates the
nodes in document tree. The TF-IDF measure was then used
for document indexing, where TF is defined by the above
equation. Their work was applied for mining structural trees
and inferring semantic relations between concepts.

An interesting work by de Moura et al. (2010) presented a
block weighting (bwi) approach that “do not require a learn-
ing process nor a type of manual investigation to compute
blocks ranking as previous research” (p. 2503). The study
used HTML tags for webpage segmentation, and exploited
DOM tree to describe the layout of webpages and to cat-
egorize blocks into classes. Two basic statistical measures
namely Inverse Class Frequency (ICF), and Spread were
introduced as a basis of bwi in web documents, where ICF
defines the contribution of a class (of several blocks) to
the document, while Spread indicates the contribution of a
term to different blocks. Based on these two measures, nine
block-weighting functions were evaluated on the term-level,
block-level, and class-level. Web retrieval was carried out
by modifying Okapi BM25 ranking function to include bwi

block weights. In our work, we use ICF and Spread mea-
sures as well as a newly defined measure for component
weighting in a collection of scientific publications different
from de Moura’s web collections. We also apply component
weighting on a new domain—plagiarism detection.

The notion of candidate retrieval (CR), on the other hand,
has appeared in plagiarism detection research to indicate the
necessity of retrieving a small set of documents that share a
global similarity with a suspected document (or query) from
large source collections, before conducting a further detailed
analysis. Research applied for CR is, therefore, analogous
to DR that use bag-of-words-related models such as finger-
printing, VSM, and LSI. Alzahrani and Salim (2010) used
word-3-gram fingerprints to retrieve candidates of q with
Jaccard similarity above a threshold (α ≥ 0.1). Other research
works include using three least-frequent character-4-gram
and Jaccard similarity (Alzahrani & Salim, 2009; Yerra &
Ng, 2005), using hashed word-5-gram fingerprints and
Jaccard similarity (Kasprzak, Brandejs, & Křipač, 2009),
and using hashed 50-character chunks with 30-character
overlap to retrieve documents that share at least one finger-
print with q (Scherbinin & Butakov, 2009). Many research

works have employed VSM for CR. Examples include
using word-1-gram VSM and Cosine similarity (Zechner,
Muhr, Kern, & Granitzer, 2009), using word-8-gram VSM
and custom distance measure (Basile, Benedetto, Caglioti,
Cristadoro, & Esposti, 2009), and using character-16-gram
VSMandCosine similarity (Grozea,Gehl,&Popescu, 2009).
Ceska (2008) explored the use of LSI model for CR and PD.

Plagiarism Detection

Plagiarism detection (PD) is the successor to CR, which
entails in-depth paragraph-to-paragraph (or statement-to-
statement) analysis of [query, candidate] pairs to detect
local plagiarism cases. Most well-known methods rely on
constructing and matching n-gram fingerprints of prede-
fined patterns in the document. The fingerprints could be
(a) character-based, which use a sequence of characters, such
as 30–45 successive characters from the whole document, or
(b) phrase-based, which convert each document to a set of all
bigrams or trigrams.

Exact and approximate string matching with various sim-
ilarity metrics have been used widely for PD. Examples of
research works that used exact string matching include char-
acter 16-gram matching (Grozea et al., 2009), word 8-gram
matching (Basile et al., 2009), and word 5-gram matching
(Kasprzak et al., 2009).On the other hand, approximate string
matching has been used by a plurality of researchers. For
example, Scherbinin and Butakov (2009) used Levenshtein
distance to compare word n-grams and combine adjacent
similar grams into sections. Su et al. (2008) combined
Levenshtein and simplified Smith-Waterman algorithm for
identification of local similarities. Elhadi andAl-Tobi (2009)
usedLCSdistance combinedwith other part-of-speech (POS)
syntactical features to identify similar strings locally and rank
documents globally.

Vector similarity metrics such as Containment, Cosine,
and Jaccard have commonly been applied in different PD
research. Examples include using the matching coefficient
with a threshold to score similar statements (Daniel & Mike,
2004), using Cosine similarity on document fragments to
enable global and partial PD without sharing the documents’
content (Murugesan, Jiang, Clifton, Si, & Vaidya, 2010),
estimating the similarity between n-gram terms of differ-
ent lengths using Jaccard coefficient (Barrón-Cedeño, Basile,
Degli Esposti, & Rosso, 2010); while in their previous work
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(Barrón-Cedeño & Rosso, 2009), a containment similarity
measure was used to compare word n-gram, n= {2,3}.

All of the above CR and PD approaches incorporate
bag-of-words-related models that emphasize the flat repre-
sentation of documents and focus on the detection of copied
text. Our review on plagiarism linguistic patterns and detec-
tion methods (Alzahrani, Salim, & Abraham, 2011) covers
other techniques that incorporate fuzzy, syntactic, semantic,
and structural features for PD. None of the existing studies,
until now, employ CR or PD using structural information in
structured or semistructured documents. This work, there-
fore, exploits the use of structural information in scientific
publications to convey different interpretation of plagiarism
from different components (or segments). For instance, some
plagiarism cases in the introductions, definitions, or general
field-based knowledge are of marginal importance compar-
ing to plagiarism cases in the results and evaluations parts
of the paper. The introductions normally contain general
knowledge and it is legitimate to have general definitions
and theories that are redundant across different publica-
tions. It is also obvious that some components such as
notes, copyrights, and acknowledgments contain texts with
no significance to the plagiarism detection. Thus, different
structural components in the publication may be assigned a
degree of importance (i.e., weight) to highlight significant
plagiarism cases.

Segmentation of Scientific Publications

When writing a scientific publication, the author usually
organizes the content into titles, sections, paragraphs, and
notes to present the ideas in the most understandable way to
the audience. It is very conventional that a scientific publica-
tion begins with a title, authors’ names, abstract, keywords,
and sections, which in turn, begin with a header and have
a textual body of various components, such as paragraphs,
lists, tables, lists, equations, and quotes. When skimming an
article, the reader usually looks at the titles, sections, and
other structural elements to get the gist of the main ideas.
In addition, citation evidence in scientific articles is the
proper and the most conventional way to acknowledge pre-
vious work in the literature. Scientific publications evolve
around citations, which guide the reader to differentiate one’s
contributions from others’ contributions. If a particular part
of a scientific publication is taken from others’ work and
written without proper citation, it is called plagiarism. In the
following, we introduce several definitions that are important
to characterize the segmentation process, citation evidence,
and plagiarism in publications.

Definition 1. A structural component C is a self-contained
and self-consistent logical region within a scientific article
that has a unique purpose and is visually distinguished from
other components. It can be expressed by a pair of two items,
as follows:

C = (�, ν) : � ∈ L

where � refers to the label given to the component to indicate
its purpose, as will be discussed shortly, and ν is the textual
value of that component.

Structural components are subject to interpretation by the
reader, but also can be identified automatically using LSE
methods (Burget, 2007; Luong et al., 2010; Ratté et al.,
2007; Stoffel et al., 2010). In this work, we use SectLabel
tool (Luong et al., 2010) to extract the logical structure of
scientific publications. To represent labels, SectLabel uses a
rich set of labels L, which is commonly sufficient to label
different components in scientific papers, as follows:

L = {title, author, affiliation, email, keywords, categories,
copyright, sectionHeader, subsectionHeader, subsubsection-
Header, bodyText, equation, construct, figure, figureCaption,
footnote, listItem, note, page, table, tableCaption, reference}

Notice that construct defines any part of text that is sepa-
rated visually from the bodyText such as definitions, lemmas,
proofs, algorithms, and pseudo-codes. Figure 2 shows an
example of a scientific article with different components and
their labels. Each component should be unique within the
paper and not overlap with other components in the same
article.

Definition 2.A scientific article A can be expressed as a set
of all structural components that constitutes the article, as
follows:

A =
n∑

i=1

Ci

where n is the total number of components, and each com-
ponent Ci is defined by a pair (�i, νi). Notice that labels may
be given to more than one component but the pair of label �i

and value νi should be unique throughout the article.

Definition 3. A generic class G is a text type that a group
of structural components may belong to, or can be classified
under it. The Methodology section of a scientific paper, for
instance, normally expands into multiple structural compo-
nents, and a generic classifier should be able to group these
components that describe the methodology under the same
class.

Generic classes are subject to interpretation by analysts
who would be experts in the field of that publication.
Automatic generic classifiers are also available and can be
used to classify structural components according to differ-
ent aspects such as rhetorical status (Teufel, 1999; Teufel &
Moens, 2002), rhetorical-problem paradigm (Hagen et al.,
2004), or problem-solving hierarchy (Luong et al., 2010).
Because the latter is more general than the formers and can
be applied to discipline-independent collection of publica-
tions, we consider a set of generic classes G that is based on
problem-solving hierarchy, as follows:

G= {Title, Author data, Abstract, Categories, General
terms, Keywords, Introduction, Background, Related work,
Method, Evaluation, Discussion, Conclusion, Acknowledg-
ment, Copyright, References}
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FIG. 2. A scientific article and its logical structure components. [Colorfigure canbeviewed in theonline version,which is available atwileyonlinelibrary.com.]

Under these generic classes, scientific publications can
generally be classified into four types: (a) a full research
paper that explores problem-solving-based research and fea-
tures components under all generic classes, (b) a review paper
that explores previous research on a particular problem, but
may not include method and evaluation generic classes, (c) a
demo paper that publishes software or the results of testing
specific methods or tools without giving much detail to the
literature review, and (c) a squib, similar to a demo paper,
suggests a new solution or direction of research based on
a specific background, but may not give related works and
other technical details.

Definition 4. A citation evidence ε is the situation where a
component C, or part of it, is quoted or cited to another work
in the literature, and the name of the reference is provided in
the list of references or bibliography, usually at the end of the
article. The citation evidence can be expressed as a triple of
three items, as follows:

ε = (α, β, γ)

where α is the citation marker that assigns a text to one of
the references, β is the cited (or quoted) string, and γ is the
reference phrase in the list of the references.

To extract the citation evidence in a scientific publication,
CP tools should be employed. In this work, we use ParsCit

(Councill et al., 2008) which has the ability to (a) extract
citation markers of different styles, (b) extract the cited (or
quoted) string that indicates the context wherein the citation
marker is used to refer to one of the references, and (c) parse
citation phrases from the list of references. In some ad hoc
experiments that we conducted, ParsCit tool was able to han-
dle cases that the citationmarker refers to multiple references
(e.g. [2,3,9]) and is also able to handle cases that multiple
citation markers refer to the same reference work.

Definition 5. A collection of scholarly documents D can be
expressed as set of publications, as follows:

D =
|D|∑
i=1

Ai

where |D| is the total number of publications in the collec-
tion. We assume that the collection is free from duplicate
documents, and has publications under the same general
category, e.g., Information Science and Technology.

Definition 6. A plagiarism case ρ in a scientific article A

is when a textual content of a component C, or part of it,
gains a high similarity score with another textual content of a
componentC′, or part of it, in a candidate articleA′, and is not
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bounded with proper citation evidence ε. Thus, a plagiarism
case can be expressed as a quadruple of four main items, as
follows:

ρ = (C, C′, A, A′) : (Sim(C, C′) ≥ threshold) ∧ ((C ∧ ε)

= false)

In this sense, plagiarism checking involves two kinds
of evidence: a high similarity score—using some similarity
measure—between two components, and the absence of cita-
tion evidence. Because current research on plagiarism detec-
tion focuses on thefirst evidence but not the second, part of the
experimental work will cover this issue. The rational of using
citation evidence is that quoted or cited portions of text
will not be screened for plagiarism which may (a) accel-
erate the detection process, especially for tools that use
huge databases; and (b) give more realistic similarity index
that express the plagiarism ratio in the submitted document.
Besides citation evidence, we explore the use of structural
information to screen significant plagiarism cases and present
them to the users.

Component-Based Weighting

The logical structure of scholarly publications can be used
to improve termsweighting. For example, a single occurrence
of a term in theTitlemeans that the article fully concerns about
that term. Thus, terms weight in these components should be
improved to better indicate their significance in the article.
To quantify the importance of a term tin a structural compo-
nentC, wewill use aweighting function f that can be defined
as follows:

Definition7.Acomponent-weight factorf(t, C) is a quantita-
tive function that is used to measure the weight of a structural
componentC in an articleA, based on the relevance between
terms in C and other structural components.

In this regard, f(t, C) defines a “qualitative” importance
of a component C in the article, which can be assigned man-
ually by an expert during the indexing phase of documents.
For example, in a scale between 0 (completely not signif-
icant) and 1 (completely significant), one can assume that
f(t, C) = 1, if t is present in Title, and in contrast, f(t, C) = 0
if t is present in Acknowledgments and Copyrights. How-
ever due to the fact that scientific papers usually have a large
number of components of variable lengths, it is almost impos-
sible to assign components weight manually, and immense
efforts are required to perform such task individually.To solve
this problem, automatic component-weight factors have been
introduced in flexible information retrieval by Pasi (2002).
Some methods have been developed (Bounhas & Slimani,
2010; de Moura et al., 2010; Marques Pereira et al., 2005;
Marteau et al., 2006) that use typical TF-IDFweighting in IR,
but with structural components of documents taken into con-
sideration. The following section explores different strategies
to weight components in scientific publications.

Strategies to Compute Component-Weight Factors

To compute f(t, C) automatically, we experiment two sta-
tistical measures: inverse generic class frequency (IGF), and
Spread (de Moura et al., 2010), as follows:

Definition 8. Given that a generic class G has N compo-
nents {C1, C2, . . . , CN}, and a term t that occurs in Nt,C

components of G, the IGF of a term t in C is defined as:

IGF(t, G) = log
N

Nt,C

(1)

Definition 9. The Spread of a term t in an article A is the
number of structural components in A that contain t. The
Spread can be seen as the structural frequency of a term,
which can be expressed as follows:

Spread(t, A) =
∑
C∈A

i where i =
{
1 if t ∈ C

0 otherwise
(2)

The IGF and Spread reflects the structural information
in scientific publications in contrast to the normal term fre-
quency (TF) and inverse document frequency (IDF) in the
vector space model (VSM). The IGF defines howwell a term
t can discriminate components, and howmuch a generic class
G articulates information in a given article, instead of using
the whole document collection. For example, the term cita-
tion in the article shown in Figure 2 has low IGF because it
is too frequent in that article; hence, it does not discriminate
between components. The terms co and direct that are asso-
ciated with citation (co-citation vs. direct citation) have high
IGF in the Method generic class, for instance, because these
two terms discriminate very well between components that
incorporate co-citation terminology and those that concern
direct citation. Spread, on the other hand, diversifies the
normal term frequency (TF) of a term t as it considers the fre-
quency of structural components that have t. Spread implies
that the more components that have t, the more significant it
is in the document. To illustrate, Spread of the term citation
in the article that discusses different citation approaches as
the one shown in Figure 2, is high because this term almost
appears in every component, in a sense that it is significant
in that article more than, for instance, the term intercitation,
which appears in few components. Moreover, some terms
like co, direct, and bibliographic have high significance based
on the Spread measure, and a component that has all these
terms (e.g., discussion) is likely to be more important than a
component that has either term.

In addition to IGF and Spread, we introduce a new
statistical measure called Depth as follows:

Definition 10. The Depth of a term t in a generic class G

refers to the frequency of t inG normalized by the maximum
frequency in G such that we do not underestimate classes
with low components. It can be expressed as follows:

Depth(t, G) = TFt,G

MAXt′,G
(3)
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where TFt,G is the term frequency in generic class G, and
MAXt′,G is the maximum term frequency gained by a term t′
in G. In this regard, Depth quantifies how much information
associated with a term t in a given generic class G, and will
range between 0 and 1. If t = t′,Depth= 1, which means that
this term constitutes much of the information given by G.

To clarify the difference betweenDepth, Spread, and IGF,
let us consider some terms in the sample article shown in
Figure 2.The termcitationgains a near-to-oneDepth in nearly
all generic classes because it is too frequent, whereas the term
intercitation gains zero or near-to-zero Depth in all generic
classes due to its appearance only once (in one of the para-
graphs in the literature section) as a less-frequent alternative
terminology to direct citation. Additionally, the Spread of
citation counts on the whole range of the article, whereas
Depth of citation counts on generic class G, and a term may
gain different Depths in different generic classes of the same
article. Although IGF underestimates classes with low com-
ponents, as will be discussed shortly, Depth and Spread do
not give legitimate values for low-component generic classes.

Using IGF, Spread, and Depth, we introduce different
functions to compute component-weight factors for the logi-
cal structural representation of scientific publications. Notice
that Equations 4–9 have been developed by de Moura et al.
(2010) to weight different blocks in webpages and to improve
search results in four web collections. To start with, a
component-weight factor that is based on IGF can be defined
as follows:

f1(t, C) =
⎧⎨
⎩

∑
t′∈C IGF(t′, GC)

|C| if t ∈ C

0 otherwise

(4)

where t′ refers to all distinct terms in a component C, GC

is the generic class that has C, and |C| is the size of C (i.e.,
number of distinct terms). Another IGF-based component-
weight factor can be defined based on the contribution of all
distinct terms t′ in a generic class GC as follows:

f2(t, C) =
⎧⎨
⎩

∑
t′∈C IGF(t′, VGC

)

|VGC
| if t ∈ C

0 otherwise

(5)

where VGC
is the vocabulary composed of all distinct terms

from all components under of a generic classGC and |VGC
| is

its size. Notice that the first factor assigns different weights to
components underGC, whereas the second factor assigns the
sameweight to all components underGC, which indicate that
all components under the Methodology section, for instance,
are equally important.

Another two Spread-based component-weight factors are
defined at the component-level and generic class-level,
respectively, as follows:

f3(t, C) =
⎧⎨
⎩

∑
t′∈C Spread(t′, AC)

|C| if t ∈ C

0 otherwise

(6)

f4(t, C) =

⎧⎪⎪⎨
⎪⎪⎩

∑
C′∈G

∑
t′∈GC

Spread(t′, AC)

|C|
|VGC

| if t ∈ C

0 otherwise

(7)

where t′ refers to all distinct terms in a componentC,AC is the
article that has C, |C| is the size of C, VGC

is the vocabulary
composed of all distinct terms from all components under
of a generic class GC and |VGC

| is the size of vocabulary
in GC.

IGF-based and Spread-based component-weight factors
are combined in the following factors:

f5(t, C) =

⎧⎪⎪⎨
⎪⎪⎩

∑
t′∈C IGF(t′, GC)×
Spread(t′, AC)

|C| if t ∈ C

0 otherwise

(8)

f6(t, C) = f2(t, C) × f4(t, C) (9)

Depth–based factors are similarly defined based on the
component-level and generic class-level, as follows:

f7(t, C) =
⎧⎨
⎩

∑
t′∈C Depth(t′, GC)

|C| if t ∈ C

0 otherwise

(10)

f8(t, C) =

⎧⎪⎪⎨
⎪⎪⎩

∑
C′∈G

∑
t′∈GC

Depth(t′, GC)

|C|
|VGC

| if t ∈ C

0 otherwise

(11)

Finally, we combine Depth and Spread into two new
component-weight factors as in Equations 12 and 13, and
will experiment their effectiveness on component weighting.
Notice that we tend not to combine Depth and IGF together
(even not to combine all of the three measures) due to the
problem of IGF’s underestimation of some components as
will be explained shortly.

f9(t, C) =

⎧⎪⎪⎨
⎪⎪⎩

∑
t′∈C Depth(t′, GC)×
Spread(t′, AC)

|C| if t ∈ C

0 otherwise

(12)

f10(t, C) = f4(t, C) × f8(t, C) (13)

Dealing With Classes of Low Components

The previous definition of IGF leads to a practical problem
with generic classes that have one or only a few compo-
nents such as Title, Abstract, Introduction, and Conclusion,
which leads to the underestimation of the importance, i.e.,
component-weight, of these classes by IGF-based factors.
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FIG. 3. Strategy for weighting classes with low components. [Color figure
can be viewed in the online version, which is available at wileyonlineli-
brary.com.]

One proposed solution to deal with generic classes with
few components is to use the reader’s intuition (or preference)
of these classes, as suggested by (Pasi, 2002). The reader,
who is usually an expert in the field, can qualitatively judge
the importance of different components in a scientific article.
To illustrate, the reader may consider some generic classes
of a few components such as anAbstract are more important
than classes such as an Introduction. Moreover, a compo-
nent like Title can define the content of the article; terms
in this component are considered very significant. However,
this qualitative judgment by the reader may not be precisely
predicted as quantitative weights.

We propose a procedure that combines the reader’s qual-
itative preference and a quantitative measure, as shown in
Figure 3. The steps can be illustrated as follows:

1. All generic classes in a scientific article are classified into
low-component generic classes if they have less than three
components, and high-component generic classes, other-
wise. The following generic classes {Title, Abstract, Key-
words, Conclusion, Copyrights, References} have always
been classified as low component, and the generic classes
{Introduction, Discussion} have sometimes been classi-
fied as low component. Notice that we ignore {Categories,
General Terms} generic classes because they do not exist
in many papers.

2. IGF-based component-weight factors are computed only
for high-component generic classes (i.e., those with more
than three components).

3. Low-component generic classes are presented to the
reader (i.e., expert) to qualitatively classify them accord-
ing to their importance (or in other words, according to
their influence or contribution to the body of the paper)
into Important, Moderate, or Poor.

4. Then, the scale of IGF-based factors for high-component
generic classes is used to estimate the component weights

for low-component ones. The assumption is undertaken
according to the following formula:

flow(t, C) =
⎧⎨
⎩

IGFmax if GC−IMPORTANT

IGFmed if GC−MODERATE

IGFlow if GC−POOR

(14)

where IGFmax, IGFmed , and IGFmin are the maximum,
median, and minimum IGF-based component-weight fac-
tors, respectively; as obtained automatically for high-
component classes using Equations 4 or 5. We will con-
sider how to adjust the weights of low-component generic
classes using thismeasure in theParameter Set-Up section.

How to Interpret Component-Weight Factors

We explore the meaning of component-weight factors on
a small number of scientific publications chosen randomly
from our test collection (details of the test collection are
described in a later section). Figure 4 shows an example of a
scientific article that contains 65 components, as the first and
last pages appear. The components are extracted and classi-
fied (Luong et al., 2010) under different generic classes as
stated in Definition 3.We employ all component-weight fac-
tors, aswell as theflowmeasure, asTable 1 presents the results
partially. In our analysis of the sample, as well as the one
shown in Figure 4, and we found the following (Table 2):

• Spread-based factors estimate high weights for components
that the reader would consider important, and normally give
the highest weight to the Title in comparison to other compo-
nents because this component contains terms that have high
structural frequency within the article.Also, components like
Abstract are more important than Author data, Copyrights,
and Acknowledgments; whereas remaining components like
bodyText, listItem, etc., seem to be comparable and have no
advantage over each other.

• Although Spread-f4 treats all components under a generic
class G equally (i.e., sectionHeader and bodyText are given
the same weight), Spread-f3 gives low weights to section-
Header when it contains words that are not related to the
article’s topic (e.g., component 3, 5, and 60), but gives high
weights to sectionHeader, tableCaption, and figureCaption
if they contain terms discussed throughout the article thor-
oughly and mentioned in many other structural components
accordingly (e.g., component 7 and 59).

• IGF-based factors may give some components that are usu-
ally considered important to the readers a zero or near-to-zero
weights if they are presented under generic classes with only
few components. For instance, the generic class G =Title
has only one component which is {title}, G =Abstract has
two components {sectionHeader, bodyText}, and so on. Pre-
vious section discusses this problem in detail and proposes a
solution to this factor.

• As part of our experimental work investigates the use of
flow factor according to Equation 14, we notice that flow

yields better component-basedweights in comparison to IGF-
based factors because it incorporates a qualitative measure
into its decision. For instance, title and bodyText in Abstract
are given the maximum weight, whereas components that are
insignificant to the detection process based on an individual’s
perspective, are given the minimum weight (equal to zero in
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FIG. 4. A sample article from our test collection, with different components shown in the first and last page.FIG. 4. A sample article from our test collection, with different components shown in the fi rst and last page. [Color fi gure can be viewed in the online 
issue, which is available at wileyonlinelibrary.com.]

this article), which allows us to exclude these components
from the plagiarism detection results.

• Depth-based factors have several advantages over all other
factors. First, the estimation of the most important compo-
nents does not exceed one (i.e., range of Depth is between
0 and 1), which is more manageable than Spread and IGF.
Second, Depth-based factors have shown no problematic

behavior with low-component generic classes in contrast to
IGF factors. Third,Depth-based factors have scaled well with
large-component generic classes in contrast to Spread factors,
which could gain big values based on the number of struc-
tural components in the article. We also found that Depth-f7
works better than Depth-f8 in the sense that it is similar to
what people usually consider as important.

TABLE 2. Examples of component-based weighting factors found in a sample article, as the one shown in Figure 4.

IGF-based Spread-based Depth-based Combined factors

C G � f 1 f 2 f 3 f 4 f 7 f 8 f 5 f 6 f 9 f 10 f low

1 Title Title 0.0000 0.0000 9.2500 9.2500 0.3750 0.5500 0.0000 0.0000 3.5000 1.8425 3.2420
2 Author data Name/affiliation/ 0.6931 0.0408 0.5000 0.4118 0.2500 0.2588 1.7329 0.0983 0.5000 1.3478 0.0000

e-mail
3 Abstract sectionHeader 0.0000 0.6787 1.0000 7.0000 0.0000 0.3802 0.0000 4.7509 0.0000 2.6615 0.0000
4 bodyText 0.6931 0.6787 7.0833 7.0000 0.3750 0.3802 4.9098 4.7509 3.1927 2.6615 3.2420
5 Introduction sectionHeader 0.0000 0.6803 1.0000 6.1852 0.0000 0.3074 0.0000 4.2079 0.0000 1.9014 0.0000
6 bodyText 0.6931 0.6803 6.2037 6.1852 0.3037 0.3074 4.3001 4.2079 2.4667 1.9014 1.9854
7 Method sectionHeader 1.9356 3.0031 5.5000 2.5660 0.1429 0.0773 10.5739 7.7059 0.8000 0.1984 1.9356
8 bodyText 2.7944 3.0031 4.8194 2.5660 0.1516 0.0773 10.3199 7.7059 1.4437 0.1984 2.7944
. . .

58 Evaluation figure 1.6975 1.9660 4.7778 4.1282 0.1349 0.1349 8.0850 8.1162 0.6746 0.5570 1.6975
59 figureCaption 1.1478 1.9660 10.3333 4.1282 0.3393 0.1349 10.1621 8.1162 4.0536 0.5570 1.1478
60 Conclusion sectionHeader 0.0000 0.0000 2.0000 3.4397 0.1875 0.1950 0.0000 0.0000 0.4375 0.6709 0.0000
61 bodyText 0.0000 0.0000 3.4912 3.4397 0.1963 0.1950 0.0000 0.0000 1.0241 0.6709 1.9854
62 Acknowledge sectionHeader 0.0000 0.6715 1.0000 1.5938 0.0000 0.5156 0.0000 3.0846 0.0000 2.3687 0.0000
63 bodyText 0.6931 0.6715 1.6250 1.5938 0.5000 0.5156 3.2058 3.0846 2.3906 2.3687 0.0000
64 References sectionHeader 0.0000 0.6850 2.0000 2.8471 0.0000 0.2588 0.0000 1.9502 0.0000 0.7369 0.0000
65 referenceList 0.0000 0.0000 2.8706 2.8706 0.2588 0.2588 0.0000 0.0000 0.9859 0.7430 0.0000
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Plagiarism Detection (PD) System

Plagiarism from different parts of the document may con-
vey different interpretations; for instance, plagiarism in the
introduction of the article may be of marginal importance
compared to plagiarism in the evaluation and discussion.
Besides, there are legitimate reasons that a text may be redun-
dant between different papers especially in the methodology
section, such as a proof copied to be extended, a report of
self- (or team-) previous work to be expanded, an equation
or series of equations applied to a new domain or application,
and other situations that might be judged as plagiarism-free
by people. This work employs several component-weight
factors introduced in the previous section, to give a further
decision about significant plagiarism cases in scientific pub-
lications. To illustrate, a component that gains high weight
and is found to be plagiarized under some similarity mea-
sure, may be more significant than a plagiarism instance in
a component with low weight. Thus, PD in scientific pub-
lications can be assessed by structural information in terms
of retrieval of candidate documents, detection of significant
cases, and ignorance of non-significant or less important
cases. Using citation evidence, additionally, provides a solid
base for filtering out cases with proper citation evidence,
which may improve the similarity index and reduce false
detection results.

General Framework

Figure 5 shows the general framework of the proposed
antiplagiarism system including two main phases: source
archive preparation and plagiarism revelation. In the first
phase, a source collection D composed of scientific pub-
lications is passed through a sequence of preprocessing
operations as follows:

1. Logical structure extraction and labeling of different com-
ponents inside the article using SectLabel (Luong et al.,
2010.

2. Generic class classificationof structural components using
SectLabel (Luong et al., 2010)

3. Citation evidence parsing using ParsCit (Councill et al.,
2008) wherein the following are extracted: (a) citation
marker, which refers to a small phrase of author name
or reference number that appeared before, within, or after
a reported work; (b) raw text, which indicates the reported
text from the literature; and (c) reference string from the
list of references.

4. Structural component weighting using one of our
component-weight factors listed by Equations 3–16

5. Structural term weighting, which incorporates structural
component weights into current term weighting schemes
as will be explained in the next section. Results from these
steps are usually stored into the archive.

The second phase is actually triggered by a submission of
a publication q to be checked against source archive. q is also
passed under the previous preprocessing steps. Notice thatwe

FIG. 5. Plagiarism detection system framework.

do not need to store q into the archive, unless it is to be com-
pared with future queries. Two steps are accomplished in this
phase: (a) retrieval of candidate documents based on a global
similaritymeasure (as discussed inDR andCR relatedwork),
and (b) screening for plagiarism by further comparing q with
its candidate documents based on a local similarity measure
(as discussed in PD related work) to highlight instances of
plagiarism.

Retrieval of Candidate Documents

To incorporate component-based weight factors into CR,
we suggest amodification onTF-IDFweighting scheme used
in typical VSM. The original TF-IDF incorporates local and
global parameters to assign weight to each index term t in
document d, according to the formula:

wt,d = TFt,d · log |D|
|d ∈ D : t ∈ d| (15)

where TFt,d is term frequency in d, |D| is total number of
documents in the dataset, and |d ∈ D|t ∈ d| is the number
of documents that contains t.The above termweightingwt,d is
associated with a bag-of-words representation of documents.
As suggested by Pasi (2002), we can modify the local param-
eter to reflect the structural information from the document.
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Thus, term weighting in a scientific publication A can be
given according to the following formula:

wt,A = TF ′
t,A · log |D|

|A ∈ D : t ∈ A| (16)

where TF ′
t,A is a new parameter that provides a weighting

scheme for the index terms in each logical component under
different generic classes that constitutes the article, which in
turn can be expressed as:

TF ′
t,A =

∑
G∈A

∑
C∈G

TFt,C × fk(t, C) (17)

where TFt,C is the frequency of a term t in a structural compo-
nent C, and fk(t, C) is one of our component-weight factors.
Then, Cosine similarity can be used to retrieve the most sim-
ilar source publications to the query article q, which can be
calculated as:

Sim(A, q) =

∑
t∈A∧t∈q

wt,A × wt,q√ ∑
t∈A∧t∈q

(wt,A)2 ×
√ ∑

t∈A∧t∈q

(wt,q)2
(18)

In this regard, we compare q only with publications
{A1, A2, . . . , An} ⊆D that satisfy the following condition:
{t : t ∈ Ai} ∩ {t : t ∈ q} �= θ. Finally, relevant publications are
sorted descendingly as the candidates list of q while pub-
lications with Sim(A, q) ≤ threshold are excluded, where
threshold value will be defined by our experimental set-up.

Screening for Significant Plagiarism After retrieval of a
list of candidate publications that share global similarity
with q, PD stage involves exhaustive analysis and in-depth
comparison of each candidate and q. We use component-
based plagiarism screening which measures the degree of
overlapping between structural components in q and A.
To accomplish this work, we suggest a modification on
Jaccard similarity (also known as overlapping distance)
whereby all structural components Ci ∈ A, i = 1, 2, . . . , n
and n is the total number of components in A, are com-
paredwith structural componentsCj ∈ q, j = 1, 2, . . . , m and
m is the total number of components in q, according to the
following formula:

Overlap(Ci, Cj) = � ·
[ |Ci ∩ Cj|
|Ci ∪ Cj|

]
where

� = fk(Ci, t) × fk(Cj, t) (19)

In the abovementioned equation, we introduce a new
parameter called significance factor � that defines to what
extent a plagiarism case is significant (or insignificant).
To illustrate, the weights of compared components are com-
bined into a single metric, where fk is one of the component-
based factors introducedby the formulas 3–14, and associated
with the similaritymeasure.The effect of the significance fac-
tor is to increase/decrease the overlapping similarity between
compared components such that components that are highly
similar but are not of interest to PD will be discarded or

downgraded to lesser degrees of similarity. For example,
notes, copyrights, acknowledgments, author data, references,
and similar components are not important in the detection
results. The significant factor � may assist the PD algo-
rithm to discard two identical acknowledgments. On the other
hand, components that are given high weights such as in the
results and discussion, will be upgraded to higher degrees
of similarity. In the case of using flow as component-weight
factor to compute�, a human-based qualitative assessment
is integrated to present detected plagiarism cases as degrees
according to their occurrence within the document.

Additionally, citation evidence ε is used at this stage to fil-
ter out texts that have been cited properly; a feature that is not
handled even bywell-known plagiarism detectors. Therefore,
the decision of a plagiarism case ρ committed by the authors
of q from a source article A is true if and only if the over-
lapping between compared components exceeds a threshold
and there exists no citation evidence to mark that component
as cited. Thus, the decision about ρ can be undertaken as
follows:

ρA,q(Ci, Cj) =
{
1 if (Overlap(Ci, Cj) � 0)∧(|Cj ∩ ε| = 0)

0 otherwise

(20)

Finally, to present the results of plagiarism screening in a
submitted publication, we define three similarity indices as
follows:

Definition 11. The Similarity Index (SI) of an article q under
investigation and a candidate article A is the percentage of
text detected as plagiarized from A, as follows:

SI(q, A) = |∑j ρA,q|
|q| × 100 (21)

where |∑j ρA,q| is the total length (in words) of plagiarism
cases that are found to be plagiarized from A, and |q| is the
total number of words in the suspicious article q.

Definition 12. The Overall Similarity Index (OSI) of an arti-
cle q under investigation is the overall percentage of text
in q detected as plagiarized by a PD approach. OSI can be
expressed as follows:

OSI(q) =
∑

A∈candidates |∑j ρA,q|
|q| × 100 (22)

Definition 13. The Structural Similarity Index (SSI) of an
article q under investigation is the percentage of components
that is found (totally or partially) to be plagiarized from one
or more components in candidate publications. SSI can be
expressed as follows:

SSI(q) =

∑
Cj∈q

i where i =
{
1 if ∃ρA,q ∈ Cj

0 otherwise

n
×100

(23)
where n is the total number of components in q.
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FIG. 6. A sample of a tagged article using SectLabel (Luong et al., 2010).

FIG. 7. A sample of parsed citations using ParsCit (Councill et al., 2008). (a) Numbering-based citation; (b) author-naming-based citation.

Publications screened for plagiarism are assigned SI and
OSI based on the percentage of texts found as plagia-
rized, which means the texts have components that assign
high weight factors with no citation evidence. However,
the SSI provides an indication of the number of structural
components that have been plagiarized,which gives an under-
standing of how well a scientific work contributes to the
knowledge base in a specific area. A scientific publication
should provide newknowledge based on a reasonable amount
of previous works and literature reviews.

Experimental Results

To validate our methods, we conducted experiments on a
dataset of scientific publications wherein thousands of pla-
giarism cases were inserted automatically.We also compared
our methods with two different baselines and evaluated their
efficiency.

Dataset

The test collection is composed of 15,412 publications7

downloaded from several open access journals listed in the
Directory of Open Access Journals (DOAJ), and from con-
ference proceedings available on the Web. The publications

7The dataset is available at www.u2learn.net/plagiarism/corpus/v1/

have been published from 2002–2010, and categorized gen-
erally under science and technology. To construct the dataset,
all publications were converted from PDF to TXT using
pdftotext command-line utility in Unix8, and were randomly
divided into 8,657 source publications and 6,755 queries (i.e.,
documents under plagiarism checking).

We adopted SectLabel LSE and GC (Luong et al., 2010)
that extracts (i.e., tags or marks) different constructs in the
documents such as title, author, address, affiliation, key-
words, bodyText, equation, figure, etc., and maps different
constructs under the following generic classes: Title, Author
data, Abstract, Introduction, Related work, Method, Evalua-
tion, Conclusions, Acknowledgments, Copyrights, and Refer-
ences. We also employed ParsCit CP (Councill et al., 2008)
to extract the citation evidence. Figure 6 shows a screenshot
from a tagged article by SectLabel, as one of its section enti-
tled “RECOGNITION” is classified under Method generic
class. Figure 7 shows two snapshots of ParsCit results, as
part (a) is used for numbering-based citation, and part (b) is
used for naming-based citation.

We developed a so-called artificial plagiarism synthe-
sizer9, which is used to extract a text from a source article,
reformulate the extracted text in away that is similar towhat a
plagiarist does to obfuscate the text, and insert the newversion

8http://en.wikipedia.org/wiki/Pdftotext
9Source code can be distributed for research purposes. Please contact

Dr. Alzahrani to obtain the latest version.

FIG. 6. A sample of a tagged article using SectLabel (Luong et al., 2010). [Color fi gure can be viewed in the online issue, which is available at wileyon-
linelibrary.com.]

FIG. 7. A sample of parsed citations using ParsCit (Councill et al., 2008). (a) Numbering-based citation; (b) author-naming-based citation. [Color fi gure 
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of the text into a query document (i.e., suspicious publica-
tion). We used an automatic synthesizer to (a) avoid ethical
issues of asking people to simulate plagiarism, (b) save peo-
ple’s time and effort when creating multiple revisions of texts
as in Clough and Stevenson’s corpus (2011), (c) accelerate
the creation of the corpus, and (d) automate the annotation of
all plagiarism cases. It is proved that constructing plagiarism
cases automatically is sufficient to implement the plagiarism
concept (Potthast, Stein, Eiselt, Barrón-Cedeño, & Rosso,
2009) and does not make any difference with simulated or
real plagiarism cases in many detection algorithms (Potthast,
Stein, Barrón-Cedeño, & Rosso, 2010).

The synthesizer was built using PHP (hypertext prepro-
cessor) integrated with various natural language processing
(NLP) tools such as stemmer, lemmatizer, POS tagger,Word-
Net, Google translator, and automatic summarizers. It works
according to the following procedure:

1. Choose one of the queries q randomly.
2. For each q:

a. Choose one of the source publicationsA randomly.
b. From a generic class inA, copy or obfuscate part of

the text (few sentences to thewhole paragraphs) and
insert it under a generic class in q. Both classes are
chosen randomly to ensure fairness and to investi-
gate efficiencyof the proposedmethods in detecting
significant plagiarism cases.

c. Repeat (b) until different cases of plagiarism are
constructed from A.

d. Repeat (a)–(c) until different source publications
are involved in the process.

e. Annotate all plagiarism cases in q.
3. Repeat all the above steps until about 60% of queries are

chosen as q and annotated with different plagiarism cases
of variable lengths.

Different plagiarism synthesizer methods were employed
to construct different kinds of plagiarism, which ensure the
generality and efficiency of PD. Synthesizer methods include
text mappers, manipulators, paraphrasers, and summarizers.
All of the methods, except the first, obtain plagiarism-like
cases at three obfuscation levels: light when 10–30% of
the text is changed, moderate when 30–70% of the text
is changed, and heavy when more than 70% of the text is
changed. The following provides details of each method.

• Text Mapper: Used to construct nonobfuscated (copy and
paste) plagiarism. The mapper works by copying sentences
or paragraphs under a generic header in the source document,
inserting it under a suspicious generic header.

• Text Manipulator: Used to restructure/reformulate the text by
applying several strategies randomly such as sentence shuf-
fling, word shuffling, POS preserving word shuffling, and
word inserting/deleting.

• Paraphraser: Used to construct texts with different seman-
tic variations. We used three strategies of automatic
paraphrasing:
◦ A WordNet lexical database wherein the dictionary

form (lemma) of a word is used to randomly return one
of its synonyms, antonyms, hypernyms, or hyponyms

◦ A back-translation method (Jones, 2009) wherein the
text is submitted to Google translator, translated to
any language, and then retranslated back to English as
another strategy to obtain a paraphrased text close to a
human’s paraphrase

◦ A double-back-translation method wherein the pre-
vious strategy is repeated twice to obtain a more
obfuscated paraphrase

• Summarizer: Used to summarize the text while retaining
the important ideas. We used three strategies of automatic
summarization:
◦ A word rank-based summarizer10 that ranks words in

the document by their occurrence; ignoring words that
are very common such as a, an, the, this, that, etc. By
listing the top ranked N words (N can be changed by
the user), the score of each statement is calculated by
summing the word ranks it has. Words in the sentence
but not in the list are given rank 0. Top P rated state-
ments are then used to construct the summary, where P

is the compression rate (i.e., percentage of the summary
to the original text).

◦ Afuzzy swarm-based summarizer (Binwahlan, Salim,&
Suanmali, 2009) that weights sentences based on
swarm-based mechanism and a set of fuzzy rules. Top
weighted sentences are then chosen to construct the
summary.

◦ A composite paraphraser-summarizer wherein one of
the above strategies is applied followedbyaparaphraser
strategy to obfuscate the summary

All generated cases were annotated in separate XML files
for evaluation purposes. Figure 8 shows an example of anno-
tation files created for the dataset. Annotations have several
elements namely features; each element describes one plagia-
rism case except the first, which refers to the tagged version
of the article. The feature element of a plagiarism case indi-
cates the level of obfuscation (i.e., none, light, moderate, and
heavy), and the type of plagiarism (i.e., verbatim, restructure,
paraphrase, and summary) as constructed by our synthesizer
methods.A word counter (i.e., word-start-position and word-
end-position)was used to bound each case.We also annotated
which context the plagiarism was taken from in the source
documents and placed into the suspicious documents using
generic class headers from the tagged documents.

Table 3 shows the general statistics about the corpus
including the number of documents, sections, paragraphs,
words, section headers, tables, figures, and equations. Notice
that we considered that 60% of the queries contain plagiarism
cases (W plagiarism), while the rest are not (WO plagia-
rism). Having this variety of queries will ensure that our PD
approach is able to avoid false detections in plagiarism-free
queries, which is another important aim of any plagiarism
detection approach.

Table 4 shows the details of inserted plagiarism cases into
the queries.About 60% of the constructed cases were lightly,
heavily, ormoderately obfuscated. The cases include not only
verbatim plagiarism, but also semantically equivalent types

10http://w-shadow.com/blog/2008/04/12/simple-text-Summariser-in-php/
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FIG. 8. Annotation example.

TABLE 3. Details of constructed dataset.

Structural components

Type % Ratio Publications Generic classes Header Para. Word Table Fig Eq List

Source publications 52 8,657 47,008 53,812 162,591 382,347,73 12,022 47,396 57,479 14,129
Queries w/plagiarism 25 3,955 23,006 25,731 84,439 208,138,95 8,986 17,203 20,302 5,982

w/o plagiarism 23 2,800 14,202 17,853 49,814 125,440,84 6,537 11,343 12,616 4,969
Total 15,412 84,216 97,396 296,844 71,592,752 27,545 75,942 90,397 25,080

TABLE 4. Details of inserted plagiarism cases.

Practice # Cases % Obfuscation # Cases %

Verbatim 7648 42 None 7648 42
Restructuring 3686 20 Light 3622 20
Paraphrasing 3375 19 Moderate 3464 19
Summarizing 3438 19 Heavy 3413 19

Length # Cases % Citation evidence # Cases %

Short 4537 25 Without ε 18147 –
Moderate 10888 60 Source 6581 9
Long 2722 15 No source 66532 91

Total cases: 18,147 Total evidences: 73,113

of plagiarism that were constructed by the synthesizer with
comparable percentages. By comparing the length of each
plagiarism case to the length of its source document, the
length of cases are short (e.g., few sentences) if the case is less
than 20% of the source document, moderate if it is between
20–80%, and long (i.e., near duplicate) if it constitutes more
than 80% of the source document.As can be seen in the table,
about 25% of the plagiarism cases are short, 60% are moder-
ate, and 15% are long. Finally, we look at cases with citation
evidence ε against those without citation evidence as fol-
lows. First, we presume that all plagiarism cases constructed
by our plagiarism synthesizer do not include proper cita-
tion evidence, i.e., we do not add a marker that indicates the
source article. Second, we consider original contents in the
queries (suspicious publications) that have citation evidence,
and their source publications happen to be in the collec-
tion. Third, we consider original contents with proper citation
evidence, but source publications are not present in the col-
lection. Table 4 shows that the first consideration referred to
as “without ε” includes 18,147 cases, while the total citations

in the second and third considerations are 73,113 in our
queries. A small percentage (9%) of the citation evidence
has its “source” publications in the collection; the rest have
“no source” article in our collection.

Baselines

To evaluate the impact of using the proposed approach on
the plagiarism retrieval and similarity index, we implemented
two baselines that are based on flat document representation.

The first baseline is a method of document fingerprinting
(or shingling) and Jaccard similarity for CR stage, which
we implemented in a previous work (Alzahrani & Salim,
2010). This baseline, which we referred to as FLAT-SHING
in our experiments, has been applied widely in plagia-
rism detection research (Kasprzak et al., 2009; Manning,
Raghavan, & Schütze, 2008; Scherbinin & Butakov, 2009;
Schleimer et al., 2003).We implemented a k-shingle (or word
k-gram) document representation scheme, and computed a
Jaccard coefficient to obtain a list of candidate publications

FIG. 8. Annotation example. [Color fi gure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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for a query article q, as follows:

Sim(A, q) = |ShinglesA ∩ Shinglesq|
|ShinglesA ∪ Shinglesq| (24)

The second baseline uses typical TF-IDF weighting as
stated previously in Equation 15, and Cosine coefficient
shown in Equation 18 to find similar publications. Because
the approach is a modification of this baseline, typical TF-
IDF weighting versus structural TF-IDF weighting schemes
of scientific publications can be clearly compared using this
setting.We referred to the second baseline as FLAT-TFIDF in
our experiments, in contrast to the proposed STRUC-TFIDF
shown by Equations 16, 17, and 18.

In both baselines, we adopted three string matching
schemes for PD from the literature namely word 5-gram
(Kasprzak et al., 2009), word 8-gram (Basile et al., 2009)
with 3-word overlapping, and sentence-to-sentencematching
(Alzahrani & Salim, 2010). These comparison schemes have
been commonly used in existing plagiarism detectors, and
have yielded good results. In our experiments, we referred to
these methods as W5G, W8G, and S2S, respectively.

Parameters Set-Up

Part of our experimental work explores structural weight-
ing of low-component generic classes using the flow measure
according to Equation 14. We conducted a qualitative study
to investigate the influence (or importance) of different parts
in scientific publications. We focused on the parts that have
very few components and hence classified as low-component
generic classes. A questionnaire was distributed via the post-
graduates’mailing list which includesmore than 200 e-mails,
at the Faculty of Computer Science and Information Sys-
tems, University of Technology Malaysia. The questionnaire
included a list of 15 titles of scientific publications taken
from our dataset, and three simple instructions that ask vol-
unteers to choose one of the publications, read its content
(all publications are attached in the e-mail), and indicate the
significance/importance/influence of the following parts in
the selected article: {Title, Author data, Keywords, Abstract,
Introduction, Conclusion, Copyrights, References}. If some
volunteers were willing to contribute, but none of the papers
suited their research interests, they could contact us to request
another article. The respondents could choose one of the
options—Important, Moderate, and Poor—to indicate the
influence of each part in the selected article. Seven volun-
teers responded to the questionnaire; we found this sample
was sufficient to reflect the impression of different compo-
nents of selected publications on a variety of readers. The
majority of the respondents reported the same impressions.
We conducted follow-up questions for some volunteers that
have reported answers different from the others. For instance,
one volunteer reported that {Author data} has Important
impact, but when we asked about the reasons, the volunteer
replied that the author’s data may help to search for more
related publications by the same author. The main findings
of this qualitative study show that the following parts {Title,

Abstract} have Important influence on all the respondents,
{Conclusion} have also Important influence on the majority,
{Introduction, Keywords} haveModerate significance, while
{Author data, Copyrights, References} have Poor influence
on the majority of the respondents. Therefore, we use these
findings as a basis to compute the flow measure.

In FLAT-SHING baseline, we initialized k to 3 to indicate
publications that share considerable k−shingles as similar.
After computing the similarity based on Equation 24, we
needed to set a threshold such that publications with Jaccard
similarity above this threshold are retrieved as candidates.
We conducted an ad hoc experiment on 15% of the queries
(i.e., 1013 publications) chosen randomly, and varied thresh-
old values from 0 to 2 with 0.05 incremental step. In each
time, a threshold value was used to select candidates. The
optimal precision at the optimal recall was obtained at point
0.85. Higher threshold values result in better precision, but
at the expense of lower recall due to the increase of false-
negatives (FN). On the other hand, lower than 0.85 threshold
values yield better recall, but at the expense of decreasing
precision.We also manually checked some publications with
similarity below 0.85, and we could see that they had either
none or very few similar phrases, while those with similarity
above this value had between 1 and 16 candidates.

Similarly, in FLAT-TFIDF baseline, we conducted an ad
hoc experiment to set a threshold for candidate publica-
tions that satisfy the condition Sim(A,q)≥ thresholdwhereby
Sim(A,q)was calculated from Equation 18.We used the same
queries and assigned threshold values from0 to 1 incremented
by 0.02 at each run. We found that the optimal value of the
threshold in this baseline was 0.92, because values below
0.92 resulted in decreasing the number of true-positives
(TP), while values above increased the false-negatives (FN).
More interesting, using the threshold in both baselines allows
the assumption that the number of candidates of each q is
dynamic and may be small, which saves computation time,
in contrast to having a fixed number of candidates to each q.
Notice that a query q with no candidates means that it may
not contain plagiarism at all.

Unlike previous settings, using the thresholdwithSTRUC-
TFIDF could be inappropriate because term weights vary
based on component weights, as stated by Equations 16 and
17, which may cause significant changes in the calculation
of Sim(A,q) in Equation 18. Therefore, all publications that
gain similarity above zero are considered.

Evaluation Measures

To evaluate the CR stage of the proposed approach, we
used the Fharmonic measure that defines the harmonic mean
of two complementary measures known as Precision (P) and
Recall (R), as follows:

Fharmonic = 2
P × R

P + R
, where P = TP

TP + FP
and

R = TP

TP + FN
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where TP refers to true-positives (i.e., the number of candi-
date documents retrieved as candidate), FP refers to false-
positives (i.e., the number of documents retrieved as candi-
date but they are not), and FN refers to false-negatives (i.e.,
the number of candidate documents that are not retrieved).
In the experimental work, we used micro-averaged Precision
(Pmicro) and Recall (Rmicro), as follows:

Pmicro =
∑

q∈Q TP(q)∑
q∈Q TP(q) + ∑

q∈Q FP(q)
and

Rmicro =
∑

q∈Q TP(q)∑
q∈Q TP(q) + ∑

q∈Q FN(q)
(25)

whereQ is the set of queries (suspicious publications that we
used to insert plagiarism).

On the other hand, we used micro-averaged Precision
(Pplag), Recall (Rplag), Fharmonic, andGranularity (Gplag) to
evaluate PD results (Potthast et al., 2010). We presumed that
each plagiarism case (denoted as ρ previously) is bounded
by a start word and an end word in the source article and the
query (suspicious) article, as shown in the annotation exam-
ple of Figure 8. Therefore, Pplag and Rplag can be calculated
as follows:

Pplag =
∑

q∈Q

∑
ρ∈q TP(ρ)∑

q∈Q

∑
ρ∈q TP(ρ) + ∑

q∈Q

∑
ρ∈q FP(ρ)

and

Rplag =
∑

q∈Q

∑
ρ∈q TP(ρ)∑

q∈Q

∑
ρ∈q TP(ρ) + ∑

q∈Q

∑
ρ∈q FN(ρ)

(26)

where
∑

ρ∈q TP(ρ) is the number of correct plagiarism cases
as defined in q’s annotation file, and

∑
ρ∈q FP(ρ) is the

number of wrong plagiarism cases (or cases detected as pla-
giarism but are not defined in q’s annotation file). Besides,
detection granularity, Gplag of ρ indicates the ability of the
detection algorithm to detect that case at once (Potthast et al.,
2010). For example, in PD methods that compare statements
or n-grams, the detected similar statements or n-grams should
be combined as paragraphs or larger segments to ignore small
detections (few n-grams that do not constitute much of the
text), and to display coherent plagiarism cases to the end users
of PD systems. In the proposed approach, we use component-
based comparison; hence, granularity can measure the ability
of PD to combine subsequent components into sections. We
simplify the mathematical computation of Gplag as follows:

Gplag = Nρdetected : ρdetected ⊆ ρannotated

Nρannotated

(27)

where Nρdetected denotes the number of detected plagiarism
cases that are TP, i.e., intersects (partially or totally) with
one of the plagiarism cases annotated in q’s annotation file,
and Nρannotated is the total number of annotated plagiarism
cases in q. Finally, PD evaluation measures are combined
into a single score called Scoreplag, that allows us to compare
different PD methods (Potthast et al., 2010) as follows:

Scoreplag = Fharmonic

log2(1 + Gplag)
(28)

Statistical Analysis

Before statistical analysis, the results were first obtained
using k-fold cross-validation rather than leave-one-out cross-
validation because the latter is much more time-expensive;
especially with more than 18,000 plagiarism samples con-
tained in the dataset. A stratified 10-fold cross-validation
was performed in three stages of this study: component-
weight factors comparison, candidate retrieval, and pla-
giarism screening. The dataset contains two parts: source
publications and suspicious publications (i.e., documents
under investigation). The suspicious publications part was
equally stratified before the cross-validation was performed,
whereas the source publications part was kept for compari-
son with each fold. In this setting, we obtained 10 folds with
equal number of documents and equivalent number of plagia-
rism cases as well as plagiarism-free documents.We repeated
the experiment 10 times. Each time, we fine-tuned the algo-
rithm on 9 folds such that better precision and recall could
be obtained, while the remaining fold was used to report the
final results. The same folds were used across all CR and PD
algorithms.

The final performance of the component-factor com-
parison and candidate retrieval (i.e., first two stages) was
generally assessed by precision, recall, and F -measure—
averaged over the 10 folds—on ground-truth annotated data
(see the Dataset section for more details), and by compari-
son with two previous baselines (see the Baselines section).
Further, the performance of plagiarism screening (i.e., the
third stage) was evaluated on a ground-truth annotated data
using averaged precision, recall, F -measure, and granular-
ity over the 10 folds. Plagiarism detection measures were
furthermore combined into a single metric called Scoreplag

shown in Equation 28, and compared with three plagiarism
detection methods proposed in the literature (see Baselines
section).

We examined the statistical significance of the proposed
approach using t hypothesis testing as follows. We set a null
hypothesis—flat-based CR and structural-based CR perform
equally (i.e., the true mean difference is zero)—and worked
to gather evidence against this null hypothesis. Because
cross-validation yielded 10-fold pairs of Fharmonic results
during the flat-based and structural-based CR algorithms,
a paired-t-test (Leech, Barrett, & Morgan, 2008) was used
to reject/do not reject the null hypothesis. Similarly, flat-
based PD and structural-based PD yielded 10-fold pairs of
Scoreplag; therefore, a paired-t-test can be used to test the null
hypothesis—flat-based PD and structural-based PD have no
significant difference.

To carry out a paired-t-test on k-fold cross-validation
results (k = 10), we calculated the difference in the results
obtained from each algorithm in each fold as di = xi − yi,
where i = 1, 2, . . . , k. In the CR stage, xi refers to Fharmonic

value obtained from the flat-based algorithm on the ith fold,
and yi refers to Fharmonic value obtained from the structural-
based algorithm on the ith fold. In the PD stage, xi refers to
Scoreplag value obtained from the flat-based PD algorithm
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TABLE 5. Results from proposed component-weight factors organized into five categories; IGF-based, spread-based, depth-based, combined and
qualitative.

Structural factors Pmicro Rmicro Fharmonic SD

IGF-based
f1 0.3760 0.2541 0.3002 0.0386 (0.0141)
f2 0.3374 0.0815 0.1298 0.0450 (0.0836)

Spread-based
f3 0.4006 0.9288 0.5596 0.0150 (0.0198)
f4 0.3914 0.9533 0.5548 0.0125 (0.0185)

Depth-based
f7 0.4057 0.8701 0.5531 0.0166 (0.0080)
f8 0.4007 0.8913 0.5527 0.0119 (0.0179)

Combined
f5 0.3802 0.2449 0.2940 0.0481 (0.0156)
f6 0.3405 0.0821 0.1308 0.0448 (0.0830)
f9 0.4115 0.6973 0.5163 0.0310 (0.0095)
f10 0.4053 0.7656 0.5297 0.0246 (0.0123)

Qualitative
flow 0.3949 0.6371 0.4868 0.0192 (0.0046)

Note. The first three columns give the mean precision, mean recall and mean F -measure over all folds. The last column shows the standard deviation over
10 runs of cross-validation in each component-weight factor, as well as the standard deviation of the means over all component-weight factors, in parentheses.

on the ith fold, and yi refers to the Scoreplag value obtained
from the proposed PD algorithm on the ith fold. Then, we
computed the mean difference d = (

∑k
i=1 di)/k, and used

that to determine the standard deviation of the mean dif-

ferences across the k folds α =
√∑k

i=1 (di − d)2/(k − 1).

We used α to compute the standard error SE(d) = α/
√

k, and
the t-statistic T = d/SE(d), which under the null hypothesis,
follows a normal distribution with k − 1 degrees of freedom.
Using the Student’s t distribution table11, we compared T to
the tk−1 distribution to obtain the probability p-value, which
answers the alternative hypothesis—structural-based algo-
rithms make significant changes in comparison to flat-based
algorithms.

Before we conduct a paired-t-test for CR and PDmethods,
it is important to compare different component-weight factors
proposed in this study. For this purpose, we used a statisti-
cal test called an analysis of variance (ANOVA; Leech et al.,
2008), which generalizes the t-test in a way that examines
whether or not the means of several algorithms are equiva-
lent (paired-t-test compares two algorithms). Therefore, we
set a null hypothesis that “All component-weight factors f1,
f2, . . . , f10, and flow perform equally,” and work to gather
evidence towards the alternative hypothesis—At least one of
the means of the component-weight factors is significantly
different.

Results and Discussion

This section demonstrates the results obtained from dif-
ferent structural-based and flat-based algorithms. In the first
subsection, we present the results obtained from differ-
ent component-weight factors proposed in this article. In
the second subsection, we show the results obtained from the

11http://www.statsoft.com/textbook/distribution-tables/#t

structural CR approach denoted as STRUC-TFIDF, and com-
pare them with the results obtained from typical flat-based
CR baselines denoted as FLAT-SHING and FLAT-TFIDF.
We discuss the results from the proposed component-based
overlappingmeasure in PD stage referred to as STRUC-C2C,
and compare them with three PD methods from the literature
denoted asFLATW5G,W8G, andS2S in the third subsection.

Comparing Component-Weight Factors

First we aimed to define the effects of different structural
component-weight factors on the retrieval of candidate pub-
lications. In this regard, 10 component-weight factors as well
as the flow factor were compared and evaluated on a fraction
of the dataset. Factors that show good retrieval results will
be considered for the whole dataset in the remaining experi-
ments. For this purpose, we used the same query publications
(15% of the total queries) that were used previously to setup
different parameters for the baselines.

Table 5 presents the results obtained when we ran the CR
stage using the modified term weighting algorithm stated by
Equations 16–18. For each factor, 10-fold cross-validation
data was used for testing, and the means and standard devia-
tions are reported in the table. The results are assessed using
precision, recall, and F -measure averaged over the 10 folds.
The first important observation is that Spread-based, Depth-
based factors and their combinations yielded superior results,
especially recall, to IGF-based factors.We also found that the
proposed qualitative factor denoted as flow was significantly
effective compared with the results obtained from typical
IGF-based factors.

Figure 9 demonstrates precision-recall curves displayed
for one factor from each category (a), for combined factors
(b), and for all factors (c). Unlike recall, precision results (i.e.,
the ability of the method to avoid false-positives) are obvi-
ously comparable (<0.5) in all component-weight factors.
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FIG. 9. Precision-recall curve for proposed component-weight factors. (a) A component-weight factor is chosen from each category; (b) combined
component-weight factors; (c) all component-weight factors. [Color figure can be viewed in the online version, which is available at wileyonlinelibrary.com.]

In fact, we consider all source publications annotated as
“sourceFile” in the annotationfiles as true-positives and false-
positives, which enables us to avoid manual judgment as
“relevant” or “nonrelevant” as in typical IR systems. How-
ever, two scenarios may cause such comparable, somewhat
low precision in the retrieval results. The first scenario is
that many publications share global similarity (i.e., true-
positive) with the query, but do not contain plagiarism, and
may be retrieved during this stage. The second scenario is that
there are about 6,581 texts (see Table 4) taken from different
source publications, but cited properly (i.e., with citation evi-
dence) and more likely to be retrieved at this stage. Similar
texts, but with proper citation evidence and publications that
share global similarity, but do not contain plagiarism are not
bounded by the annotation files, and are considered as false-
positives at this stage. Nonetheless, documents that bypass
the CR stage, but do not contain plagiarism are very likely to
be thwarted during the next stage because the PD algorithm
is designed to flag parts that have only true plagiarism cases.

Table 5 also shows that the standard deviation for each
component-weight factor over 10 runs of cross-validation is
relatively small, which apparently means that there is a slight
variance between the results gained from each fold. This
indicates that the dataset used for this experiment is equally
stratified and the algorithm behaves in a similar way over
the 10 runs. On the other hand, the standard deviation of the
means over all component-weight factors, shown in paren-
theses, indicates the performance variance among different
component-weight factors. The highest standard deviation
indicates that the results may possibly be unreliable, as it is
the casewith f2 and f6, while the lowestmean over all factors
occurs with flow, f7, and f9, respectively.

We used the simplest form of ANOVA to verify whether
or not there exists a significant difference between the means
of the component-weight factors (see last paragraph in the
StatisticalAnalysis section).We applied a “conservative test”
that was not likely to reject the hypothesis, as the results are
shown partly12 in Table 6. As can be seen, the ANOVA test
reveals a statistical difference for each factor. We conclude

12Please e-mail Dr. Alzahrani to obtain the full list of ANOVA results.

that Spread-based factors, which incorporate structural fre-
quency information of index terms within the components,
and Depth-based factors, which investigate the normalized
term frequency within the generic classes, are significantly
different from IGF-based factors. More precisely, the per-
formance of IGF-based factors (and their combinations) are
slightly worse compared to others. On the other hand, the
ANOVA fails most of the time to reveal a statistically reli-
able difference between the means of Depth-based factors
and Spread-based factors. There is no evidence whichDepth-
based, Spread-based, or combined factor performs the best
[other nonparametric tests, such as Kruskal-Wallis (Kruskal
& Wallis, 1952) may be used]. For simplicity, factors that
have stable performance (i.e., least standard deviations) of
the means over all component-weight factors are considered
in the remaining experiments. The selected factors include
f7, f9, and flow.

Comparing Structural and Flat CR

We next explored the structural-based retrieval approach
denoted as STRUC-TFIDF, and compared it with typical
flat-based retrieval baselines denoted as FLAT-SHING and
FLAT-TFIDF, respectively. Table 7 presents the mean preci-
sion, recall, andFharmonic, and the standard deviation obtained
from 10-fold cross-validation data. Because the CR stage
focuses on the retrieval of a candidate pool that possibly
contains the sources of plagiarism, recall results get more
attention in this stage.Aswe can see in the table, recall results
suggest that STRUC-TFIDFwith selected component-weight
factors was consistently superior to both flat baselines. The
highest recall was obtained with the f7 factor. However,
the precision of STRUC-TFIDF was less than in FLAT-
SHING and comparable with FLAT-TFIDF. We explained
two possible scenarios in the previous section that may cause
documents to be retrieved when they have global similar-
ity with the query document, but with no evidence of the
occurrence of plagiarism.

Table 8 presents the statistical results of a paired-t-test
wherein we set a null hypothesis that FLAT-SHING and
STRUC-TFIDF perform equally. Table 9 shows the statistical
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TABLE 6. Statistical results fromANOVA parametric test for different component-weight factors.

Test critical value = 17.87035467 Decision CI for difference between factors

Test statistics for f1 VS f9 253.0382881 Reject Ho 0.1685 To 0.2904
Test statistics for f2 VS f9 768.3699832 Reject Ho 0.3389 To 0.4608
Test statistics for f3 VS f9 4.292587601 Do not reject Ho −0.0311 To 0.0909
Test statistics for f4 VS f9 266.9650333 Reject Ho 0.1747 To 0.2967
Test statistics for f5 VS f9 764.5747512 Reject Ho 0.3379 To 0.4598
Test statistics for f6 VS f9 2.646130141 Do not reject Ho −0.0375 To 0.0844
Test statistics for f7 VS f9 2.546652093 Do not reject Ho −0.0380 To 0.0840
Test statistics for f8 VS f9 0.857092199 Do not reject Ho −0.0476 To 0.0743
Test statistics for f9 VS f10 8.817925903 Do not reject Ho −0.0181 To 0.1038
. . . . . .

Hypothesis = Means of all component-weight factors are equal
Alternative hypothesis = At least one mean is significantly different
Alpha level= 0.05 df = 9
Total mean= 0.405306043 Final decision:
F Test statistic = 295.2802436 reject hypothesis
Critical F Value = 1.985594964
P Value = 8.58017E-63

Note. CI=Confidence interval. The top part shows the t-critical value, t statistics for f10 with other component-weight factors, and the decision taken
is either to reject the hypothesis if t-statistic > t-critical, or do not reject; otherwise. The last column shows the confidence interval (C.I.) between different
pairs of factors. All other factors are compared similarly but not shown due to space limitations. The bottom part of the table summarizes the ANOVA test
statistics between 11 component-weight factors wherein F -statistic is greater than the F -critical with 9 degrees of freedom.

TABLE 7. Results from CR using FLAT-SHING and FLAT-TFIDF baselines, and proposed STRUC-TFIDF with three component-weight factors.

CR Pmicro Rmicro Fharmonic SD

FLAT-SHING 0.5660 0.6492 0.5992 0.0345 (0.0059)
FLAT-TFIDF 0.3707 0.5948 0.4541 0.0459 (0.0047)
STRUC-TFIDF

f7 0.3949 0.8807 0.5450 0.0139 (0.0005)
f9 0.3980 0.7641 0.5232 0.0149 (0.0000)
flow 0.3887 0.6663 0.4908 0.0171 (0.0010)

Note. The first three columns show the mean precision, mean recall and mean F -measure over all folds. The last column gives standard deviation over 10
runs of cross-validation in each algorithm, as well as standard deviation of the means over all CR methods, in parentheses.

TABLE 8. Statistical results from paired t-test of FLAT-SHING CR and STRUC-TFIDF CR.

Hypothesis Test for the difference of two means: dependent sample (Paired t-test)

Statistics Two-tailed test FLAT-SHING STRUC-TFIDF Difference

Hypothesis = FLAT-SHING=STRUC-TFIDF 0.5868 0.5552 0.03154
Alternative hypothesis = FLAT-SHING �= STRUC-TFIDF 0.6078 0.5546 0.05315
Alpha level = 0.05 0.6267 0.5406 0.08609
Mean differences = 0.0542 0.6020 0.5628 0.03922
SD = 0.0426 0.5996 0.5378 0.06187
Sample size = 10 0.6057 0.5492 0.05654
Test t statistic = 4.0219 0.6328 0.5392 0.09358
t-Critical value = ±2.2622 0.6119 0.5354 0.07648
P-Value = 0.0030 0.6100 0.5164 0.09362
Decision = Reject hypothesis 0.5082 0.5585 −0.05026
Confidence interval for paired difference:
Confidence level = 0.95
Confidence interval = 0.0237< μd <0.08466
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TABLE 9. Statistical results from paired t-test of FLAT-TFIDF CR and STRUC-TFIDF CR.

Hypothesis Test for the difference of two means: dependent sample (Paired t-test)

Statistics Two-tailed test FLAT-TFIDF STRUC-TFIDF Difference

Hypothesis = FLAT-TFIDF= STRUC-TFIDF 0.4514 0.5552 −0.1038
Alternative hypothesis = FLAT-TFIDF �= STRUC-TFIDF 0.4299 0.5546 −0.1248
Alpha level = 0.05 0.4369 0.5406 −0.1037
Mean differences= −0.0909 0.4346 0.5628 −0.1281
SD = 0.0431 0.4483 0.5378 −0.0894
Sample size = 10 0.4414 0.5492 −0.1078
Test t statistic = 6.6770 0.4477 0.5392 −0.0914
t-Critical value = ±2.2622 0.4336 0.5354 −0.1018
P-Value = 0.0001 0.4337 0.5164 −0.0827
Decision = Reject hypothesis 0.5831 0.5585 0.02461
Confidence interval for paired difference:
Confidence level = 0.95
Confidence Interval = −0.1217 < μd < −0.06011

TABLE 10. Results for PD using W5G, W8G, S2S in both baselines, and proposed STRUC-C2C with three selected component-weight factors and two
candidate selection strategies.

CR PD Pplag Rplag Gplag Scoreplag SD

FLAT-SHING W5G 0.8178 0.3792 1.6770 0.3672 0.1507 (0.0542)
W8G 0.8109 0.4203 1.7071 0.3907 0.1930 (0.0740)
S2S 0.7261 0.5490 3.1420 0.3114 0.2810 (0.0335)

FLAT-TFIDF W5G 0.8171 0.3965 1.6959 0.3733 0.1281 (0.0300)
W8G 0.8284 0.4152 1.8188 0.3766 0.2752 (0.0625)
S2S 0.7212 0.5793 3.2061 0.3130 0.4619 (0.0462)

STRUC-TFIDF C2C –f7 0.8633 0.6125 1.0664 0.6821 0.0140 (0.0217)
(Same-factor selection) C2C –f9 0.8666 0.6145 1.0644 0.6855 0.0154 (0.0308)

C2C –flow 0.8668 0.6387 1.1169 0.6740 0.1186 (0.0196)
STRUC-TFIDF C2C –f7 0.8664 0.6426 1.1161 0.6789 0.1352 (0.0567)
(Optimum-factor selection) C2C –f9 0.8663 0.6424 1.0620 0.6996 0.0125 (0.0600)

C2C –flow 0.8663 0.6424 1.1751 0.6598 0.2501 (0.0363)

Note. The first four columns give the mean precision, recall, granularity and score of plagiarism over all folds. The last column shows the standard
deviation over 10 runs of cross-validation in each approach, as well as the standard deviation of the means over all approaches, in parentheses.

results of the same test runs over paired samples in FLAT-
TFIDF and STRUC-TFIDF. Notice that we choose STRUC-
TFIDF with f7 to run both statistical tests. We conclude
from both tables that a paired-t-test reveals a statistically reli-
able difference (i.e., rejecting the null hypothesis) between
the mean F -measure in structural-based CR method and
flat-based CR methods. Therefore, different structures of
scientific publications could make significant changes into
terms weighting according to which components the term
has occurred.

Results for Plagiarism Screening

This section covers the experimental work that we car-
ried out during the PD stage. A component-based over-
lapping approach with the “significance” factor � denoted
as STRUC-C2C was implemented based on Equation 19,
and compared with flat PD methods referred to as W5G,
W8G, and S2S. Results are assessed using precision, which

indicates the ability of the plagiarism system to avoid false
detections, and recall, which refers to the ability of the algo-
rithm to reveal different plagiarism instances. Table 10 shows
the averaged precision, recall, granularity, and Scoreplag

obtained from the 10-fold cross-validation data using differ-
ent PD methods. The results are discussed in the following
paragraphs.

Flat-based PDmethods obtained positive precision results.
This is not a surprising outcome because we know that
these methods have been widely implemented in PD research
(Alzahrani et al., 2011), and have obtained good detec-
tion results principally for “cut and paste” plagiarism
(Barrón-Cedeño, Basile, Degli Esposti, & Rosso, 2010;
Barrón-Cedeño & Rosso, 2009). W5G and W8G obtained
slightly better results than S2S, which means that n-
gram-based methods have more of a chance to catch
plagiarism when it is committed by combining/splitting
sentences/phrases than in statement-by-statement methods.
Recall results indicate thatW5G,W8G, and S2S were able to
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TABLE 11. Statistical results from paired t-test of FLAT-TFIDF (W5G) PD and STRUC-TFIDF (C2C-f7) PD in the optimum-factor selection strategy.

Hypothesis test for the difference of two means: dependent sample (Paired t-test)

Statistics Two-tailed test FLAT-TFIDF (W5G) STRUC-TFIDF (C2C-f7) Difference

Hypothesis = FLAT-TFIDF (W5G)=STRUC-TFIDF (C2C-f7) 0.3749 0.6451 −0.2703
Alternative hypothesis = FLAT-TFIDF (W5G) �=STRUC-TFIDF (C2C-f7) 0.3761 0.6717 −0.2956
Alpha level = 0.05 0.3598 0.6814 −0.3215
Mean differences= 0.0542 0.3440 0.6817 −0.3377
SD = 0.0426 0.3613 0.6723 −0.3110
Sample size = 10 0.3559 0.6721 −0.3162
Test t statistic = 4.0219 0.3828 0.6739 −0.2911
t-Critical value = ±2.2622 0.3757 0.6911 −0.3154
P-Value = 0.0030 0.3516 0.7072 −0.3556
Decision = Reject hypothesis 0.4510 0.7244 −0.2733
Confidence Interval for paired difference:
Confidence level = 0.95
Confidence Interval = −0.1217 < μd < −0.06011

detect 30–50% of the annotated plagiarism cases. It corrobo-
rates that such methods are not designed to detect obfuscated
plagiarism cases as discussed in the literature (Alzahrani
et al., 2011).

Structural PD methods, on the other hand, obtained pos-
itive results. It is important to specify a candidate pool
from available candidate sets that were obtained with three
component-weight factors. We proposed two strategies to
select a candidate set before applying the STRUC-C2C PD
approach, which in turn, was implemented using four chosen
component-weight factors. The first strategy is called same-
factor selection, which proposes the use of the candidates
list obtained from the same factor fx that will be used with
STRUC-C2C. The other strategy is called optimum-factor
selection, which makes use of the factor that “recall” the
majority of candidates. The optimum factor was obtained by
f7 (see Table 7).

Table 10 shows that the results from both selection
strategies are comparable. An important observation is that
Scoreplag results from STRUC-C2C are in general better than
flat-based methods because of higher precision and recall,
and near-optimal granularity gained by this method. Superior
precision and recall results in the proposed STRUC-C2C PD
approach may be because (a) weighting of structural com-
ponents in scientific publications helps to avoid parts that
are not important to the detection algorithm such as copy-
rights, acknowledgments, and introductory sentences that
are acceptable to be redundant between papers (Figure 1
exemplifies such texts in the early parts of this paper); (b)
using citation evidence in the PD algorithm dismisses texts
with proper citation evidence from the results; and (c) we
used the rich candidate pool obtained from structural-based
CR stage rather than the one obtained from flat-based CR.
On the other hand, the near-optimal granularity in our
proposed method might be related to the comparison of
components rather than n-grams or sentences. To illustrate,
we compare structural components and if two components
acheive high overlapping scores, the plagiarism is bounded

and recorded at once. W5G, W8G, and S2S methods, how-
ever, compare smaller pieces of texts and they need extra post-
processing steps to combine adjacent n-grams or sentences
into paragraphs, for example.

To prove that our results from structural PD methods
are statistically significant compared with flat PD methods,
we used a paired-t-test to compare the Scoreplag obtained
from 10-fold cross-validation runs. We compared STRUC-
TFIDF (C2C-f7) PD in the optimum-factor selection strategy
with the FLAT-TFIDF (W5G) PD approach as shown in
Table 11. Statistical results from a two-tailed test showed
that the alternative hypothesis, i.e., there is a significant dif-
ference between the two approaches, is true. The C2C-f7 PD
approach obtained significant results in comparison with the
W5G PD approach: a t-statistic= 4.02, t-critical= ±2.2622,
and p = 0.003 with confidence level = 0.95 and 9 degrees of
freedom.

A Case Study

An empirical case study of the system’s response well
illustrates significant plagiarism screening and the structural
similarity index. Figure 10 simulates part of the detection
results for a query publication chosen from our dataset.
Such results may also be obtained from existing antiplagia-
rism tools such as Turnitin, Docoloc, and CrossCheck. It is
important to note that marked plagiarism cases were inserted
as dummy text, and they do not reflect the real text within that
article. As the figure shows, OSI is relatively high because
it includes all sequences of matching words even though
the journal’s copyrights and cited texts should not be high-
lighted as plagiarism. Moreover, cases are marked according
to their appearance in the article under investigation; the user
determines the seriousness of the plagiarism.

Unlike the “crude” checking model, Figure 11 visualizes
plagiarism for the same article, but incorporates structural
information and citation evidence into the results. The pro-
posed framework pinpoints cases that are significant to a
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FIG. 10. Plagiarism visual screening results using traditional word n-grammatchingmethods, and their effects on similarity index (SI), and overall similarity
index (OSI). [Color figure can be viewed in the online version, which is available at wileyonlinelibrary.com.]

FIG. 11. Plagiarism visual screening results using component-based structural weighting methods and their effects on similarity index (SI) and overall
similarity index (OSI), highlighting the significant cases within different components and structural similarity index (SSI). [Color figure can be viewed in the
online version, which is available at wileyonlinelibrary.com.]
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decision maker. Structural component-weight factors have
influenced the conclusion about plagiarism such that some
cases of little importance are suppressed, while significant
cases are ranked and displayed accordingly. For instance, a
plagiarism case in the Abstract was given a significance of
0.93 using a Depth-based factor in contrast to other cases in
the Introduction. Further, using citation evidence for quoted
and paraphrased texts (shown in green color) makes the com-
putation of OSI more realistic based on real and significant
plagiarism cases than in flat-based PD.

Moreover, the SSI in Figure 11 illustrates the amount of the
work that is taken from other sources without acknowledg-
ment. The difference between OSI and SSI is that the former
works based on a word-matching count, whereas the latter
is based on structural components that have been found to
be plagiarized (in full or in part) from other sources. It also
indicates that 19% of the semantic parts that constitute the
article were taken from elsewhere; the quality of the work
can thus be judged accordingly.

Conclusions and Future Work

Current plagiarism detectors are text-matching systems
that do not determine plagiarism precisely. These detectors
may yield a high similarity index for a submitted article
because every matching, but not necessarily plagiarized text
is included in the calculation of SI and OSI. Text that is
acceptably redundant and text that is cited properly are all
incorporated into the SI, and the final determination of pla-
giarism is left up to the user. Higher values of SI and OSI,
however, may indicate unexpected false detections. There-
fore, the approach presented in this article seeks to develop
similarity indices to reflect true plagiarism cases and to fil-
ter out parts with proper citation evidence. The proposed
approach reduces the human input in validating the detec-
tion results, and gives more trust to a plagiarism detector.
Our results show that using structural information influ-
ences the performance of plagiarism detection by (a) better
retrieval of candidate publications than near-duplicate and
TFIDF retrieval methods; (b) better precision, recall, and
granularity of plagiarism detection results than flat-based
PD techniques; and (c) marking the degree of significance
and ranking significant cases in different structural compo-
nents accordingly. Our future work will include combining
structural information and semantic-based PDmethods to go
beyond “component” plagiarism as there are other types of
plagiarismwith different semantic variations (e.g., plagiarism
by paraphrasing a text or summarizing an idea).
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