Neural Network-Based Control by Inverting Neural Models

Vasile PALADE, Gheorghe PUSCASU, Daniel-Ciprian NEAGU

Department of Applied Informatics, "Dunarea de Jos" University of Galati,
Str. Domneasca Nr. 47, 6200 Galati, Romania, Fax: (40) 36 461353,
E-mail: pvasile@cs.ugal.ro; gpuscasu@ac.ugal.ro; dneagu@cs.ugal.ro

Abstract: The success of the use of neural networks in control problems is based on the capabilities of
the neural networks to cope with three main difficulties in control: complexity, nonlinearity and
uncertainty. First, this paper presents the most common schemes of control which incorporate neural
network techniques, and makes some considerations on these neural control structures. Then, it is
proposed a method of inverting a neural network which represents the forward model of a process. The
inverting method can be used in inverse neural control structure and neural model-based control
structures, where an inverse model of the process is required. The method helps the user to determine
the controller output using only the forward neural model, instead of training another neural network
which implements the inverse dynamics of the process. Two case studies were developed in order to

prove the inversion method.

Keywords: neural networks, neural control, inverse model.

1. INTRODUCTION

Neural networks with their inherent parallelism and their
ability to learn, has been seen by many authors in the field
of system controlling, as an exciting possibility to design
adaptive controllers, when the dynamics of the system is
deeply nonlinear, complex or unknown. The main
advantages of the neural networks, which make them an
important tool in order to enhance the capabilities of
conventional controllers and to create robust controllers,
able to better adapt the controller parameters to different
plants and to environmental changes, are:

* neural networks can approximate any linear or
nonlinear mapping between the input and the output
of the system.

e they are able to learn in order to performe this
approximation.

e robustness to partially network destruction,
noise tolerance, and generalization ability to
situations not contained in the training data set.

* computationally fastness once trained.

The problem of capturing the nonlinearity of the process to
be modelled and controlled is to match the nonlinearity of
the process with that of the network, by learning, neural
networks being nonlinear systems themselves. It was shown
in the literature [2][3][4][5]1[6][9] that neural networks can
solve complex and difficult control tasks, where traditional
control methods fails, neural networks being also able to
work in the presence of noise.

The paper is structured as follows. Section 2 presents the
most common neural network-based control structures
from the literature, and discusses some of their aspects and
characteristics. Section 3 proposes a method of inverting a
neural network which represents the forward model of a
process. The inversion method developed in the paper is
the most computationally fast inversion method, optimising
the searching of the network inputs which produce the
desired network output. The calculus required by the
inversion operation can be performed on-line with a regular
computer. In order to test the inversion method, in section
4, two case studies were developed. The first case study is
represented by the problem of controlling the level in a
liquid tank, and the second case study is a DC motor

control problem.
conclusions.

The paper is ending with some

2. NEURAL NETWORK BASED CONTROL
METHODS

The goal of the use of the neural networks in control is to
determine the controller outputs (process inputs), given the
current state of the process to be controlled.

There are four principal aproaches [9] in the use of the
neural networks for control tasks, which can be seen in the
literature:

- direct neural network based control,

- inverse neural network based control,
- model - based control,

- supervisory control.

™

Meural Metarorlk
Controller
+
1
Traditional Process
T E Controller u g

Figure 1. Training a direct neural controller

By direct neural network control, we mean the situation
when the control operation is performed by a neural
network, which replaces the traditional controller in the
general scheme of feedback control. The network will
determine the controller action u that reduces the error

value € (y-Yq), which represents the input in the network.
Before acting as a controller, the network must be trained
with data. One such control method is used in [7]. The
authors trained a network to mimic a traditional controller
(a PID controller for example), the process being
controlled by the traditional controller, as shown in figure
1. The input of the traditional controller is the input in the
network, and the difference between the output of the
traditional controller (control action) and the output of the
network is the error signal used for weights adjustment.
After this learning phase, the neural network will replace
the traditional controller, acting as on-line controller. The
neural controller can be made adaptive if the neural
network will further learn on-line, by weight adjustment, in
order to cope with the drifts in the process.

In the inverse control, the network is trained to learn the
inverse dynamics of the process. In this scheme, the output
of the plant is the input to the neural network, and the
plant's input is the target output of the neural network (see
figure 2). Generally, the network can have as input, the past
(y(k-i)), current (y(k)) and future (y(k+i)) outputs of the
process, as well as the past inputs (u(k-i)), having as the
network output, the current input of the process (u(k)). An
example of creating an inverse model is shown in [3].
Another alternative to the creation of an inverse model of
the process is the inverting of the forward model of the
process [9][5], by searching the necessary inputs of the
forward model that produce the desired outputs. The
forward model of a plant is obtained by training the neural
network with the plant's inputs as inputs in the network,
and with the plant's outputs as outputs of the network.

i

Meural Metwforl
Cont ¥

Process

Figure 2. Training of an inverse neural controller

The model - based control strategies predict the future
output of the process, using a model of that process, and
then try to minimize the error between the model and the
process. Traditionally, it is used a linear model of the
process, with the performance degrading when attempts to
control nonlinear systems. Due to the nonlinear nature of
the neural networks, it is possible to identify good models,
and to integrate these neural models, with better results, in
a general model-based control scheme. Manchanda et al.
[4] introduced neural network models in an IMC (Internal
Model Control) scheme, developed by Garcia and Morari
(see figure 3). They used a model of the process in parallel
with the process, in order to produce the feedback signal to
the controller. The result of incorporating neural networks
into this structure is that the controller must be the inverse
of the model of the process [4][9].

u=Gp e [yg(y-yml

where Gy, is the forward neural model of the process. The
inverse model Gm'1 (the controller) can be learned by
training, or can be obtained by inverting the forward model
G, The forward model can be updated on - line to
improve the modelling performance, which leads, by an
inversion technique, to an updated inverse model, and then
better control performances.

The development of a neural model for a process implies
the collection of a representative set of input - output data
from the process. The most efficient way to create a neural
model for a process is to train the neural network off-line,
while the process is controlled by a traditional controller.
When the difference between the process and the model
decreases sufficiently, the neural model can be integrated
in a model - based control scheme and, eventually, can be
adjusted on-line after that.

Y1
Meural Metararlk Process
e Controller 1 ¥

z

Neyﬂﬁ:dﬂ ;@

(

Figure 3. Internal model control scheme

In supervisory control, one controller (supervisory
controller) sets the parameters of another controller
(subordinate controller), in order to optimize the control
performance. Many authors [8][10] used a neural network
to control the parameters of a traditional controller, such a
PD, PI, or PID controller. Given the error signal and the
current state of the process, the neural network will
compute the parameters K.T,, Tp of the traditional
controller. In this way, the controller becomes adaptive.
The advantage of this structure is that the confidence in the
controller is enhanced, comparatively with other neural
control schemes, in this case the controller being in a more
familiar form. Additionally, a PI controller, for example, is
a robust controller, since it uses a rough model of the
process, represented by its tuning parameters As a result, it
will give better performance when the mismatch between
the process and the model increases, in comparison with
model - based controllers.

Supervisory
Heural Nebanox
¥
d Traditional Process
e Controller u g

Figure 4. Supervisory control

3. THE INVERSION METHOD

As described in section 2, both for inverse neural control
and internal model neural control, the inversion of the
forward model of the process is needed. Two inversion
methods were presented in [9]. This section presents a
more computationally efficient inversion method of a
neural network than previously reported methods in the
literature.

Given a three layered neural network, which represent the
direct model of a process, with q the number of the network
inputs, h the number of hidden nodes, and r the number of
network outputs. Within the q inputs of the network, f
inputs are considered to be fixed inputs (past inputs and
outputs of the process), and we have to determine, by a
searching procedure, the remaining p inputs (p+f=q). Given
the output vector y, we have to find the input vector u
which produces the output y. By u it is denoted the vector
of the p unfixed inputs of the network, and by us the vector
of the f fixed inputs of the network.

We have the following relations:

W x =y (1)

where f is the nonlinear activation function of the network
. X .
nodes, x the output vector of the hidden nodes, Wy is the

weight matrix between hidden layer and output layer, 0 is

the bias vector of the output layer.

X
If Wy is a squared matrix, then it is possible to calculate

the input u:
yxy -1,
x = (W)
X =t 1% - 6"
WY = x- Wi it)

Xu
where W™ is the weight matrix between unfixed inputs
. Xu
and hidden layer, W ~ is the weight matrix between fixed

inputs and hidden layer, GX is the bias vector of the hidden
layer. When the hidden and the output layers have exactly
the same number of nodes (h=r), the inversion of the
network consists of solving two linear equation systems
((1) and (2)). In the following, consider d the vector d =

Xu

W+ Uf.

The general case of most neural models of real-world

processes is represented by neural networks with h > r. In
. - . . . X

this case, it is possible to write the matrix wY , by Jordan-

Gauss elimination, in the following form:

10 0| |
01 0] |
.................... | C |vY*
................... | |
00 ... 1] |

.. . . . Xu
Partitioning the weight matrix W™~ and the vectors x,

6"and d, as given below:

X' = [Xq, Xp, ..., X' and
X" = [Xeety covns Xnl'
WX u eX' dX
WX = . X =" d= where
WX u eX dX

W*Y isar x pmatrix, and

WX Yisa(h-r) x p matrix
we have the relations:

X =f(WXUu+d* +0X)

x =f(WX Yu+d® +0%)

The input u, which produces the desired output y, is the
solution of the equation:

X =y* -Cx’
equivalent with:
y —Cf (WX Yu+d* +0%)=f(WXYu+d* +0%)

Expanding the nonlinear function f, through a Taylor series

around the point u,, the following relations is obtained:

y —C(f (W* Yuy +d* +0%) +f (WX Yu, +d* +6%)
(WX Yu-wW* Yy)y =f (WX uy +d* +6%)+
f (WXUu, +d* +0%)(WXUu-w*lu,)
where:

't W Mg+ +6,)

f W My +d* +6,)
f WX Uy +d* +0%7) =]

F(Wh— U +di " +8 ")

£ (WU +dyX +6%) |
F W, Yy +dp +6,°)
f(WXlu, +d* +6%)=|.

FW Yy +d X +6,.%) |

f (W My +d 0
F(W, uy +dp™ +8,")
f (WX, +d*" +6*") = Diag| .

£ (Wi ug +dpo < +0p-7)

WMy + 0 +6,F) |
o o B (W My +dp* +0,°)
£ (WXUu, +d* +6%) = Diag| .

£ (W, Yy +d,* +6,%)

The notation DiagV, where V is a vector, specifies a
diagonal matrix with the components of vector V on the
main diagonal and all other matrix elements zero. Solving
the equation given above, we obtain:

y —Cf (WX Yy +d* +0%)-f(WX'u, +d* +6%)=
(f (WXUuy +d* +0%)WXY +Cf (WX Yuy +dX +6%)

WX U)u-uy)

and the following iterative relation:

u=uy, +[f (WU +d* +0%)WXU + €)
Cf'(wX Uuk +dX +eX)WX U]—l

[y —Cf (WX Yu, +dX +6%)—f(W*Yuy +d* +6%)]

The matrix which must be inverted in the relation given
above is a r x p matrix. If the number of unfixed network
inputs is different than the number of network outputs, the
inverse from the equation (3) must be replaced with the
suitable pseudo-inverse.

Changing the notations as follows:

f (W M+ +6)
o o £ (W My +dp* +8,°)
f (Wl +d* +0%) =|.

F (Wi Vug + o+ 8)
£ (WK + o +6) |
o o B (Wo" Vuy +dp* +8,°)
f (W +d* +08%) =|.

fI(WrXIuUk + er' + erXI)

the iterative relation (3) becomes:

u=uy +[f (WM +dX +0%)ow ! + @)
C(f (WX My +d*" + 0%)ow*"1) 7t
[y —Cf (WX Yy, +dX" +6%") = f (WXUuy +d* +6%)]

The operator o from the relation given above multiplies a
row of a matrix with the corresponding element of the
vector. In this way the complexity of the calculus is
significantly reduced, when the iterative relation (4) is
implemented, instead of relation (3). This aspect is useful
because the inversion calculus is made on-line, and will
help to not compromise the control performances when the
control actions must be taken in critical time.

Previously, it was presented a method of inverting a three
layered neural network. Any real-world process can be
modelled by a three layered network. Be h the number of
needed (or desired) hidden nodes to model a process. If the
user still wish to use a multilayer neural network (with
more than one hidden layer), and in order to reduce the
inversion calculus, we propose to chose m+1 hidden layers
with r nodes on each layer, where:

h=m*r+t r<t<2r, mON

Given the output y, it is possible to calculate in one
iteration the outputs of all hidden layers, until the second
hidden layer, solving m determined linear equation
systems. Now, once the output of the second hidden layer
is calculated, the input u, which produces the desired
output y, can be determined with the inversion method
presented previously in this section for a three layered
neural network.

4. SIMULATION RESULTS

In order to test the inversion method described in section 3,
the first case study is made on a common benchmark
process, the liquid tank, described by the following
equation:

dy 1
—=—[u+d-K
dt A[\/g]

where K=7, A=30, uJ[0;40], yO[0;10], dO[0;10]

The training data set contains 300 examples, also the
testing data set. The hidden layer contains three nodes. The
forward neural model of the process was developed, and
this forward model is used in the inverse neural control
structure shown in figure 7, where P is the process and C is
the controller. The forward neural model contains, as
network inputs, the current input of the process u(k-1) and
the previous output of the process yg(k-1), and as network
output, the output of the system y(k).

The command u (controller output) is calculated by
inverting the forward model with the method described in
section 3, where one input, y4(Kk-1), is known. Figure 5
presents the behaviour of the inverse controller to setpoint
changes, and figure 6 presents the controller performances
regarding the disturbance rejection.

40

30

207

10¢

0 1 .
0 100 200 300

a) the controller output - u

8.6
LM T
&2-% é | o

al
RS = 100 260: 300

b) the process output y4 (dotted) and setpoint y,

1
0.5/
I I
.0.5 {ii
o 100 200 300

c) the error yg— yq

Figure 5 The behaviour of the inverse controler to
setpoint changes

15

10+

U .
0 100 200 300

a) the perturbation d

8.6
ey bt e e i
8.4} rt_; LJ Tl!
82 | | ||
8 N
S gl L iy
0 100 200 300

b) the process output y, (dotted) and setpoint y

40

30

20

10+

U . .
0 100 200 300

c¢) the command u with perturbation

Figure 6 The disturbance rejection performances

k) — k)
¥olle- 1) —f

P =¥k

Figure 7. Inverse neural control structure 1
Tire ()
As shown in figures 5 and 6, the inverse neural controller
performs very well on setpoint changes, but not so well on
disturbance rejection. In order to reject the perturbation,
we trained a neural network with three inputs: u(k-1), y(k-
1), d(k-1), and one output: y(k). The controller output is
determined by inverting the previously developed forward
model, considering two fixed inputs (the inputs
corresponding to yg(k-1) and d(k-1)). The perturbation is
completely rejected and the results are the same with those B3
from figure 5. So, if the perturbation can be measured, it is Time (s)
possible to reject it, if we consider the perturbation as input . .
to the neural network which represents the forward model Figure 8. b) Prescribed speed (u}) and real speed (c).
of the process.

Figure 8. a) Resistant torque

B7

BEf--mmmmmm o R K -

1] N I NPV D [P N U .

Speed (radss)

7] S N R B 4

750

The second case study chosen to test the inversion method
presented in section 3 is to control the speed of a DC
motor, using an internal model-based control structure
shown in figure 3.

Wolts

The DC motor is described by the following equation:

di —ur _ 60 KeKo . - 0
dt L 2 L € L Figure 8. ¢) Control voltage
dig _ Ue re
& - T, Le Je 7o 5
do - KmKg My
a J O Oe J
where
% 5 10 15 20 25
W - the angular speed Tire (s)
J - the inertial torque
Ur - the induced command voltage))
Ue - the inducer command voltage Figure 9. a) Prescribed speed (w,) and real speed(y).
i - the induced current
ie - the inducer current Ball
800
The network, which implements the forward model, was -
trained having as network input the vector [w(k-1) <750
w(k-2) w(k-3) uk) u(k-1) u(k-2) u,(k-3)]" and as network 700
output the current speed wXk). The hidden layer contains , , ‘ ,
50 neurons. The successful identification of the DC motor B0 5 10 15 0 25

is proved by the good performances of the internal model
control structure, shown in the following figures.

Figure 9. b) Control voltage

The neural network controller from figure 3 is replaced
with a program procedure, which calculates the controller
output by inverting the forward neural model previously
developed.

We considered two aspects in the simulation:

* to keep the speed constant in the presence of some
variations of the resistant torque, shown in figures
8ab,c;

* to change the motor speed according with an imposed
variation law (figures 9a,b).

5. CONCLUSION

A method of inverting a neural network was proposed in
this paper. This method is useful in the inverse neural
control structure and neural model based control structure,
when the inversion calculus is made on-line, and the
network input, which produces the desired network output,
must be obtained in critical time.

REFERENCES

[11 B. Kosko, Neural Networks and Fuzzy Systems,
Prentice - Hall International Inc., 1992.

[2] A. J. Krijsman, Artificial Intelligence in Real-Time
Control, PhD. thesis, Universiteit Delft, 1993.

[3] E. Levin, R. Gewirtzman, and G. F. Inbar, “Neural

Network Architecture for Adaptive System Modelling
and Control”, Neural Networks, No 4(2), pp. 185-191,
1991.

[4] S. Manchanda, M.J. Willis, M.T. Tham, C.
DiMassimo, and G.A. Montague, “An Appraisal of
Nonlinear Control Philosophies for Application to a
Biochemical Process”, Proceedings of the 1991
American Control Conference, San Diego USA, 1991,
pp. 1317-1322.

[5] V. Palade, Hybrid Expert Systems for Process Control,
PhD. thesis, “Dunarea de Jos” University of Galati —
Romania, 1999.

[6] V. Palade, V. Mazilescu and S. Bumbaru, “Special
issues on the use of artificial neural networks in the
intelligent control systems”, The Annals of “Dunarea
de Jos” University of Galati, Vol. 3, pp. 34-38, 1992.

[7] D. Psaltis, A. Sideris, and A. A. Yamamura, “A
Multilayered Neural Network Controller”, IEEE
Control Systems Magazine, No. 8, pp. 17-21, 1988.

[8] S. K. Sanjay and A. Guez, “Adaptive Pole Placement
for Neurocontrol”, Proc. of the International Joint
Conference on Neural Networks, Washington D.C.
USA, 1990, vol. 2, pp. 563-569.

[91 G. M. Scott, Knowledge - Based Artificial Neural
Networks for Process Modelling and Control, PhD,
thesis, University of Wisconsin, 1993.

[10] R. W. Swiniarski, “Novel Neural Network Based Self
- Tuning PID Controller which Uses Pattern
Recognition Technique”, Proc. of the American
Control Conference, San Diego USA, 1990, vol. 3, pp.
3023-3024.

