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Abstract: The paper focuses on the application of neuro-fuzzy techniques in fault
detection and isolation. The objective of this paper is to detect and isolate faults to an
industrial gas turbine, with emphasis on faults occurred in the actuator part of the gas
turbine. A neuro-fuzzy based learning and adaptation of TSK fuzzy models is used for
residual generation, while for residual evaluation a neuro-fuzzy classifier for Mamdani
models is used. The paper is concerned on how to obtain an interpretable fault classifier
as well as interpretable models for residual generation. Copyright © 2002 IFAC
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1. INTRODUCTION

In the last ten years, the field of diagnosis has
attracted the attention of many researchers, both from
the technical area as well as medical area. In the
industrial field there is also an increasing need for
safety, which conducted to the development of
various techniques for an automatic diagnosis of
faults.  Generally, in an industrial control system a
fault may occur in the process components, in the
control loop (controller and actuators) and in the
measurement sensors for the input and output
variables. The conceptual diagram for a fault
diagnosis system is depicted in Figure 1. The
diagnosis consists of two sequential steps: residual
generation and residual evaluation. In the first step a
number of residual signals are generated in order to
determine the state of the process. The objective of
fault isolation is to determine if a fault has occurred
and also the location of the fault, by analysing the
residual vector.

Fig. 1. The general structure of a diagnosis system

The problem of detecting and isolating faults to an
industrial gas turbine was studied in other previous
papers in the literature (Patton et al., 1999; Patton
and Simani, 1999; Simani and Spina, 1998) using
mainly observer based techniques.  In this paper we
investigate the problem of fault diagnosis of an
industrial gas turbine using a neuro-fuzzy approach.
For simulating purposes we used a SIMULINK
model of such an industrial gas turbine, developed at
ABB-Alstom Power, United Kingdom.

Process
Residual

generation
Residual

evaluation

R1

R2

Rm

F1
M1

F2
M2

Fn
Mp

*
*

*
* *

*

Measurements
(Process variables)

Residuals Faults



The structure of the paper is the following. Section 2
presents an overview on the use of neuro-fuzzy
techniques in fault detection and isolation. Section 3
describes how residuals are generated using a TSK
neuro-fuzzy based adaptation and learning technique.
Section 4 is concerned on the development of a
transparent fault classifier using neuro-fuzzy
networks for Mamdani fuzzy models, in order to
describe the task of fault classification. The paper
ends with some conclusions and remarks.

2. NEURO-FUZZY IN FDI

Many authors have focussed on the use of neural
networks in FDI applications (Marcu et al., 1999;
Korbicz et al., 1999) for solving the specific tasks in
FDI, such as fault isolation but mainly fault
detection. Other authors (Koscielny et al., 1999) used
fuzzy logic for fault diagnosis, especially for fault
isolation, but some of them even for fault detection,
using for example TSK fuzzy models.  In the last few
years there is also an increasing number of authors
(Patton et al., 1999; Calado and Sa da Costa, 1999)
who try to integrate neural networks and fuzzy logic
in order to benefit of the advantages of both
techniques for fault diagnosis applications.

Neural networks have been successfully applied to
fault diagnosis problems due to their capabiliti es to
cope with non-linearity, complexity, uncertainty,
noisy or corrupted data. Neural networks are very
good modell ing tools for highly non-linear processes.
Generally, it is easier to develop a non-linear neural
network based model for a range of operating than to
develop many linear models, each one for a
particular operating point. Due to these modelli ng
abiliti es, neural networks are ideal tools for
generating residuals. Neural networks can also be
seen as universal approximators. An usual 3 layered
MLP neural network, with m inputs and n outputs,
can approximate any non-linear mapping from Rm to
Rn using an appropriate number of neurons in the
hidden layer. Due to this approximation and
classification abili ty, neural networks can also be
successfully used for fault evaluation. The drawback
of using neural networks for classification of faults is
their lack of transparency in human understandable
terms. Fuzzy techniques are more appropriate for
fault isolation as it allows the integration in a natural
way of human operator knowledge into the fault
diagnosis process. The formulation of the decisions
taken for fault isolation is done in a human
understandable way such as linguistic rules.

The main drawback of neural networks is
represented by their “black box” nature, while the
disadvantage of fuzzy systems is represented by the
diff icult and time-consuming process of knowledge
acquisition. On the other hand the advantage of
neural network over fuzzy systems is learning and
adaptation capabiliti es, while the advantage of fuzzy
system is the human understandable form of
knowledge representation. Neural networks use an
implicit way of knowledge representation while

fuzzy and neuro-fuzzy systems represent knowledge
in an explicit form, such as rules.

2.1 Methods of Neuro-Fuzzy Integration

The combination of neural networks and fuzzy
systems can be done in two main ways:
a) Neural networks are the basic methodology and

fuzzy logic is the second. These hybrid systems
are mainly neural networks, but the neural
networks are equipped with abil ities of
processing fuzzy information. The systems are
usually termed Fuzzy Neural Networks and they
are networks where the inputs and/or the outputs
and/or the weights are fuzzy sets, and they
usually consist of a special type of neurons,
called fuzzy neurons. Fuzzy neurons are neurons
with inputs and/or outputs and weights
represented by fuzzy sets, the operation
performed by the neuron being a fuzzy
operation.

b) Fuzzy logic is the basic methodology and neural
networks the subsequent. These systems can be
viewed as fuzzy systems augmented with neural
network faciliti es, such as learning, adaptation,
and parallelism. These systems are usually called
Neuro-Fuzzy Systems. Most authors in the field
of neuro-fuzzy computation understand neuro-
fuzzy systems as a special way to learn fuzzy
systems from data using neural network type
learning algorithms. Some authors (Shann and
Fu, 1995) in the field term these neuro-fuzzy
systems also fuzzy neural networks, but most of
them like to term them as Neuro-Fuzzy Systems.
Neuro-Fuzzy Systems (D. Nauck and R. Kruse,
2000) can be always interpreted as a set of fuzzy
rules and can be represented as a feed-forward
network architecture.

These two previous ways of neuro-fuzzy
combination can be viewed as a type of fusion
systems, as it is difficult to see a clear separation
between the two methodologies.  One methodology
is fused into the other methodology, and it is
assumed that one technique is the basic technique
and the other is fused into it and augments the
capabiliti es of information processing of the first
methodology. Besides these fusion neuro-fuzzy
systems, there is another way of hybridisation of
neural networks and fuzzy systems, where each
methodology maintains its own identity and the
hybrid neuro-fuzzy system consists of modules
structure which cooperate in solving the problem.
These kind of neuro-fuzzy systems are called
combination hybrid systems. The neural network
based modules can work in parallel or serial
configuration with fuzzy logic based modules and
augments each other. In some approaches, a neural
network (such as a self-organising map) can pre-
process input data for a fuzzy system, performing for
example data clustering or filtering noise. But,
especially in FDI applications, many authors use a
fuzzy system as a pre-processor for a neural network.
In (Alexandru et al., 2000) the residuals signals are



fuzzified first and then fed into a recurrent neural
network for evaluation, in order to perform fault
isolation.

The most often used NF systems are fusion NF
systems and the most common understanding for a
Neuro-Fuzzy system is the following. A NF system
is a neural network which is topologically equivalent
to the structure of a fuzzy system. The network
inputs/outputs and weights are real numbers, but the
network nodes implement operations specific to
fuzzy systems: fuzzification, fuzzy operators
(conjunction, disjunction), defuzzification. In other
words, a NF system can be viewed as a fuzzy system,
whit i ts operations implemented in a parallel manner
by a neural network, and that’s why it is easy to
establish a one-to-one correspondence between the
NN and the equivalent FS. Neuro-Fuzzy systems can
be used to identify fuzzy models directly from input-
output relationships, but they can be also used to
optimize (refine/tune) an initial fuzzy model acquired
from human expert, using additional data.

2.2 Neuro-Fuzzy Networks

In the area of neuro-fuzzy systems there are two
principal types of neuro-fuzzy networks preferred by
most of the authors in the field of neuro-fuzzy
integration. In section 3 and 4, we will use kind of
these structures, shortly presented bellow, for
residual generation and for fault classification. The
most common neuro-fuzzy network is used to
develop or adjust a fuzzy model in Mamdani form
given by relation (1), using input – output data. The
network  is a five layers network as shown in Figure
2. A Mamdani fuzzy model consists of a set of fuzzy
if-then rules in the following form:

If x1 is X1i1 and x2 is X2i2 and ….. xn is Xnin

then  y is Yj        (1)

where: x1, x2, …, xn are the system inputs, y is the
output, Xkik with k=1,2, …, n and ik=1,2, …, lk are
the linguistic values of the linguistic variable xk, and
Yj j=1,2, …. ly are the linguistic values of the output.
Every linguistic variable xk is described by lk
linguistic values Xk1, Xk2, …,Xklk.

Layer 1 is the input layer and each node corresponds
to each input variable. Layer 2 is called membership
function layer, the nodes from this layer mapping
each input xi to every membership function Xij of the
linguistic values of that input. It is possible to use, in
the layer 2, a subnet of nodes to implement a desired
membership function, instead of a single node. Each
node in the layer 3 (called rule layer) performs the
precondition matching – the IF part – of a fuzzy rule.
The nodes from layer 4 combine the fuzzy rules with
the same consequent, each node implementing a
fuzzy OR operator, such as fuzzy max operator. Each
node in the layer 5 corresponds to an output variable
and acts as a defuzzifier. The integration and the
activation functions of nodes for such a network are
chosen (Shann and Fu 1995) so that to perform

specific operations in a fuzzy inference engine as
described before.

Fig. 2. The general structure of a neuro-fuzzy
network for Mamdani models

Another major class of  neuro-fuzzy networks are the
neuro-fuzzy networks used to develop and adjust a
Sugeno-type fuzzy model. The structure of such a
neuro-fuzzy network is shown in figure 3. The first 3
layers are the same with those in a neuro-fuzzy
network for Mamdani models. In the rule layer, it can
be used the traditional fuzzy min operator, but many
authors prefer to use a product operator as fuzzy
intersection operator. Usually, all weights of this
layer are set to 1. If some prior knowledge on process
functioning is available, it can be established the
number of nodes in layer 3 (the number of rules or
fuzzy partition regions) and the corresponding links
between layer 2 and 3.

Fig. 3. Neuro-Fuzzy network for TSK fuzzy model
                             implementation

In (Zhang and Morris 1996) the authors developed a
neuro-fuzzy network for process modelli ng and fault
diagnosis. The main shortcoming of this structure is
that the user must partition the process operation into
several fuzzy operating regions before training the
fuzzy neural network. The partitioning is made
empirically, looking to the process functioning, and it
may be a very difficult task when the process has a
complex nature. Different clustering techniques as
well as genetic algorithms can be used to find the
best fuzzy partition of the input space. Layer 4 is
called the model layer, and each node implements a
linear model corresponding to a rule node in the rule
layer, respectively to a fuzzy operating region. The
weights of a node are the parameters of the linear
model and the inputs of the node are the past system
inputs and outputs. Layer 5 consists of a single node,
which performs the defuzzification. The most general
Sugeno-type neuro-fuzzy network structure, is a
network which implements a set of fuzzy rules with



ARMA models of higher order in the consequence
part of the rules. The rules are in the following form:

Rk: If x1 is X1i1 and x2 is X2i2 and ... xn is Xnin  then
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where k=1,2, …, m, m the number of rules, and
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When linear ARMA models of higher order are used,
every node from layer 4 must be replaced by a
subnet, which implements the ARMA model of the
desired order. In figure 4, it is shown the subnet
which corresponds to node k from layer 4, when
n1=n2=2. The inputs of the subnet k from layer 4 are
the previous inputs and outputs of the system.

Fig. 4. The subnet corresponding to node k in layer 4

3. RESIDUAL GENERATION USING NEURO-
FUZZY MODELS

The purpose of this paper is to detect and isolate
mainly actuator faults, but also other types of faults
such as components or sensor faults, occurred in an
industrial gas turbine. In our turbine, air flows via an
inlet duct to the compressor and the high pressure air
from the compressor is heated in combustion
chambers and expands through a single stage
compressor turbine. A Butterfly valve provides a
means of generating a back pressure on the
compressor turbine (there is no power turbine present
in the model). Cooling air is bled from the
compressor outlet to cool the turbine stator and rotor.
A Governor regulates the combustor fuel flow to
maintain the compressor speed at a set-point value.
For simulation purposes we used a Simulink
prototype model of such an industrial gas turbine,
presented in (Patton and Simani, 1999) and
developed at ABB-Alstom Power, United Kingdom.
The SIMULINK prototype simulates the real
measurements taken from the gas turbine with a
sampling rate of 0.08s. The model has two inputs and
28 output measurements which can be used for
generating residuals. The Simulink model where
validated in steady state conditions against the real
measurements and all the model variables were
found to be within 5% accuracy. All the neuro-fuzzy
models we will develop later in the section for
generating residuals purposes are driven by two
inputs: valve angle (va) and the fuel flow (ff) which
is also a control variable.

One common fault in the gas turbine is the fuel
actuator friction wear fault. Other faults considered
in our work were compressor contamination fault,
thermocouple sensor fault and high-pressure turbine
seal damage. Usually these faults in the industrial gas
turbine develop slowly over of a long period of time.
We will t ry to detect the actuator fault and to isolate
it from other faults in the turbine. For simplicity, we
present in the following only the results for the first
two faults - fuel actuator friction wear fault and
compressor contamination fault.

The residual signals are calculated as difference
between estimated signal given by observer and the
actual value of the signal. The residuals are generated
using TSK neuro-fuzzy networks. We are concerned
on how to find accurate neuro-fuzzy models for
generating residuals, but we tried to have as much as
possible a certain degree of transparency of the
models. That’s why we had to find a good structure
of the model and therefore a good partition of the
input space, using clustering for that.  There is a
compromise between the interpretabili ty and the
precision of the model.

Fig. 5. Neuro-fuzzy based observer scheme for
generating residuals.

First we developed a 3 inputs and one output NF-
TSK network for the output measurement which is
most affected by the actuator fault (ao). We used, as
input of the network, the present value for valve
angle (va) and fuel flow (ff), and the previous value
of the output affected by the fault. Three linguistic
values were used for each input variable and grid
partition of the input space. The performance of the
model is shown in Figure 6a, the generated residual
in Figure 6b, and the difference between the system
output and the model output in Figure 6c.
Unfortunately, due to the control loop action, this
kind of fault can not be seen in steady state regime
and can not be described as a ramp function in order
to show what’s happened in case of a gradual
developing fault. But this actuator fault can be seen
in dynamic regime, for different values of the valve
angle. For isolating purposes we take the absolute
value of this residual signal and the pass through a
filter for obtaining a persistent residual signal. In
order to see a gradually developing fault, we built a
NF based observer for the output most affected by
the compressor contamination fault. In a similar way
we used also a network with 3 inputs and 3
membership functions per input and first order linear
models in the consequent of the rules. The output
(co) most sensitive to a compressor ramp fault is
depicted in Figure 7a and the residual generated in
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Figure 7b. The compressor fault affects also the
output ao - most affected output by the actuator fault
- but not in the same magnitude as the output co is
affected. Then, the residual designed for output ao is
sensitive to both faults.
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Fig. 6. Results for the fuel actuator friction wear fault

Further we developed several types of models for the
residual sensitive to the actuator fault, in order to see
a comparison between the accuracy and the
transparency of the model. These results are
summarised in Table 1. From this table, it can be
seen that if you need a more transparent NF model
for residual generation, you loose gradually the
accuracy of the model. The first three NF models
were generated using clustering methods and the
following three were generated using a grid partition
with 2, 3 and 4 membership functions for each input
variable. The exceptional performance shown in the
first case can be explained by the capabilities of
Gustafson-Kessel clustering method, which can
produce clusters with different shapes and
orientation, and then more accurate model while
keeping a reduced number of rules.  On the other
hand, it can be concluded that if the structure of the
model is not properly chosen, then the transparency
degree is reduced, but also the training time will be
much increased and then more difficult to reach a
desired performance of the model in a given time.
Table 1 shows that there is not a very big difference

in performance between a model with 64 rules and a
model with 2 rules, even if the number of the
parameters were much bigger in the first case. That
means the structure of the model in the first case
where not appropriate and the training were not fully
completed. In fact, after an appropriate and a
complete training, the model with 64 rules should
have overlapping membership functions and many
input regions with about the same consequent, which
require a post-processing of the model in order to
simply it. But this task, represented by a more
difficult training and a simplification after that, is
more complicate to perform than trying to predict
first a right structure of the model at a desired degree
of transparency and train the model after that.

Table 1

Transparency of
the model

Performance of the
model

Comments

2 rules 0.00180 Gustafson-Kessel
2 rules 0.007214 Substr. Clustering
3 rules 0.006087 Substr. Clustering

8 rules (2x2x2) 0.004194 Grid partition
27 rules (3x3x3) 0.001024 Grid partition
64 rules (4x4x4) 0.000887 Grid partition

Black box 0.000001 Neural network
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Fig. 7. Results for compressor contamination fault.

4. NEURO-FUZZY BASED RESIDUAL
EVALUATION

In the residual generation part of a diagnosis system
the user should be more concerned on the accuracy
of neuro-fuzzy models, even desirable to have
interpretable models also for residual generation,
such as TSK models. For the evaluation part it is
more important the transparency or the
interpretability of the fault classifier, in human
understandable terms, such as classification rules.
The main problem in neuro-fuzzy fault classification
is how to obtain an interpretable fuzzy classifier,
which should have few meaningful fuzzy rules with
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few meaningful l inguistic rules for input/output
variables. Neuro-fuzzy network for Mamdani models
are appropriate tools to evaluate residuals and
perform fault isolation, as the consequence of the
rules contains linguistic values which are more
readable than linear models in case of using TSK
fuzzy models. As in previous section, the price paid
for the interpretabili ty of the fault classifier is the
loss of the precision of the classification task.

The isolation table for the two faults used in the
previous section is represented by Table 2. For
training the neuro-fuzzy network in order to isolate
these faults, 150 patterns for each fault were used.
The NF-network decisions for the residual values
were assigned in relation with the known faulty
behaviour. In order to obtain a readable fault
classifier we used NEFCLASS neuro-fuzzy classifier
(D. Nauck and R. Kruse, 2000). This neuro-fuzzy
system has a slightly different structure than the
neuro-fuzzy network for Mamdani models presented
in section 2, but it allows to the user to obtain in an
interactive manner and very easy an interpretable
fuzzy fault classifier at the desired level and
compromise accuracy/transparency. Considering
conjunctive fuzzy rules for fault classification (both
residual inputs in the antecedent), Table 3
summarises the results of the study.

Table 2 Fault isolation table

Actuator
fault

Compressor
fault

R1 1 1
R2 0 1

Table 3 Transparency/accuracy of NF fault classifier

Transparency(no.of rules) 2 4 8 12
Accuracy (no. of patterns
correctly classified–in %) 88.7 91.2 96.4 99.6

5. CONCLUSION

This paper studied the problem of diagnosis faults
occurred in an industrial gas turbine. Neuro-fuzzy
techniques have been applied in the paper both for
residual generation and for fault classification. This
study demonstrates that the combination of neural
networks with fuzzy systems can produce better
diagnostic results, especially when there is an interest
on the transparency in human understandable terms
of neuro-fuzzy models. Always there is a
compromise between the interpretabili ty and the
precision of the model.
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