FAULT DIAGNOSIS OF AN INDUSTRIAL GASTURBINE USING NEURO-FUZZY METHODS
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Abstract: The paper focuses on the application of neuro-fuzzy techniques in fault
detection and isolation. The objective of this paper is to detect and isolate faults to an
industrial gas turbine, with emphasis on faults occurred in the actuator part of the gas
turbine. A neuro-fuzzy based learning and adaptation of TSK fuzzy models is used for
residual generation, while for residual evaluation a neuro-fuzzy classifier for Mamdani
models is used. The paper is concerned on how to obtain an interpretable fault classifier
as well asinterpretable models for residual generation. Copyright © 20021FAC
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1. INTRODUCTION

In the last ten years, the field of diagnosis has
attracted the attention of many researchers, both from
the technical area as well as medical area. In the
industrial field there is also an increasing need for
safety, which conducted to the development of
various techniques for an automatic diagnosis of
faults. Generaly, in an industrial control system a
fault may occur in the process components, in the
control loop (controller and actuators) and in the
measurement sensors for the input and output
variables. The conceptual diagram for a fault
diagnosis system is depicted in Figure 1. The
diagnosis consists of two sequential steps: residua
generation and residual evaluation. In the first step a
number of residual signals are generated in order to
determine the state of the process. The objective of
fault isolation is to determine if a fault has occurred
and also the location of the fault, by analysing the
residual vector.
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Fig. 1. The general structure of a diagnosis system

The problem of detecting and isolating faults to an
industrial gas turbine was studied in other previous
papers in the literature (Patton et al., 1999; Patton
and Simani, 1999; Simani and Spina, 1998) using
mainly observer based techniques. In this paper we
investigate the problem of fault diagnosis of an
industrial gas turbine using a neuro-fuzzy approach.
For simulating purposes we used a SIMULINK
model of such an industrial gas turbine, developed at
ABB-Alstom Power, United Kingdom.



The structure of the paper is the following. Sedion 2
presents an overview on the use of neuro-fuzzy
techniques in fault detedion and isolation. Sedion 3
describes how residuals are generated using a TSK
neuro-fuzzy based adaptation and leaning technique.
Sedion 4 is concerned on the development of a
transparent fault classifier using neuro-fuzzy
networks for Mamdani fuzzy models, in order to
describe the task of fault classficaion. The paper
ends with some conclusions and remarks.

2. NEURO-FUZZY IN FDI

Many authors have focussed on the use of neural
networks in FDI applicaions (Marcu et a., 1999
Korbicz & al., 1999) for solving the spedfic tasks in
FDI, such as fault isolation but mainly fault
detedion. Other authors (Koscielny et al., 199) used
fuzzy logic for fault diagnosis, espedally for fault
isolation, but some of them even for fault detedion,
using for example TSK fuzzy models. In the last few
yeas there is also an increasing number of authors
(Patton et al., 1999; Calado and Sa da Costa, 1999
who try to integrate neural networks and fuzzy logic
in order to benefit of the alvantages of bath
techniques for fault diagnosis appli cations.

Neural networks have been successfully applied to
fault diagnosis problems due to their capabiliti es to
cope with ronlineaity, complexity, uncertainty,
noisy or corrupted data. Neural networks are very
goodmodelling toals for highly non-linea processes.
Generadlly, it is easier to develop a non-linea neura
network based model for a range of operating than to
develop many linea models, ead one for a
particular operating point. Due to these modelling
abilities, neural networks are ided toos for
generating residuals. Neural networks can also be
see as universal approximators. An usua 3 layered
MLP neural network, with m inputs and n outputs,
can approximate any non-linea mapping from R™ to
R" using an appropriate number of neurons in the
hidden layer. Due to this approximation and
clasdficaion ability, neural networks can also be
successfully used for fault evaluation. The drawbadk
of using reural networks for classficaion of faultsis
their ladk of transparency in human understandable
terms. Fuzzy techniques are more gpropriate for
fault isolation as it alows the integration in a natural
way of human operator knowledge into the fault
diagnosis process The formulation of the dedsions
taken for fault isolation is done in a human
understandable way such aslinguistic rules.

The main drawback of neural networks is
represented by their “bladk box” nature, while the
disadvantage of fuzzy systems is represented by the
difficult and time-consuming process of knowledge
aquisition. On the other hand the alvantage of
neural network over fuzzy systems is leaning and
adaptation capabiliti es, while the advantage of fuzzy
system is the human urderstandable form of
knowledge representation. Neural networks use an
implicit way of knowledge representation while

fuzzy and neuro-fuzzy systems represent knowledge
in an explicit form, such asrules.

2.1 Methods of Neuro-Fuzzy Integration

The mbination of neura networks and fuzzy

systems can be done in two main ways:

a) Neural networks are the basic methodology and
fuzzy logic is the second. These hybrid systems
are mainly neural networks, but the neura
networks are euipped with abilities of
processng fuzzy information. The systems are
usually termed Fuzzy Neural Networks and they
are networks where the inputs and/or the outputs
and/or the weights are fuzzy sets, and they
usualy consist of a spedal type of neurons,
cdled fuzzy neurons. Fuzzy neurons are heurons
with inputs and/or outputs and weights
represented by fuzzy sets, the operation
performed by the neuron being a fuzzy
operation.

b) Fuzzy logic is the basic methodology and neural
networks the subsequent. These systems can be
viewed as fuzzy systems augmented with reural
network fadliti es, such as leaning, adaptation,
and parall elism. These systems are usually cdled
Neuro-Fuzzy Systems. Most authors in the field
of neuro-fuzzy computation urderstand neuro-
fuzzy systems as a speda way to lean fuzzy
systems from data using reura network type
leaning agorithms. Some aithors (Shann and
Fu, 1995 in the field term these neuro-fuzzy
systems also fuzzy neural networks, but most of
them like to term them as Neuro-Fuzzy Systems.
Neuro-Fuzzy Systems (D. Nauck and R. Kruse,
2000) can be dways interpreted as a set of fuzzy
rules and can be represented as a feed-forward
network architedure.

These two previous ways of neuro-fuzzy
combination can be viewed as a type of fusion
systems, as it is difficult to see a tea separation
between the two methoddogies. One methoddogy
is fused into the other methoddogy, and it is
assumed that one technique is the basic technique
and the other is fused into it and augments the
cgabilities of information processng of the first
methoddogy. Besides these fusion neuro-fuzzy
systems, there is another way of hybridisation of
neural networks and fuzzy systems, where eab
methoddogy maintains its own identity and the
hybrid neuro-fuzzy system consists of modules
structure which cooperate in solving the problem.
These kind of neuro-fuzzy systems are cdled
combination hybrid systems. The neural network
based modues can work in parallel or seria
configuration with fuzzy logic based modules and
augments each other. In some gproadies, a neural
network (such as a self-organising map) can pre-
processinput data for a fuzzy system, performing for
example data dustering or filtering noise. But,
espedaly in FDI applicaions, many authors use a
fuzzy system as a pre-procesr for a neural network.
In (Alexandru et a., 2000 the residuas sgnals are



fuzzified first and then fed into a reaurrent neura
network for evaluation, in order to perform fault
isolation.

The most often used NF systems are fusion NF
systems and the most common urderstanding for a
Neuro-Fuzzy system is the following. A NF system
isaneura network which istopdogicdly equivalent
to the structure of a fuzzy system. The network
inputs/outputs and weights are red numbers, but the
network nodes implement operations edfic to
fuzzy systems: fuzzfication, fuzzy operators
(conjunction, digunction), defuzzfication. In other
words, a NF system can be viewed as a fuzzy system,
whit its operations implemented in a parallel manner
by a neural network, and that’s why it is easy to
establish a one-to-one wrrespondence between the
NN and the equivalent FS. Neuro-Fuzzy systems can
be used to identify fuzzy models diredly from input-
output relationships, but they can be dso used to
optimize (refine/tune) an initial fuzzy model acquired
from human expert, using additional data.

2.2 Neuro-Fuzzy Networks

In the aea of neuro-fuzzy systems there ae two
principal types of neuro-fuzzy networks preferred by
most of the aithors in the field of neuro-fuzzy
integration. In section 3 and 4, we will use kind of
these dsructures, shortly presented bellow, for
residual generation and for fault classification. The
most common neuro-fuzzy network is used to
develop a adjust a fuzzy model in Mamdani form
given by relation (1), using input — output data. The
network is a five layers network as shown in Figure
2. A Mamdani fuzzy model consists of a set of fuzzy
if-then rules in the foll owing form:

If g is Xy, and Xz is Xz, and ... Xn 1S X,
then yisY; 1)

where: X3, Xy, ..., Xp are the system inputs, y is the
output, X, with k=1,2, ..., nand i\,=1,2, ..., I, are
the linguistic values of the linguistic variable x,, and
Yjj=1,2, .... |y are the linguistic values of the output.
Every linguistic variable x, is described by Iy
linguistic values X, Xz, ..., X

Layer 1 isthe input layer and ead node @rresponds
to ead input variable. Layer 2 is cdled membership
function layer, the nodes from this layer mapping
ead input x; to every membership function X; of the
linguistic values of that input. It is possble to use, in
the layer 2, a subnet of nodes to implement a desired
membership function, instead of a single node. Each
node in the layer 3 (cdled rule layer) performs the
precondition matching — the IF part — of afuzzy rule.
The nodes from layer 4 combine the fuzzy rules with
the same @nsequent, eadr node implementing a
fuzzy OR operator, such as fuzzy max operator. Each
node in the layer 5 corresponds to an output variable
and ads as a defuzzfier. The integration and the
adivation functions of nodes for such a network are
chosen (Shann and Fu 1995 so that to perform

spedfic operations in a fuzzy inference engine as
described before.
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Fig. 2. The genera structure of a neuro-fuzzy
network for Mamdani models

Another mgjor classof neuro-fuzzy networks are the
neuro-fuzzy networks used to develop and adjust a
Sugeno-type fuzzy model. The structure of such a
neuro-fuzzy network is shown in figure 3. The first 3
layers are the same with those in a neuro-fuzzy
network for Mamdani models. In the rule layer, it can
be used the traditional fuzzy min operator, but many
authors prefer to use a product operator as fuzzy
intersedion operator. Usually, al weights of this
layer are set to 1. If some prior knowledge on process
functioning is available, it can be established the
number of nodes in layer 3 (the number of rules or
fuzzy partition regions) and the crresponding links
between layer 2 and 3.
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Fig. 3. Neuro-Fuzzy network for TSK fuzzy model
implementation

In (Zhang and Morris 1996 the aithors developed a
neuro-fuzzy network for process modelling and fault
diagnosis. The main shortcoming of this gructure is
that the user must partiti on the processoperation into
several fuzzy operating regions before training the
fuzzy neural network. The partitioning is made
empiricdly, looking to the processfunctioning, and it
may be avery difficult task when the process has a
complex nature. Different clustering techniques as
well as genetic dgorithms can be used to find the
best fuzzy partition of the input space Layer 4 is
cdled the model layer, and each node implements a
linea model corresponding to a rule node in the rule
layer, respedively to a fuzzy operating region. The
weights of a node ae the parameters of the linea
model and the inputs of the node ae the past system
inputs and outputs. Layer 5 consists of a single node,
which performs the defuzzfication. The most general
Sugeno-type neuro-fuzzy network structure, is a
network which implements a set of fuzzy rules with



ARMA models of higher order in the ansequence
part of the rules. The rules are in the following form:

Ry 1f X is Xy, @nd Xz is Xgi, and ... X, is Xy, then

ny Ny
Yk(t) =agk + Y ajx(t=)+3 bjy(t=j (3

=1 =1
where k=1,2, ..., m, m the number of rules, and
X=(Xy, Xz, ..., Xy is the input vedor, and

—(al n
ajk —(ajk,....,ajk).

When linea ARMA models of higher order are used,
every node from layer 4 must be replacel by a
subnet, which implements the ARMA model of the
desired order. In figure 4, it is diown the subnet
which corresponds to node k from layer 4, when
n;=n,=2. The inputs of the subnet k from layer 4 are
the previous inputs and outputs of the system.
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Fig. 4. The subnet corresponding to node k in layer 4

3. RESIDUAL GENERATION USING NEURO-
FUZZY MODELS

The purpose of this paper is to deted and isolate
mainly acuator faults, but also ather types of faults
such as components or sensor faults, occurred in an
industrial gas turbine. In our turbine, air flows via an
inlet duct to the cmmpressor and the high presaure ar
from the @mpresor is heaed in combustion
chambers and expands through a single stage
compressor turbine. A Butterfly valve provides a
means of generating a badk presare on the
compressor turbine (thereisno power turbine present
in the model). Coding ar is bled from the
compressor outlet to cod the turbine stator and rotor.
A Governor regulates the combustor fuel flow to
maintain the compressor speed at a set-point value.
For simulation purposes we used a Simulink
prototype model of such an industrial gas turbine,
presented in (Patton and Simani, 1999 and
developed at ABB-Alstom Power, United Kingdom.
The SIMULINK prototype simulates the red
measurements taken from the gas turbine with a
sampling rate of 0.08s. The model has two inputs and
28 autput measurements which can be used for
generating residuals. The Simulink model where
validated in stealy state cnditions against the red
measurements and al the model variables were
found to be within 5% accuragy. All the neuro-fuzzy
models we will develop later in the sedion for
generating residuals purposes are driven by two
inputs: valve angle (va) and the fuel flow (ff) which
isalso a wntrol variable.

One ommon fault in the gas turbine is the fuel
aduator friction wea fault. Other faults considered
in our work were @mpresor contamination fault,
thermocouple sensor fault and high-pressure turbine
sed damage. Usually these faultsin the industrial gas
turbine develop dowly over of along period d time.
We will try to deted the aduator fault and to isolate
it from other faults in the turbine. For simplicity, we
present in the following only the results for the first
two faults - fuel aduator friction wea fault and
compressor contamination fault.

The residual signals are cdculated as difference
between estimated signa given by observer and the
adual value of the signal. The residuals are generated
using TSK neuro-fuzzy networks. We ae mncerned
on how to find acarate neuro-fuzzy models for
generating residuals, but we tried to have as much as
possble a certain degree of transparency of the
models. That's why we had to find a good structure
of the model and therefore a good partition of the
input space using clustering for that. There is a
compromise between the interpretability and the
predsion of the model.
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Fig. 5. Neuro-fuzzy based olserver scheme for
generating residuals.

First we developed a 3 inputs and one output NF-
TSK network for the output measurement which is
most affected by the aduator fault (a0). We used, as
input of the network, the present value for vave
angle (va) and fuel flow (ff), and the previous value
of the output affeced by the fault. Three linguistic
values were used for ead input variable and grid
partition of the input space The performance of the
model is shown in Figure 6a, the generated residual
in Figure 6b, and the difference between the system
output and the model output in Figure 6c.
Unfortunately, due to the antrol loop adion, this
kind of fault can not be seen in stealy state regime
and can not be described as a ramp function in order
to show what's happened in case of a gradual
developing fault. But this acuator fault can be seen
in dynamic regime, for different values of the valve
angle. For isolating purposes we take the esolute
value of this residual signal and the pass through a
filter for obtaining a persistent residual signal. In
order to see agradually developing fault, we built a
NF based olserver for the output most affeded by
the compresor contamination fault. In a similar way
we used also a network with 3 inputs and 3
membership functions per input and first order linea
models in the cnsequent of the rules. The output
(co) most sensitive to a mmpressor ramp fault is
depicted in Figure 7a and the residual generated in



Figure 7b. The compressor fault affects also the
output ao - most affected output by the actuator fault
- but not in the same magnitude as the output co is
affected. Then, the residual designed for output ao is
sensitive to both faults.
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Fig. 6. Results for the fuel actuator friction wear fault

Further we developed several types of models for the
residual sensitive to the actuator fault, in order to see
a comparison between the accuracy and the
transparency of the model. These results are
summarised in Table 1. From this table, it can be
seen that if you need a more transparent NF model
for residual generation, you loose gradually the
accuracy of the model. The first three NF models
were generated using clustering methods and the
following three were generated using a grid partition
with 2, 3 and 4 membership functions for each input
variable. The exceptional performance shown in the
first case can be explained by the capabilities of
Gustafson-Kessel clustering method, which can
produce clusters with different shapes and
orientation, and then more accurate model while
keeping a reduced number of rules. On the other
hand, it can be concluded that if the structure of the
model is not properly chosen, then the transparency
degree is reduced, but also the training time will be
much increased and then more difficult to reach a
desired performance of the model in a given time.
Table 1 shows that there is not a very big difference

in performance between a model with 64 rules and a
model with 2 rules, even if the number of the
parameters were much bigger in the first case. That
means the structure of the model in the first case
where not appropriate and the training were not fully
completed. In fact, after an appropriate and a
complete training, the model with 64 rules should
have overlapping membership functions and many
input regions with about the same consequent, which
require a post-processing of the model in order to
simply it. But this task, represented by a more
difficult training and a simplification after that, is
more complicate to perform than trying to predict
first aright structure of the model at a desired degree
of transparency and train the model after that.

Tablel
Transparency of  Performance of the Comments
the model model
2rules 0.00180 Gustafson-K essel
2rules 0.007214 Substr. Clustering
3rules 0.006087 Substr. Clustering
8 rules (2x2x2) 0.004194 Grid partition
27 rules (3x3x3) 0.001024 Grid partition
64 rules (4x4x4) 0.000887 Grid partition
Black box 0.000001 Neural network
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Fig. 7. Results for compressor contamination fault.

4. NEURO-FUZZY BASED RESIDUAL
EVALUATION

In the residual generation part of a diagnosis system
the user should be more concerned on the accuracy
of neuro-fuzzy models, even desirable to have
interpretable models also for residual generation,
such as TSK models. For the evaluation part it is
more important the transparency or the
interpretability of the fault classifier, in human
understandable terms, such as classification rules.
The main problem in neuro-fuzzy fault classification
is how to obtain an interpretable fuzzy classifier,
which should have few meaningful fuzzy rules with



few meaningful linguistic rules for input/output
variables. Neuro-fuzzy network for Mamdani models
are @propriate tools to evaluate residuals and
perform fault isolation, as the mnsequence of the
rules contains linguistic values which are more
readable than linear models in case of using TSK
fuzzy models. As in previous sedion, the price paid
for the interpretability of the fault clasdfier is the
lossof the predsion of the dassificdion task.

The isolation table for the two faults used in the
previous wdion is represented by Table 2. For
training the neuro-fuzzy network in order to isolate
these faults, 150 atterns for ead fault were used.
The NF-network dedsions for the residua values
were assigned in relation with the known faulty
behaviour. In order to obtain a readable fault
clasdfier we used NEFCLASS neuro-fuzzy classfier
(D. Nauck and R. Kruse, 2000. This neuro-fuzzy
system has a dlightly different structure than the
neuro-fuzzy network for Mamdani models presented
in sedion 2, but it alows to the user to oltain in an
interadive manner and very easy an interpretable
fuzzy fault classifier at the desired level and
compromise  acaracy/transparency. Considering
conjunctive fuzzy rules for fault classificaion (both
residua inputs in the atecalent), Table 3
summarises the results of the study.

Table 2 Fault isolation table

Actuator Compresor
fault fault

R1 1 1
R2 0 1

Table 3 Transparency/acasracy of NF fault classifier

Transparency(no.of rules) 2 4 8 12

Accuracy (no. of patterns

corredly dassfied-inw) 887 912

964 996

5. CONCLUSION

This paper studied the problem of diagnosis faults
ocaurred in an industrial gas turbine. Neuro-fuzzy
tedhniques have been applied in the paper both for
residua generation and for fault classificaion. This
study demonstrates that the cmbination of neura
networks with fuzzy systems can produce better
diagnostic results, espedally when thereis an interest
on the transparency in human understandable terms
of neuro-fuzzy models. Always there is a
compromise between the interpretability and the
predsion of the model.
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