Fourth International Conference on knowledge-Based Intelligent Engineering Systems & Allied Technologies, 30™ Aug-1" Sept 2000, Brighton,UK

Rule extraction from neural networks by interval propagation

Vasile Palade, Daniel-Ciprian Neagu, Gheorghe Puscasu

University of Galati, School of Electrical Engineering,
Domneasca Str., Nr. 47, Galati 6200, Romania
E-mail: {Vasile.Palade, Dan.Neagu, Gheorghe.Puscasu}@ugal.ro

Abstract: This paper proposes a method of rule extraction from ordinary
Backpropagation neural networks, which have not a structure that facilitates the rule
extraction. This method is based on interval propagation across the network. The
method of rule extraction uses a procedure of inverting a neural network, also
presented in the paper. A common benchmark control problem was used to test the

rule extraction and inverting methods.

Introduction

With their learning, classification and generalization
capabilities, neural networks have been applied with
remarkable success to a variety of real-word
problems, such as. process control and fault
diagnosis, speech recognition, medical diagnosis,
image computing. The major shortcoming of neural
networks is represented by their low degree of
human comprehensibility [9]. Many authors have
focused on solving this shortcoming of neural
networks, by compiling the knowledge captured in
the topology and weight matrix of a neural network,
into a symbolic form; most of them into sets of
ordinary if - then rules [10][11][9], others into
formulas from propositional logic or from
nonmonotonic logics [6], or into sets of fuzzy rules
[11[2][5]. More transparency is offered by fuzzy
neural networks [3]{4][8], which represent a
paradigm that combines the comprehensibility and
capabilities of fuzzy reasoning to handle uncertainty
and the capabilities of neural networks to learn from
examples.

The paper is structured as follows. Section 2
presents a method of inverting a neural network
which represents the forward model of a process.
Given the output of the network, the method
calculates the input of the network which produces
the given output. The inversion method developed in
the paper is the most computationally fast inversion
method, optimizing the searching of the network
inputs which produce the desired network output.
The calculus required by the inversion operation can
be performed on-line with a regular computer.
Section 3 presents a method of traditional if-then
rule extraction from neural networks, which have
not a special structure that facilitates the rule
extraction. The rule extraction method is tested, in
section 4, on a common benchmark control problem,
the liquid tank. The paper is ending with some
conclusions.

0-7803-6400-7/00/$10.00 ©2000 IEEE

Inverting neural networks

The inversion of a neural network is needed
especially in neural control structures, such as in
inverse and internal model neural control structures.
An inversion method was presented in [7]. We
improved this method and we obtained a more
computationally efficient inversion method of a
neural network.

Given a three layered neural network, which
represents the forward neural model of a process,
with q the number of the network inputs, h the
number of hidden nodes, and r the number of
network outputs. Within the q inputs of the network,
f inputs are considered to be fixed inputs (past inputs
and outputs of the process), and we have to
determine, by a searching procedure, the remaining
p inputs (p+f=q). Given the output vector y, we
have to find the input vector u which produces the
output y. By u it is denoted the vector of the p
unfixed inputs of the network, and by u¢ the vector
of the f fixed inputs of the network.

We have the following relations:

y=f'm-¢

wx=y)
where f is the nonlinear activation function of the
network nodes, x the output vector of the hidden
nodes, W is the weight matrix between hidden
layer and output layer, 6" is the bias vector of the

X
output layer. If W is a squared matrix. then it is
possible to calculate the input u:

YX -1,
x=(W)y
x=f"(x) -0
Xu \ Xu
W u=x-W: ur 2)

where qu is the weight matrix between unfixed
inputs and hidden layer, W¢ is the weight matrix
between fixed inputs and hidden layer, 8" is the bias

Fourth International Conference on knowledge-Based Intelligent Engineering Systems & Allied Technologies, 30" Aug-1* Sept 2000, Brighton,UK

vector of the hidden layer. When the hidden and the
output layers have exactly the same number of nodes
(h=r), the inversion of the network consists of
solving two linear equation systems ((1) and (2)). In

the following, consider d the vector d = fou u,
The general case of most neural models of real-
world processes is represented by neural networks
with h > r. In this case, it is possible to write the
matrix Wyx, by Jordan-Gauss elimination, in the
following form:

Xy X2 Xp Xy Xp Y

10 0] |
0 1. 0| |
.................... | ¢ |y*
 — | | |
00 ... 1] |

Partitioning the weight matrix W™ and the vectors
x, 6%and d, as given below:

x?
X =['J where
X

X' =[x, X2,, %]' and

X" = [Xet1, oees Xa]

qu_ WXU ex_ ex d_ dX
Wx”u ex” dx"

where

W*" isar xp matrix,and
W* Yisa (h-r)x p matrix
we have the relations:
X =f(W*"u+d* +6%)
X = f(WX “u+d* +0%)

The input u, which produces the desired output y, is
the solution of the equation:

x' = y* —Cx"
equivalent with:
v —CE(WX Yy +d* +0%)=f(WX%u+d* +6%)

Expanding [7] the nonlinear function f, through a
Taylor series around the point u,, the following

relations is obtained:

y" - CEWX By +d% 0%)4+ ['(WX Yy +dX +6%)
(WX "u =W Y) =f(W* %y +d* +6%)+
FWX Yy +d¥ +6% WX Su—WX4,) .

where:

218

£ W My + 7 +0)%)
£ (W My +dy% +0,%7)

£ (WX +d*" +6%") = Diag].

£ (W Xy +dy, Y0,)

£ (W uy +d)* +6)%)
£ (WN %y +dy% +6,%)
£ (W% +d* +0*)= Diag|.

£ (WX %y +d,% +0,%)

The notation DiagV, where V is a vector, specifies a
diagonal matrix with the components of vector V on
the main diagonal and all other matrix elements
zero. Solving the equation given above, the
following iterative relation is obtained:

u=uy +[(W +d* +6%)W*® 4+ (3)
O (WX Puy +d* +0% yW* by

[y" —CE(WX Yy +d* +6%)—f(W*uy +d* +6%)]

The matrix which must be inverted in the relation
given above is a r x p matrix. If the number of
unfixed network inputs is different than the number
of network outputs, the inverse from the equation (3)

must be replaced with the suitable pseudo-inverse.
Changing the notations as follows:

£ (W My +d +0)
£ (WM +d,% +8,)
£ W Ny +d¥ 405y =]

f’(wh—rx"uuk + dh—rx" + eh—rx")

£ WYy +d)% +0)
o o £(Wy %y +d, +0,7)
£ (WX, +d% +06¥) =],

£(W, Yy, +d,X +6,%)

the iterative relation (3) becomes:

u=1uy +[(W% +d* +0% oW Y +)
C(f (WX +d*" +6% yow > vy !
[y" —CEWX ™ uy +d*¥" +0%") = f(WX"yy +d* +6%)]

The operator o from the relation given above
multiplies a row of a matrix with the corresponding
element of the vector. In this way the complexity of
the calculus is significantly reduced, when the
iterative relation (4) is implemented, instead of
relation (3).

Fourth International Conference on knowledge-Based Intelligent Engineering Systems & Allied Technologies, 30" Aug-1" Sept 2000, Brighton,UK

Rule extraction by interval
propagation

In this section, we present a method for rule
extraction from neural networks with continuous
inputs and outputs. We named our method, the
method of interval propagation. The rules extracted
by this method are crisp if — then rules, in the
following form:

if (a<x3<by)and (a; <xy<by) ...
and (am SXm Sbm) then CijJ'de

where X, x5, ... , Xp are the inputs of the network
and y; is the j output of the network, j=1,2, ... , n.

A similar method which tries to extract rules in the
same form, out of a trained neural network, is the
VIA method, developed by Thrun in [9]. VIA
method refines the intervals of all units in the
network, layer by layer, by techniques of linear
programming, such as Simplex algorithm,
propagating the constraints forward and backward
through the network. The problem is that, VIA
method may fail sometimes to decide if a rule is
compatible or not with the network. Also the
intervals obtained by VIA method are not always
optimal. Our method continues the background ideas
of VIA method and eliminates the drawbacks of this
method.

Given P a layer in the network, and S the next layer.
Every node in layer S calculates the value

x; =f(Y wixxy +6;), where xy is the output
keP

(activation value) of node k in layer P, x; the output

of node i in the layer S, wy the weight of the link

between node k in layer P and node i in layer S, 9,

the bias of node i, and f the transfer function of the

units in the network. We can write the relations:

(M)keP Xk € [ag;by]
(V)ie$ Xi= Y wikxg +6;
keP
xi= f(x{)

For every node i € S, we note with wy;*, 1 € P;*,
the positive weights, and with w;;", 1 € P;", the
negative weights. (Pi+ P =P). The interval of

variation for x;’, {a;’;bj'}, ()i € S, is determined in
the following way:

a'i =y w5a|+ > wirb, +6;

leR* rep,”
. + _
b= w; by + > wira, +6;
lEPr I‘Epl-

219

and the variation interval for the activation value x;
of node i in layer S is [a;;b;], where: a; = f(a;") and b;
= f(b;"). In this way, the intervals are propagated,
layer by layer, from the input layer to the output
layer. So, given the variation intervals for inputs, the
intervals of variation for outputs are determined.
This is the forward phase. Some of the inputs may
be unconstrained, and in this case the intervals are
propagated forward across the network layers,
assigning the interval of maximum variation ([0; 1])
for unconstrained inputs.

The backward phase appears when it is given the
interval of variation for output and eventually for
some inputs, and it must be determined the interval
for unconstrained inputs. Suppose Xx;, X,, Xi are
the constrained inputs after renumerotation, and X,
., Xm the unconstrained inputs, and we want to
determine rules when (aj<x;<bp)and ..

.. (ag €xk <bg) and (Cj <yj de)‘

First, it is checked the compatibility of the following
rule:

if (a1 <xp3<by)and (ap <xp<by) ...
and (ay <xg <by)
then cj<yj<d;

with the network, assigning the maximum interval
([0; 1]) for unconstrained inputs. By forward
propagation, the variation interval [c;’; d;'] for output
is determined. If [cj';dj'] c [cj;dj], then the rule
given above is a general rule, and it does not have
sense to look for the variation intervals of remained
inputs. If the intersection [cj';dj’]r\[cj;dj]is
empty set, then the rule is incompatible with the

network. Otherwise, be Y, e[cj';dj']m[cj;dj].

By inverting the neural network as given in section
2, it is determined the input x*=(x;*, Xo*, ... X,*) of

the network which produce the output y;. The idea

is to find the maximal intervals around the values x,,
I=k+1, ..., m, so that the corresponding rule to be
compatible with the network. For example,
beginning with input x;, the right margin b, of the

variation interval is established to

*

* I- Xl

bl X1 + 2 .

If the rule with x| € [x?;bllis compatible with the

network, then the interval is enlarged, otherwise is
shrinking, with a technique of dividing intervals into
two halves, until the right margin b and a are
determined with a given error. The procedure

Fourth International Conference on knowledge-Based Intelligent Engi

continues until all the variation intervals for all
unconstrained inputs are determined. The hypercubs
determined at the input depend on the start position
- x*, and on the order of the determination of the
variation intervals for unconstrained inputs. Using
the method of inverting a neural network described
in section 2, the backward phase in VIA method can

.be reduced, with a very simple calculus, to a
forward propagation of the input intervals.

Case study

In order to test the rule extraction method presented
in previous section, we have taken the neural
network, trained to replace the inverse controller,
shown in figure 1, for the well known control
problem of liquid tank. The process is described by
the following equation, where K=7, A=30, ue[0;40],

ye[0;10}:
dy 1
= =—[u-Kyy]
d A
k) — K
c P& p Lyw
¥ (k- 1) —
Figure 1. Inverse neural control structure
Ya Y yad ybd u, up
0.5600 | 0.5700 | 0.5599 | 0.5701 | 0.5090 | 0.5400
0.5600 | 0.5700 | 0.5593 | 0.5696 | 0.4700 | 0.5096
0.5150 | 0.5250 | 0.5143 | 0.5251 | 0.4400 | 0.4896
0.5150 | 0.5250 | 0.5151 | 0.5257 | 0.4888 | 0.5200
0.5209 | 0.5800 | 0.4600 | 0.5209 0 0
0.4600 | 0.5640 | 0.5640 | 0.5800 1 1

The 6 extracted rules, for example, from the table
given above, cover just a small part of the network
functioning, and they were generated in order to
have good setpoint changes performances on a given
range of the setpoint variation. For a complete
description of the neural controller by a set of if-then
rules, we have to extract much more rules, more
precisely hundreds or thousands of rules. Using the
rule extraction method presented in section 2, we
randomly extracted 500 hundreds rules, which
covers 98% of the network functioning.
Consequently, we replaced the neural controller with
a rule based controller. The performances on
setpoint changes of the obtained rule based
controller are given in figure 2.

Every line in the table represents a rule in the
following form:

If yk-1) € [y, vp) and y4(K) € [y,% vp0
then u(k-1) € [u,; uy]

A rule is activated if the condition in the premise of
the rule is true. An inference cycle consists of

220

ing Systems & Allied Technologies, 30" Aug-1* Sept 2000, Brighton,UK
finding the set of activated rules, and then the
intersection of the intervals from the consequences
of the activated rules. The output of the controlier
will be the median value of the interval previously
found.

86

84

82

78 100 200

Figure 2. The performances of the rule based
controller on setpoint changes

Conclusions

A method of rule extraction from neural networks
was proposed in this paper. This method is useful in
neural based expert systems, and helps to explain the
decisions of the neural network in a familiar form
for human users. Also the paper presents an efficient
method of inverting a neural network, which can be
used in the inverse neural control structure and
neural model based control structure.

References

[1] Ishigami H., T. Fukuda, T. Shibata and F. Arai. Structure
Optimization of Fuzzy Neural Network by Genetic
Algorithm, Fuzzy Sets and System 71, pp. 257-265, 1995.

(2] B. Kosko, Neural Networks and Fuzzy Systems, Prentice -
Hall International Inc., 1992.

[3} Lin C.T. and C.S. George Lee, Neural - Network Based Fuzzy
Logic Control and Decision Systzm, IEEE Transactions on
Computers, vol. 40 No. 12, pp. 1320-1336, 1991.

[4] Neagu D., M. Negoita and V. Palade, Aspects of integration
of explicit and implicit knowledge in connectionist expert
systems, Proc. of the 6th International Conference on Neural
Information Processing, Perth - Australia, vol. 2, pp. 759-764,
1999.

[5] V. Palade, G.Puscasu and D. Neagu, GA optimization of
knowledge extraction from neural networks, Proc. of the 6th
International Conference on Neural Information Processing,
Perth - Australia, vol. 2, pp. 765-770, 1999.

[6] Pinkas G., Logical Inference in Symmetric connectionist
Networks, PhD. thesis, Washington University, 1992.

{71 G. M. Scott, Knowledge - Based Artificial Neural Networks
for Process Modelling and Control, PhD. thesis, University
of Wisconsin, 1993.

[8] Shann 1.J. and H.C. Fu, A fuzzy neural network for rule
acquiring on fuzzy control systems, Fuzzy Sets and
Systems vol. 71, pp. 345 — 357, 1995.

[9] Thrun S.B., Extracting Symbolic Knowledge from Artificial
Neural Networks, Revised Version of Technical Research
Report TR-IAI-93-5, Institut fur Informatik III - Universitit
Bonn, 1994.

[10] Towell G., J.W. Shavlik, The Extraction of Refined Rules
from Knowledge - Based Neural Networks, Machine-
Learning, vol.13, 1993.

[11] Yoo J.H., Symbolic Rule Extraction from Artificial Neural
Networks, PhD thesis, Wayne State University, 1993.

