
 

 

 

  

Abstract—Random undersampling and oversampling are 

simple but well-known resampling methods applied to solve the 

problem of class imbalance. In this paper we show that the 

random oversampling method can produce better classification 

results than the random undersampling method, since the 

oversampling can increase the minority class recognition rate 

by sacrificing less amount of majority class recognition rate 

than the undersampling method. However, the random 

oversampling method would increase the computational cost 

associated with the SVM training largely due to the addition of 

new training examples. In this paper we present an 

investigation carried out to develop efficient resampling 

methods that can produce comparable classification results to 

the random oversampling results, but with the use of less 

amount of data. The main idea of the proposed methods is to 

first select the most informative data examples located closer to 

the class boundary region by using the separating hyperplane 

found by training an SVM model on the original imbalanced 

dataset, and then use only those examples in resampling. We 

demonstrate that it would be possible to obtain comparable 

classification results to the random oversampling results 

through two sets of efficient resampling methods which use 

50% less amount of data and 75% less amount of data, 

respectively, compared to the sizes of the datasets generated by 

the random oversampling method. 

I. INTRODUCTION 

Class imbalance problem is commonly found in various 

machine learning applications [1]-[3]. In this paper we 

consider binary classification problem, where the positive 

class is treated as the minority class while the negative class 

is treated as the majority class. Support Vector Machines 

(SVMs) is a very popular machine learning algorithm due to 

its solid theoretical background, ability to find global 

classification solutions and high generalization capabilities 

[4]. Although SVMs work effectively with balanced datasets, 

they provide sub-optimal models with imbalanced datasets 

[5][6]. It has been identified that when an SVM model is 

developed with an imbalanced dataset, often, the separating 

hyperplane found can be skewed towards the minority class, 

which can result in a large number of false negative 

predictions [6]. This effect would lead to the development of 

models having low positive recognition rates 

(SE=Sensitivity) and high negative recognition rates 
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(SP=Specificity). 

Among the available class imbalance learning techniques, 

random undersampling and oversampling are simple yet very 

popular resampling methods [1]-[3]. In random 

undersampling, the examples from the majority class are 

removed until the datasets are balanced. In random 

oversampling, the minority class examples are randomly 

duplicated to balance the datasets. The random 

undersampling method has been criticized in some papers 

stating that the random removal of a large percentage of 

negative examples can result in a huge information loss 

[1][7][8]. The oversampling method does not possess any 

information loss, and hence, could produce better results. 

However, due to the addition of new training examples, the 

oversampling increases the computational requirements 

needed to develop machine learning models largely. This 

increase in computational cost would be significant for 

SVMs, since the standard SVM learning has )( 3lO  time 

complexity, where l  is the number of training examples 

[9][10]. 

The main purpose of this paper is to propose an efficient 

resampling method from which we would be able to obtain 

comparable classification results to the random oversampling 

results, but with the generation of less amount of data. The 

main idea of the proposed method is to first select the most 

informative negative examples, and then apply random 

oversampling to duplicate positives to match with the 

number of selected negatives, rather than blindly 

oversampling positives to match with all the negatives as in 

the random oversampling method. In the initial experiments 

we considered that the examples located around the class 

boundary are the most informative ones, and used the 

separating hyperplane found by SVM learning on the 

original imbalanced dataset to select the most informative 

examples. During these experiments we identified that what 

matters the most in class imbalance learning is not the 

difference in the number of positive and negative examples, 

but the difference in the distributions of them (i.e. the 

positive and negative data densities) around the class 

boundary. Based on these observations, we introduced 

several efficient resampling methods from which we were 

able to obtain comparable classification results to the random 

oversampling results, first by using 50% less amount of data 

and then by using 75% less amount of data compared to the 

size of the datasets generated by the random oversampling 

method. We evaluated all the experiments carried out in this 
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research on five real-world imbalanced datasets. 

This paper is organized as follows. First, in section 2 we 

introduce the imbalanced datasets used in the experiments 

conducted in this research. Then in section 3 we explain the 

problems associated with the conventional random 

undersampling and oversampling methods through the 

experimental results obtained on the datasets considered. 

Section 4 introduces the main idea of the proposed efficient 

resampling methods. Then Section 5 details the proposed 

resampling methods to reduce the oversampling data by 50% 

with the experimental results obtained. Afterwards, Section 6 

discusses the proposed resampling methods to reduce the 

data by 75% and the results obtained. Finally, the 

conclusions are drawn in Section 7. 

II. IMBALANCED DATASETS CONSIDERED 

For the experiments carried out in this research we 

considered four large imbalanced Bioinformatics datasets 

(miRNA, Splice-site, Promoter and Drug-like) used in our 

previous research in class imbalance learning [11]. In 

addition, we considered the Pageblocks dataset from the UCI 

machine learning repository [12]. These five datasets are 

described below: 

miRNA dataset: this dataset was used in our previous 

research [13][14], which is available at 

http://web.comlab.ox.ac.uk/people/ManoharaRukshan.Batuw

ita/microPred.htm. This dataset contains 691 positives (real 

miRNA hairpins) and 9248 negatives (negative hairpins), 

which was represented by 21 features. 

Splice-site dataset: This dataset originates from 

http://www.fruitfly.org/sequence/human-datasets.html. We 

considered the training and testing data splits as given in the 

original dataset, where the training dataset contains 1116 

positives and 4672 negatives, while the testing dataset 

contains 208 positives and 881 negatives. This dataset was 

represented by the statistical features introduced in [15]. 

Promoter dataset: This human promoter dataset is 

available at http://www.fruitfly.org/sequence/human-

datasets.html, which contains 565 promoters, 890 cds and 

4345 introns. After removing the sequences containing 

missing bases, we recovered 471 promoters as the positive 

dataset, and combined 840 cds and 4241 introns as the 

negative dataset. This dataset was represented by 16 features 

[11]. 

Drug-target dataset: This dataset has been constructed and 

used in [16], which is composed of 521 drug target proteins 

(positives) and 5019 non-target proteins (negatives). This 

dataset was represented by 290 features. 

Page-blocks dataset: This dataset was obtained from the 

UCI machine learning repository. Out of the 5 classes 

available in this dataset, the examples belonged to the class 

number 5 were selected as the positive dataset, while the 

examples belonged to the remaining classes were combined 

as the negative dataset. This resulted in 115 positives and 

5358 negatives represented by 10 features. 

III. PROBLEMS OF THE EXISTING RESAMPLING METHODS 

As mentioned earlier, the random undersampling method 

has been criticized in the literature stating that it can remove 

a lot of informative examples which could be useful in the 

development of the classifiers [1][7][8]. In this section we 

investigate the problems associated with random 

undersampling and oversampling methods through the 

classification results obtained on the above datasets. 

For each dataset, we trained SVM models, first, with the 

original imbalanced dataset, and then with the datasets 

generated by the random undersampling and oversampling 

methods. We used the libsvm package [17] as the SVM 

learning environment. For the miRNA, Promoter, Drug-like 

and Pageblocks datasets we evaluated the performance of 

SVM models through an extensive five fold cross-validation 

method. For the splice-site dataset, we used the training and 

testing datasets as they were given in the original dataset. As 

the performance measure, we considered the Geometric 

mean of SE and SP ( SPSEGm ⋅= ) as commonly used in 

class imbalance learning research [5][6][13]. 

In these experiments, the random oversampling and 

undersampling methods were applied to the training dataset 

partitions until they were balanced and left the testing dataset 

partitions in their original imbalanced distributions. Due to 

the randomness associated with these resampling methods, 

each method was repeated five times in each cross-validation 

run and the results obtained on the testing partitions were 

averaged. The classification results obtained from these 

initial experiments are given in Table 1. The columns dSE 

and dSP represent the amount of SE increased and the 

amount of SP decreased by applying the corresponding 

resampling method compared to the normal SVM results. 

Table 1 also compares the sizes of the training datasets 

produced by the resampling methods with the size of the 

original imbalanced datasets.  

From these results we could first see that all the 

imbalanced datasets resulted in sub-optimal models having 

high SP and low SE in normal SVM training. Then when the 

undersampling and oversampling methods were applied, SE 

was increased and SP was decreased in different amounts for 

different datasets (generally, this happens when applying 

class imbalance learning methods as increasing both SE and 

SP simultaneously are two contradictory goals). For all the 

datasets considered we could observe that the undersampling 

method decreased SP more than the oversampling method 

did. On the other hand, we also observed that the random 

undersampling increased SE more than the random 

oversampling method did. Therefore, from these raw results 

we would not be able to directly see any effect of the 

‘information loss’ caused by the random undersampling 

method. Also, based on the Gm values we could not observe 

any significant difference between random oversampling and 

undersampling results. 



 

 

 

TABLE 1.COMPARISON OF THE CLASSIFICATION RESULTS OBTAINED BY THE RANDOM UNDERSAMPLING AND OVERSAMPLING METHODS WITH THE NORMAL 

SVM RESULTS.  

Dataset Method Classification results Size of training dataset 

  SE SP Gm dSE dSP R Pos. Neg. Total 

miRNA Normal 82.78 99.45 90.73    533 7398 7931 

Undersampling 91.03 93.02 92.02 +8.25 -6.43 0.78 533 533 1066 

Oversampling 89.93 96.53 93.17 +7.15 -2.92 0.41 7398 7398 14796 

           

Promoter Normal 25.69 98.75 50.37    377 4105 4482 

Undersampling 70.08 80.67 75.19 +44.39 -18.78 0.42 377 377 754 

Oversampling 68.89 82.56 75.42 +43.20 -16.89 0.39 4105 4105 8210 

           

Splice-site Normal 73.56 96.71 84.34    1116 4672 5788 

Undersampling 89.33 89.74 89.53 +15.77 -6.97 0.44 1116 1116 2232 

Oversampling 87.88 91.12 89.49 +14.32 -5.59 0.39 4672 4672 9344 

           

Drug-like Normal 71.59 97.15 83.40    417 4015 4432 

Undersampling 90.75 84.67 87.66 +19.26 -12.48 0.65 417 417 834 

Oversampling 88.29 88.94 88.61 +16.70 -8.21 0.49 4015 4015 8030 

           

Pageblocks Normal 58.26 99.52 76.14    92 4286 4378 

Undersampling 93.74 92.52 93.13 +35.48 -6.99 0.20 92 92 184 

Oversampling 91.83 94.88 93.34 +33.57 -4.63 0.14 4286 4286 8572 

 

Therefore, in order to compare the results produced by 

these resampling methods with each other, we introduced a 

simple measure: dSEdSPR /= . R represents the amount of 

SP reduced when the SE is increased by 1%, through 

applying a particular resampling method for a particular 

dataset. Based on the R values given in Table 1, we could 

see that for each dataset random oversampling method 

resulted in a lower R value than the random undersampling 

method. That is, the random undersampling method 

sacrificed a higher amount of SP than the random 

oversampling method in order to increase the SE by 1%. We 

believe that this high reduction of SP in undersampling 

occurred due to the removal of a large percentage of 

negative examples randomly, which could discard a lot of 

informative negatives (i.e. the information loss). 

Generally, for any imbalanced classification problem, by 

applying a class imbalance learning method it is vital to 

increase SE as much as possible with a less amount of 

reduction of SP in order to obtain a high overall 

classification result (i.e., a high SE and a high SP). Based on 

the above results, we can argue that the oversampling 

method could result in better overall classification results 

than the undersampling method, since the oversampling 

could increase SE with a lower rate of reduction of SP than 

the undersampling method. However, as we can observe, the 

major problem generated by the oversampling method is the 

large increase of training dataset size due to the addition of 

new positive examples to balance the datasets (compare the 

sizes of the datasets generated by the oversampling method 

to the original imbalanced dataset given in Table 1). This 

would significantly increase the computational power 

required to train SVM models whose standard time 

complexity is )( 3lO . 

IV. PROPOSED METHOD: THE MAIN IDEA   

As we showed in the previous section, although the 

oversampling method could produce better classification 

results than the undersampling method, it increases the 

required computational power to train a classification model 

hugely due to the addition of new minority class examples to 

balance the datasets. In this study we mainly investigated to 

develop an efficient resampling method from which we 

would be able to obtain comparable classification results to 

the oversampling results, but with reduced computational 

cost. The main idea of the proposed method was to first 

select only the most informative negative examples and then 

apply oversampling to balance them, rather than blindly 

oversampling the positive examples to match with the total 

number of negative examples. As the initial idea, we treated 

the examples located closer to the class boundary as the most 

informative ones as these are the examples contributing 

mostly when finding the separating hyperplane in SVM 

learning. That is, in SVM learning, usually the examples 

located closer to the class boundary are selected as the 

support vectors. Therefore, we used the separating 

hyperplane found by applying the SVM algorithm on the 

original imbalanced dataset to identify the examples located 

closer to the class boundary. Hereafter, we refer to this 

hyperplane as the imbalanced hyperplane. We assumed that 

this imbalanced hyperplane is still located around the actual 

class boundary, although it can be skewed towards the 

minority class due to the effect of class imbalance, as 

mentioned previously. 

V. REDUCTION OF DATA BY 50% 

First, we considered a resampling method that generated a 

dataset which was half the size of the dataset generated by 



 

 

 

the random oversampling method. In these experiments we 

first selected 50% of negative examples in different ways 

and then oversampled the positives to match with the 

selected negatives. With 50% reduction of data, we would 

be able to reduce the theoretical upper-bound of the SVM 

time complexity to )8/( 3lO . 

A. The closest 50% negatives 

In this initial experiment we first selected the 50% of 

negative examples located closest to the imbalanced 

hyperplane and all the positive examples. Then we randomly 

over-sampled the positives to match with the selected 

number of negatives. We named this method as ‘closest-

50%-over’ method. We applied this method to balance the 

datasets considered, developed SVM classifiers and 

evaluated their results. These results are given in Table 2. 

Here we directly compare the SE and SP obtained by the 

proposed method with the SE and SP obtained by the 

random oversampling method. 
 

TABLE 2. COMPARISON OF THE CLASSIFICATION RESULTS OBTAINED BY THE 

CLOSEST-5O%-OVER METHOD WITH THE RANDOM OVERSAMPLING RESULTS. 

Dataset Method Results (%) 

  SE SP 

miRNA Normal 82.78 99.45 

Oversampling 89.93 96.53 

Closest-50%-over 87.39 98.32 

Promoter Normal 25.69 98.75 

Oversampling 68.89 82.56 

Closest-50%-over 62.64 86.96 

Splice-site Normal 73.56 96.71 

Oversampling 87.88 91.12 

Closest-50%-over 82.12 94.44 

Drug-like Normal 71.59 97.15 

Oversampling 88.29 88.94 

Closest-50%-over 80.99 93.68 

Pageblocks Normal 58.26 99.52 

Oversampling 91.83 94.88 

 Closest-50%-over 86.09 95.97 

 
From the classification results presented in Table 2 we 

can see that the proposed method did not manage to yield 

comparable classification results with the random 

oversampling results. That is, for all the datasets the closest-

50%-over method did not increase SE as much as the 

random oversampling method did. In order to find out the 

reason behind this problem, we closely investigated the 

distributions of the dataset generated by the closest-50%-

over method with respect to the imbalanced-hyperplane. 

The distributions of the original imbalanced dataset, the 

dataset generated by the random oversampling method and 

the dataset generated by the closest-50%-over method for 

the miRNA dataset are depicted in Figure 1. These 

distributions for the Splice-site dataset are given in Figure 2. 

These figures show the frequencies of training examples 

located in different distances from the imbalanced-

hyperplane. Since the geometric distance of a training 

example is directly proportional to its SVM decision value 

[4], actually what we plotted in these figures are the 

frequencies of training examples (in y axis) against their 

decision values with respect to the imbalanced-hyperplane 

(in x axis). The distribution of the positive dataset is 

represented by a solid line while the distribution of the 

negative dataset is represented by a dotted line.  
 

 
Figure 1. Distributions of the miRNA dataset (a). Original imbalanced 

dataset. (b). Dataset generated by the random oversampling method. (c). 

Dataset generated by the closest-50%-over method.  

 

 
Figure 2. Distributions of the Splice-site dataset  (a). Original imbalanced 

dataset. (b). Dataset generated by the random oversampling method. (c). 

Dataset generated by the closest-50%-over method. 



 

 

 

From Figure 1.(a) and Figure 2.(a) for each original 

imbalanced dataset we can clearly see the higher negative 

density compared to the positive density, which caused the 

development of sub-optimal models having low SE. Then we 

can see that when the oversampling method was applied to 

balance a dataset the positive density was increased largely 

(Figure 1.(b) and Figure 2.(b)), which caused the 

development of models having increased SE but with some 

reduction of SP. 

Next we compare the distribution of the dataset generated 

by the 50%-closest-over method with the distribution of the 

dataset generated by the random oversampling method. 

From this comparison we can observe that the 50%-closest-

over method did not manage to increase the positive density 

around the separating hyperplane as much as the random 

oversampling method did. However, the 50% of selected 

negatives closest to the separating hyperplane by this method 

still possessed the same high original negative density 

around the separating hyperplane (and hence, around the 

class boundary region) as the negative density of the dataset 

selected by the oversampling method. Due to this reason 

50%-closest-over method was unable to increase the SE as 

much as random oversampling method did. These 

observations indicate the importance of the distribution of 

negative and positive data densities around the class 

boundary in class imbalance problem. In order to investigate 

this matter further we conducted the experiment explained in 

the following section. 

B. Investigating the effect of class densities around the 

class boundary region 

In this section we explain an experiment carried out to 

further investigate the effect of the distributions of positive 

and negative densities around the class boundary in class 

imbalance problem. Here we applied a focused 

undersampling method which selected the negative examples 

located closest to the imbalanced hyperplane to match with 

the number of positive examples in the dataset. For example, 

for the miRNA dataset we selected 533 negative examples 

located closest to the imbalanced-hyperplane to balance the 

533 positive examples in the training dataset. We named this 

method as ‘closest-under’ method. We applied this method 

to balance the datasets considered, and then developed SVM 

classifiers and evaluated their performance. The 

classification results obtained by this focused undersampling 

method are compared with the original imbalanced results 

and the random undersampling results given in Table 3. 

From these results we can observe that the proposed 

closest-under method did not manage to increase the SE any 

closer to the amount of SE increased by the random 

undersampling method. In other words, the results given by 

the closest-under method are more comparable to the 

original imbalanced classification results, which were 

obtained by the normal SVM training, than to the random 

undersampling results. In fact, for the miRNA, Splice-site 

and Drug-like datasets, results given by the closest-under 

method are more similar to the results given by the original 

imbalanced classification results. In order to investigate the 

cause of this problem we closely compared the distributions 

of the datasets generated by the closest-under method with 

the distribution of the dataset generated by the random 

undersampling method and the original imbalanced dataset 

for the miRNA dataset. These distributions are depicted in 

Figure 3. 
 

TABLE 3. COMPARISON OF THE CLASSIFICATION RESULTS OBTAINED BY THE 

CLOSEST-UNDER METHOD WITH THE RANDOM UNDERSAMPLING AND NORMAL 

SVM RESULTS. 

Dataset Method Results (%) 

  SE SP 

miRNA Normal 82.78 99.45 

Undersampling 91.03 93.02 

Closest-under 81.34 99.36 

    

Promoter Normal 25.69 98.75 

Undersampling 70.08 80.67 

Closest-under 43.53 93.47 

    

Splice-site Normal 73.56 96.71 

Undersampling 89.33 89.74 

Closest-under 73.56 96.71 

    

Drug-like Normal 71.59 97.15 

Undersampling 90.75 84.67 

Closest-under 72.93 96.94 

    

Pageblocks Normal 58.26 99.52 

Undersampling 93.74 92.52 

Closest-under 69.57 97.83 
 

 
Figure 3. Distributions of the miRNA dataset (a). Original imbalanced 

dataset. (b). Dataset generated by the random undersampling method. (c). 

Dataset generated by the closest-under method.  
 
From Figure 3.(b) we can see that random undersampling 



 

 

 

method decreased the negative density around the 

hyperplane largely compared to the original imbalanced 

distribution given in Figure 3.(a). Therefore, the dataset 

generated by random undersampling method resulted in 

models having high increase of SE, but at the cost of large 

decrease of SP. When we observe the distribution of the 

dataset generated by the closest-under method given in 

Figure 3.(c), we can see that the selected closest negatives to 

the hyperplane (to match with the number of positive 

examples) still possessed a large negative density very close 

to the separating hyperplane (and hence around the class 

boundary region) like in the original imbalanced dataset. We 

found this same effect when we observed the distributions of 

the other datasets considered in this study. Due to this high 

negative density around the class boundary, despite the fact 

that the positive and negative datasets were balanced, 

closest-under method was unable to increase the SE much or 

at all, and produced comparable results to the original 

imbalanced learning results. 

The overall findings in this experiment further convinced 

us that what matters the most in class imbalance learning is 

not the imbalance in the number of positive and negative 

training examples, but the imbalance in the distribution of 

their densities with respect to the class boundary. Related to 

this we further identified that selecting data located closer to 

the class boundary by treating that they are more informative 

alone would not solve the class imbalance problem. 

C. Improving the proposed resampling method 

As we observed earlier, the proposed efficient resampling 

method, 50%-closest-over, did not manage to produce 

comparable results with the oversampling results due to the 

higher negative density of the generated dataset around the 

class boundary. Therefore, in order to obtain comparable 

classification results with the oversampling results we 

looked into two solutions of improving the proposed 

resampling method. One method was to select 50% of 

negative examples located closest to the separating 

hyperplane as previously and increase the positive density 

closer the hyperplane by oversampling. As we closely 

observed the distributions of the original imbalanced 

datasets for all these five datasets we could see that they 

were distributed in different ranges with respect to the 

corresponding separating hyperplane. For examples, the 

positive examples in the miRNA dataset (Figure 1.(a)) are 

distributed in a wider range than the distribution of the 

positive examples in the Splice-site dataset (in Figure 2.(a)). 

Therefore, it would not be possible to find a common range 

around the hyperplane, which would be effectively suitable 

for all the datasets, to over-sample the positives in order to 

obtain a higher positive density. Therefore, we did not 

consider this method as a solution to our problem. 

The other solution was to select 50% of negative 

examples having less negative density around the hyperplane 

than the density of the closest 50% negatives, and over-

sample the positives in the normal way to balance the 

dataset. Since this method could be applied to all the datasets 

considered without any problem, we considered this method 

in our study. Based on this idea we proposed following two 

resampling methods: 
 
1) 75%-under(0.33)-over 

In this method we selected 75% of negatives located closest 

to the imbalanced-hyperplane, and removed 1/3 of them by 

random undersampling to retain 50% of the total negatives. 

From this way we could select 50% of negatives having less 

density around the hyperplane than the 50% of closest 

negatives. Then we randomly over-sampled all the positives 

to balance the dataset. 
 
2) 100%-under(0.5)-over 

In this method we first selected all the negative examples in 

the dataset and removed half of them by random 

undersampling. Then we considered all the positives and 

applied random oversampling to balance the dataset. 
 
We applied these two methods to balance all the datasets 

considered. Then we developed SVM classifiers and 

evaluated their results through 5-fold cross-validation 

learning. Due to the randomness involved, each of this 

proposed resampling method was repeated five times for 

each cross-validation run and the results were averaged. The 

results obtained in these experiments are compared with 

random oversampling results in Table 4. 
 

TABLE 4. COMPARISON OF THE CLASSIFICATION RESULTS OBTAINED BY THE  

PROPOSED RESAMPLING METHODS WHICH REDUCE DATA BY 50% 

Dataset Method Results 

  SE SP ED 

miRNA Oversampling 89.93 96.53  

Undersampling 91.03 93.02 3.68 

Closest-50%-over 87.39 98.32 3.11 

75%-under(0.33)-over 89.00 97.23 1.16 

100%-under(0.5)-over 90.74 96.16 0.89 

 
 

   

Promoter Oversampling 68.89 82.56  

Undersampling 70.08 80.67 2.23 

Closest-50%-over 62.64 86.96 7.64 

75%-under(0.33)-over 66.05 85.36 3.99 

100%-under(0.5)-over 69.23 81.13 1.46 

     

Splice-site Oversampling 87.88 91.12  

Undersampling 89.33 89.74 2.00 

Closest-50%-over 82.12 94.44 6.65 

75%-under(0.33)-over 86.25 92.74 2.29 

100%-under(0.5)-over 88.75 90.83 0.92 

     

Drug-like Oversampling 88.29 88.94  

Undersampling 90.75 84.67 4.93 

Closest-50%-over 80.99 93.68 8.70 

75%-under(0.33)-over 87.14 89.82 1.44 

100%-under(0.5)-over 88.29 88.44 0.50 

     

Pageblocks Oversampling 91.83 94.88  

Undersampling 93.74 92.52 3.04 

Closest-50%-over 86.09 95.97 5.84 

75%-under(0.33)-over 87.83 95.17 4.01 

100%-under(0.5)-over 89.57 94.90 2.26 



 

 

 

In order to compare the SE and SP obtained from a 

proposed resampling method ),( ii SPSE  with the SE and SP 

given by the random oversampling method ),( oo SPSE , we 

used the Euclidean distance (ED) between the results 

)})(){(( 2/122

ioio SPSPSESEED −+−= . Here we did not 

consider any unit performance measure, such as Gm, to 

compare the results, since the same value in Gm can be 

resulted by different combinations of the SE and SP values. 

For example, (SE=92%, SP=98%) and (SE=98%, SP=92%) 

would result in the same Gm value which is 94.95%. In 

Table 4 we also present the results obtained by the random 

undersampling method and the 50%-closest-over method for 

the comparative reasons. The random oversampling results 

and the closest results to them are depicted in bold type. 

Among all the resampling methods considered so far, 

from the 100%-under(0.5)-over method we were able to 

obtain the most comparable classification results to the 

oversampling results by using only half of the amount of 

data used by the random oversampling method. 

VI. REDUCTION OF DATA BY 75% 

We further extended our experiments to observe whether 

we could obtain comparable classification results to the 

oversampling results by reducing the amount of data by 

75%. The main idea of this method would be to select 25% 

of negative example and oversample the positives to balance 

the dataset. With 75% reduction of data the SVM training 

complexity could be further reduced to )64/( 3NO . 

Based on the results obtained from the 50%-closest-over 

and closest-under method in the previous experiments, we 

did not consider the closest-25%-over method (i.e. selecting 

the 25% negatives closest to the imbalanced hyperplane and 

oversampling the positives to balance the dataset) as it 

would not give comparable classification results to the 

oversampling results due to the high negative density of the 

selected examples. In contrast, we considered the following 

resampling methods which deal with the selection of 25% of 

negative examples having less negative density around the 

imbalanced hyperplane in different ways and oversample 

the positives to balance the datasets. 

 

1) 50%-under(0.5)-over 

In this method we first selected the 50% of negatives located 

closest to the imbalanced hyperplane and then applied 

random undersampling to remove half of them. Then we 

randomly oversampled the positives to balance the dataset. 

 

2) 75%-under(0.67)-over 

In this method we first selected 75% of negative examples 

located closest to the imbalanced hyperplane and then 

removed 2/3 of them by random undersampling. Then we 

applied oversampling to balance the dataset. 

 

3) 100%-under(0.75)-over 

In this method we selected all the negatives and removed 

75% of them by random undersampling. Then we over-

sampled the positives randomly to balance the dataset. 

 

We applied these resampling methods to balance the 

datasets considered in this research, developed SVM 

classifiers and evaluated their results by using 5-fold cross-

validation. Due to the randomness involved in these 

resampling methods, each method was repeated five times for 

each cross validation training partition and results were 

averaged. The results obtained are compared with the random 

oversampling results in Table 5. As earlier, we considered 

the Euclidean distance to compare the results obtained by the 

proposed resampling methods with the random oversampling 

results. Here we also present the random undersampling 

results and the results obtained by the 100%-under(0.5)-over 

method (the best 50% data reduction method), which is given 

in italic type, for the comparative reasons. 

 
TABLE 5. COMPARISON OF THE CLASSIFICATION RESULTS OBTAINED BY THE  

PROPOSED RESAMPLING METHODS WHICH REDUCE DATA BY 75% 

Dataset Method Results 

  SE SP ED 

miRNA Oversampling 89.93 96.53  

Undersampling 91.03 93.02 3.68 

50%-under(0.5)-over 87.99 97.93 2.39 

75%-under(0.67)-over 89.29 96.97 0.77 

100%-under(0.75)-over 90.05 95.85 0.69 

100%-under(0.5)-over 90.74 96.16 0.89 

     

Promoter Oversampling 68.89 82.56  

Undersampling 70.08 80.67 2.23 

50%-under(0.5)-over 62.43 86.30 7.46 

75%-under(0.67)-over 66.26 84.00 2.99 

100%-under(0.75)-over 68.81 81.79 0.78 

100%-under(0.5)-over 69.23 81.13 1.46 

     

Splice-site Oversampling 87.88 91.12  

Undersampling 89.33 89.74 2.00 

50%-under(0.5)-over 82.98 93.83 5.60 

75%-under(0.67)-over 87.60 91.58 0.54 

100%-under(0.75)-over 88.75 90.42 1.12 

100%-under(0.5)-over 88.75 90.83 0.92 

     

Drug-like Oversampling 88.29 88.94  

Undersampling 90.75 84.67 4.93 

50%-under(0.5)-over 84.84 92.67 5.08 

75%-under(0.67)-over 86.34 90.02 2.23 

100%-under(0.75)-over 88.33 88.48 0.46 

100%-under(0.5)-over 88.29 88.44 0.50 

     

Pageblocks Oversampling 91.83 94.88  

Undersampling 93.74 92.52 3.04 

50%-under(0.5)-over 82.61 96.38 9.34 

75%-under(0.67)-over 88.70 95.34 3.16 

100%-under(0.75)-over 92.70 94.23 1.09 

100%-under(0.5)-over 89.57 94.90 2.26 

 

Interestingly, we can observe that the best 75% data 



 

 

 

reduction method (depicted in bold type) gave closer results 

to the random oversampling results than the best 50% data 

reduction method based on the values of ED. That is, 100%-

under(0.75)-over method resulted in the closest results to the 

random oversampling results for miRNA, Promoter, Drug-

like and Pageblocks datasets among all the efficient 

resampling methods considered in this research. Although 

for the Splice-site dataset the 75%-under(0.67)-over method 

resulted in the closest results, the results given by the 100%-

under(0.75)-over method were not much far away from the 

results given by the random oversampling method. 

We finally compare the R values (the amount of SP 

sacrificed when increasing the SE by 1%) calculated with 

respect to the SE increased and SP decreased by the 100%-

under(0.75)-over method with the R values of the random 

oversampling and the undersampling methods in Table 6. 

From these results we can see that although the amount of 

SP sacrificed by the 100%-under(0.75)-over method was a 

bit higher than the random oversampling method, it was 

lower than the random undersampling method. 
 

TABLE 6. COMPARISON OF THE R VALUES 

  dSE dSP R 

miRNA Oversampling +7.15 -2.92 0.41 

Undersampling +8.25 -6.43 0.78 

100%-under(0.75)-over +7.27 -3.60 0.49 

     

Promoter Oversampling +43.20 -16.89 0.39 

Undersampling +44.39 -18.78 0.42 

100%-under(0.75)-over +43.12 -17.66 0.40 

     

Splice-site Oversampling +14.32 -5.59 0.39 

Undersampling +15.77 -6.97 0.44 

100%-under(0.75)-over +15.19 -6.29 0.41 

     

Drug-like Oversampling +16.70 -  8.21 0.49 

Undersampling +19.26 -12.48 0.65 

100%-under(0.75)-over +16.74 -  8.67 0.52 

     

Pageblocks Oversampling +33.57 -4.63 0.14 

Undersampling +35.48 -6.99 0.20 

 100%-under(0.75)-over +34.44 -5.29 0.15 

VII. CONCLUSION 

In this paper, first, we demonstrated that the random 

oversampling method can increase SE with a lower rate of 

reduction of SP than the random undersampling method. 

Then we pointed out that the main problem generated by the 

random oversampling method as the increase of 

computational cost due to the addition of new training 

examples. In order to overcome this problem we 

experimented with the development of different efficient 

resampling methods. Through two sets of efficient 

resampling methods (first reduction of data by 50% and then 

reduction by 75%) we demonstrated that the comparable 

classification results to oversampling can be obtained by 

using fewer amounts of data. In these experiments we 

observed that what is more important in class imbalance is 

the imbalance of the distribution of positive and negative 

data densities around the class boundary. 

By considering the experimental results obtained and 

amount of data reduced, we can recommend that the 100%-

under(0.75)-over method for obtaining comparable 

classification results to the oversampling results, which 

generates only 25% of the data compared to the random 

oversampling method. As future work, it would be interesting 

to experiment with larger datasets to investigate the 

possibility of obtaining comparable classification results with 

oversampling results by further reduction of the training data. 
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