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Abstract: The early detection of faults (just beginning and still developing) can help avoid
system shutdown, breakdown and even catastrophes involving human fatalities and
material damage. Computational intell igence techniques are being investigated as
extension of the traditional fault diagnosis methods. This paper discusses the properties of
the TSK/Mamdani approaches and neuro-fuzzy (NF) fault diagnosis within an application
study of an electro-pneumatic valve actuator in a sugar factory. The key issues of finding
a suitable structure for detecting and isolating ten realistic actuator faults are described.
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1. INTRODUCTION

The mathematical model used in the traditional Fault
Detection and Isolation (FDI) methods is sensitive to
modelling errors, parameter variation, noise and
disturbance. Process modell ing has limitations,
especially when the system is complex and uncertain
and the data are ambiguous i.e. not information rich.

Computational Intell igence (CI) methods (Neural
Networks (NN), Fuzzy Logic (FL), Evolutionary
Algorithms (EA) are known to overcome some of the
above mentioned problems (Patton et al 2000).
Neural networks are known to approximate any non-
linear function, given suitable weighting factors and
architecture. Moreover, on-line training makes it
possible to change the FDI system easily in cases
where changes are made in the physical process or
the control system. NN can generalise when
presented with inputs not appearing in the training
data and make intelligent decisions in cases of noisy
or corrupted data.  However, the NN operates as a
“black box” with no qualitative information available
of the model it represents (Patton, 1994).

Fuzzy logic systems on the other hand have the
abili ty to model a non-linear system and to express it
in the form of linguistic rules making it more
transparent i.e easier to interpret. They also have
inherent abiliti es to deal with imprecise or noisy data
therefore making them suitable for fault diagnosis
(Dexter, 1995). Neuro-fuzzy (NF) model is a
combination of neural network and fuzzy logic to
exploit the learning abili ty of NN and the reasoning
abili ty of FL.

This paper provides a tutorial study of the use of NF
structure identification and clustering methods with
application to a non-linear model of an electro-
pneumatic valve system. It is well known that for the
non-linear systems the problem of discriminating
between uncertain model behaviour and faults
present a significant challenge. This paper describes
a multiple-model strategy, taking care of multiple
operating points through the NF modell ing
framework. Section 2 outlines the value of the NF
approach to modelli ng, whilst Section 3 enters more
into details of structure identification prior to
describing the NF model construction strategy in



Section 4. The remainder of the paper is concerned
with the fault diagnosis application problem.

2. WHAT IS A NEURO-FUZZY MODEL

The Neuro-fuzzy model combines, in a single
framework, both numerical and symbolic knowledge
about the process. Automatic linguistic rule
extraction is a useful aspect of NF especially when
littl e or no prior knowledge about the process is
available (Brown and Harris, 1994; Jang, 1995). For
example, a NF model of a non-linear dynamical
system can be identified from the empirical data.
This model can give us some insight about the non-
linearity and dynamical properties of the system.

The most common NF systems are based on two
types of fuzzy models TSK (Takagi and Sugeno,
1985; Sugeno and Kang, 1988) and Mamdani (1995,
1996) combined with NN learning algorithms. TSK
models use local li near models in the consequents,
which are easier to interpret and can be used for
control and fault diagnosis (Füssel, et al 1997; Ballé
et al 1997). Mamdani models use fuzzy sets as
consequents and therefore give a more qualitative
description.  Many neuro-fuzzy structures have been
successfully applied to a wide range of applications
from industrial processes to financial systems,
because of the ease of rule base design, linguistic
modelling, application to complex and uncertain
systems, inherent non-linear nature, learning
abiliti es, parallel processing and fault-tolerance
abiliti es.  However, successful implementation
depends heavil y on prior knowledge of the system
and the empirical data (Ayoubi, 1995).

Neuro-fuzzy networks by intrinsic nature can handle
limited number of inputs. When the system to be
identified is complex and has large number of inputs,
the fuzzy rule base becomes large.

NF models usually identified from empirical data are
not very transparent. Transparency accounts a more
meaningful description of the process i.e less rules
with appropriate membership functions. In ANFIS
(Jang, 1993, 1995) a fixed structure with grid
partition is used. Antecedent and consequent
parameters are identified by a combination of least
squares estimate and gradient based method, called
hybrid learning rule. This method is fast and easy to
implement for low dimension input spaces. It is more
prone to lose the transparency and the local model
accuracy because of the use of error back-
propagation that is a global and not locally non-
linear optimisation procedure. One possible method
to overcome this problem can be to find the
antecedents & rules separately e.g. clustering and
constrain the antecedents, and then apply
optimisation.

Hierarchical NF networks can be used to overcome
the dimensionali ty problem by decomposing the
system into a series of MISO and/or SISO systems
called hierarchical systems (Tachibana and
Furuhashi, 1994). The local rules use subsets of input
spaces and are activated by higher level rules.

The criteria on which to build a NF model are based
on the requirements for faults diagnosis and the
system characteristics. The function of the NF model
in the FDI scheme is also important i.e. Pre-
processing data, Identification (Residual generation)
or classification (Decision Making/Fault Isolation).
For example a NF model with high approximation
capabili ty and disturbance rejection is needed for
identification so that the residuals are more accurate.
Whereas in the classification stage, a NF network
with more transparency is required.

The following characteristics of NF models are
important:

• Approximation/Generalisation capabiliti es
• Transparency: Reasoning/use of prior

knowledge /rules
• Training Speed/ Processing speed
• Complexity
• Transformabili ty: To be able to convert in other

forms of NF models in order to provide different
levels of transparency and approximation power.

• Adaptive learning

Two most important characteristics are the
generalising and reasoning capabiliti es. Depending
on the application requirement, usually a
compromise is made between the above two.

3. STRUCTURE IDENTIFICATION OF NF
MODELS

For complexity reduction and transparency, Structure
Identification methods can be applied to find
appropriate input partition, rules & membership
functions (MFs). Methods like Evolutionary
Algorithms (EA), Classification and Regression
Trees CART (Jang, 1994), Clustering and
unsupervised NN (e.g. like the Kohonen feature
maps) can be used.  Once the structure is determined
i.e. the rules and input membership functions, the
consequent parameters can be identified by
optimisation techniques like Least-Squares
Estimation.  The Product Space Clustering approach
can be used (Babuska, 1998) for structure
identification of TSK & Mamdani fuzzy models.  For
a MISO non-linear dynamic system with p inputs, the

Product space 1)( +ℜ⊂× pYX  is divided in

subspaces in which linear models can approximate
the non-linear system. Locally linear model tree
LOLOMOT algorithm developed by Nelles can be
used to identify a TSK fuzzy model with dynamic
linear models as consequents. When using such
structure identification techniques, a major issue is
the sensitivity to uneven distribution of data.  For
example in most clustering algorithms, more clusters
are created in regions with more data.  A possible
solution to this is problem may be to initialise the
algorithm with large number of clusters.

Transparency of the NF models can be enhanced by
tuning rules & MFs (Babuska, 1998).  This kind of
methods are referred to as structure simplification/
optimisation techniques.   To find the optimal



number of rules, different cluster validity measures
and methods like Compatible Cluster Merging CCM
(Krishnapuram and Freg, 1992) can be used.   At NF
model level the rules are further simplified by
merging similar fuzzy sets & removing fuzzy sets
similar to the universal set.  Setnes et al., (Setnes and
Kaymak 1998) used a supervised fuzzy clustering
algorithm that uses input-output data, orthogonal
techniques and tuning for complexity reduction.

4. CONSTRUCTION OF NEURO-FUZZY
MODELS

Two major classes of knowledge representation in
fuzzy modelling are proposed by Takagi and Sugeno
(Takagi and Sugeno, 1985) and Mamdani (Mamdani
et al 1976).

In linguistic or Mamdani fuzzy model both
antecedents and consequents are linguistic fuzzy sets.
This model is mainly used to give a more linguistic
description of the process

This fuzzy model can be represented as a multi-layer
NF network (Fig.1) in which the input/output
membership functions, rules, normalisation and de-
fuzzification stages are expressed as neuron layers.

The ith input fuzzy set in Layer-1 can be described by
a Gaussian membership function with centres mi and
spread iσ .
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The second layer consists of rule neurons. The firing
strength of each rule is given by:
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Applying COA de-fuzzification (Layers-3,4,5) the
output y can be calculated as (W Hauptmann and K
Heesche 1995)
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where Mk and Ak are the moments and areas of the
kth output membership function and
wkj = 1 if partial connection exists
          0  otherwise

The rules can be expressed as:

R1: if x1 is A1 and x2 is B1…  then y is C1

R2: if x1 is A2 and x2 is B2…  then y is C2

…
Rn: if x1 is An and x2 is Bn…  then y is Cn

Where (A1,A2…An, B1,B2…Bn,… ) are the input
fuzzy sets and (C1,C2…Cn… ) are the output fuzzy
sets.  The number of trainable parameters is usually
large and some structure identification is needed to
find the optimal network i.e. the number of rules,

shape and position of the membership functions is
determined.  EA or Gradient based algorithms can be
used for training. This kind of network is more
transparent and close to human reasoning but the
complexity is high and the training is difficult.
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y
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Fig. 1  Structure of Mamdani NF model.

TSK models with linear functions as consequents can
be expressed as a non-linear function approximation
by local l inear models selected by fuzzy rules. In
TSK fuzzy system (Fig. 2) the antecedents are
similar to the the Mamdani fuzzy system. The
consequents can be any function describing the
response of the model within the fuzzy region.

The same approach is applied as in the previous
network, to express the TSK fuzzy system as a neural
network. Fig.2 shows an example of such a network
with two inputs, one output and two rules.
Antecedent and consequent parameters can be
optimised by Gradient-based optimisation
algorithms.  Hybrid learning rule by Jang (1993) can
be applied for faster learning.
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Fig. 2  Structure of TSK NF model.

The output of this model can be expressed as:
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where f1 and f2 are the outputs of the two sub-models
(fi=aix+biy+ci; i=1,2) and ai,bI and ci are the linear
parameters of ith linear model.  The rules are in the
following form:

R1: if x is A1 and y is B1 then  f1

R2: if x is A2 and y is B2 then  f2

TSK fuzzy models are suitable for the accurate
modelling and identification but are less transparent
than Mamdani models.



5. NF BASED FAULT DETECTION AND
ISOLATION

Fig. 3 describes a FDI scheme in which several NF
models are constructed to identify the faulty & the
fault free behaviour of the system.
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Each residual ri in (6) is ideally sensitive to one
particular fault in the system. In practice however
because of noise and disturbances, residuals are
sensitive to more than one faults.

To take into account the sensitivity of residuals to
various faults and noise we apply a NF classifier.  A
linguistic style (Mamdani) NF network is used which
processes the residuals to indicate the fault.

This NF model is constructed with following set of
rules:

I f r1 is small … rr is large … rn is small
then faultr is large

Fuzzy threshold evaluation (7) is employed to take
into account the imprecision of the residual generator
at different regions in the input space.
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Fig. 3  Neuro-fuzzy based FDI scheme.
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C is the total number of I/P regions with different
sensitivity to faults and a multidimensional fuzzy set

iµ  defines the fuzzy boundary of i th such region.

This approach heavily depends on the availabili ty of
the faulty and fault free data and it is more difficult
to isolate faults that appear in the dynamics.

Residuals can also be generated by a non-linear
dynamic model of the plant that approximates a non-
linear dynamic system by local l inear models.  Such
a model can be obtained by Product space clustering
(Babuska 1998), or tree-like algorithms (LOLIMOT
algorithm by Nelles, 1995).  Each local model is a

linear approximation of the process in an I/P
subspace and the selection of the local model is
fuzzy.  The output of such model can be described by
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where fi is the ith local li near model given by:
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ai  , bi and ci are the parameters of the ith model, us is

the I/P subspace defining the operating point, iα is

the degree to which the ith local model is valid at this
operating point.

ai  , bi and ci are the parameters of the ith model, us is

the I/P subspace defining the operating point, iα is

the degree to which the ith local model is valid at this
operating point.

From ai , bi and ci physical parameters like time
constants, static gains, offsets etc (Füssel 1997) can
be extracted for each operating point and can be
compared with the parameters estimated online. This
approach heavily depends on the accuracy of the
non-linear dynamic model described above. Also the
output error should be minimum when operated in
parallel to the system. Moreover, this method
requires that there is sufficient excitation at each
operating point for online estimation of parameters.
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Fig. 4.  TSK NF based FDI scheme.

6. CASE STUDY: FDI OF AN ELECTRO-
PNEUMATIC VALVE ACTUATOR

The valve considered for FDI is an electro-pneumatic
flow controller in the evaporisation stage of a sugar
factory. Here we constructed a non-linear
mathematical model of the valve using SIMULINK
and MATLAB.  The model is then used to generate
faulty/ fault-free data to evaluate the Neuro-fuzzy
based fault isolation schemes presented in the



previous sections. The whole valve assembly
consists of 3 main parts (Fig. 5):

Internal PI

+ Positioner

+Servo motor

ValveP

I

r u x f

Fig. 5  Main parts of the valve assembly.

The PI controller controls the Positioner & Actuator
output to regulate the flow through the valve
Positioner and Actuator: Pneumatic pressure is
applied to the servomotor diaphragm to control the
stem position that changes the flow.  The Positioner
adjusts this pressure input to the servomotor to obtain
the correct stem position of the actuator.
The Valve: is the final element in the assembly
which  alters the flow according to the stem position.

The following list of faults are considered in the
valve actuator assembly:
f1 - External PI controller proportional gain fault
f2 - External PI controller integral gain fault
f3 - Increased friction of the servomotor
f4 - Decreased elasticity of the servomotor
f5 - Decrease of pneumatic pressure
f6 - Internal PI controller fault
f7- Internal position sensor fault
f8 - Valve clogging
f9 - Valve leakage
f10 - Chocked flow

Two neuro-fuzzy models are used here with
transparent structure.  A TSK structure with linear
dynamic models as consequents is used to
approximate the internal PI controller, the Positioner
and servomotor.  This system’s non-linearity is
mainly in the dynamics i.e. a transparent TSK model
is ideal for this case. The TSK model identified has
three locally linear models as consequents.  The time
constants of these local models are 18sec, 12sec and
8sec, respectively which show that the system is
faster at high values of flow and slower at the low
values.

Figure 6 shows the performance of the TSK model in
closed-loop, parallel to the system.
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Fig. 6  Performance of TSK model.

From the local models, and RLSE the changes in
physical parameters e.g. time constant (rTC), static
gain (rSG), static (rS0) offset and settling time (rST)
are computed. These changes are the residuals which
can be used for fault isolation.

A Linguistic/Mamdani NF model is identified to
approximate the valve. The model input is the stem
position x and the output is volumetric flow rate f.
From input set-point flow and measured flow,
integrating and using RLSE, the control input u can
be predicted. GK-clustering algorithm (Gustafson &
Kessel 1979) is used to partition the input space (Fig.
7), where clusters are projected onto the I/O space to
find MF’s. Gradient-based optimisation method is
used to fine-tune the MFs (Fig. 8).

Cluster-1

Cluster-3

Cluster-2

Fig. 7.  Valve data clustered in three groups.
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Fig. 8  Tuned I/O MFs for Mamdani model.

Table 1: Fault Isolation

f1 F2 f3 f4 f5 f6 f7 f8 f9 f10

ru Op
+
Cl
-

Op
-
Cl
+

~ ~ ~ ~ ~ ~ ~ ~

rx ~ ~ ~ ~ ~ ~ Ch ~ ~ ~
rf ~ ~ ~ ~ ~ ~ ~ Op

+
Cl
-

Op
-
Cl
+

-

rst ~ ~ + + 0 - ~ ~ ~ ~
rtc ~ ~ + - + - ~ ~ ~ ~
rs0 ~ ~ 0 0 0 + ~ ~ ~ ~

Op+ : Positive value when valve is being opened
Op- : Negative value when valve is being opened
Cl+ : Positive value when valve is being closed
Cl-  : Negative value when valve is being closed
Ch  : Changed



The predicted values u, x, f and the measured values
are used to generate the residuals ru , rx , rf. Fault
isolation table given in table-1 shows that some
faults could only be detected during the time when
the valve is being opened and closed. Moreover,
choked flow could only be detected at high values of
flow.

7. CONCLUSIONS

Neuro-fuzzy systems not only have powerful
approximation abiliti es for modell ing unknown
dynamic non-linear systems, but a high level
language description of the system can also be
obtained.  The transparent structure of NF is very
useful to study the effect of faults on system
characteristics.  In this work different approaches for
NF based fault diagnosis are studied. An approach is
presented which uses TSK and Mamdani NF models
to generate residuals. For structure identification
GK-Clustering algorithm is used and ten realistic
faults are diagnosed in the electro-pneumatic valve
actuator model. The main challenges of NF based
FDI methods are to minimise false alarms enhance
detectabili ty and isolabil ity and minimise detection
time by hardware implementation.
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