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Abstract. The Continuous Skolem Problem asks whether a real-valued function satisfying
an ordinary linear differential equation has a zero in a given interval of real numbers. This
is a fundamental reachability problem arising in the analysis of continuous linear dynamical
systems, including linear hybrid automata and continuous-time Markov chains. Not only is
decidability of this problem open, but decidability is open even for the sub-problem in which
a zero is sought in a bounded interval. In this paper we show decidability of the bounded
problem subject to Schanuel’s conjecture, a central conjecture in transcendental number
theory. Regarding the unbounded case, by way of hardness we show that decidability of the
Continuous Skolem Problem would entail a major new effectiveness result in Diophantine
approximation, namely computability of the Diophantine-approximation types of all real
algebraic numbers.
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1 Introduction

The Continuous Skolem Problem is a fundamental decision problem concerning reachability in
continuous-time linear dynamical systems. The problem asks whether a real-valued function sat-
isfying an ordinary linear differential equation has a zero in a given interval of real numbers. More
precisely, an instance of the problem comprises an interval I ⊆ R≥0 with rational endpoints and
an ordinary differential equation

f (n) + an−1f
(n−1) + . . .+ a0f = 0 (1)

with the coefficients a0, . . . , an−1 and initial conditions f(0), . . . , f (n−1)(0) being real algebraic
numbers. Writing f : R≥0 → R for the unique solution of the differential equation that satisfies
the initial conditions, the question is whether there exists t ∈ I such that f(t) = 0. Decidability of
this problem is currently open. Decidability of the sub-problem in which the interval I is bounded,
called the Bounded Continuous Skolem Problem, is also open [2, Open Problem 17].

The nomenclature Continuous Skolem Problem is based on viewing the problem as a contin-
uous analog of the Skolem Problem for linear recurrence sequences, which asks whether a given
linear recurrence sequence has a zero term [11]. Whether the latter problem is decidable is an
outstanding question in number theory and theoretical computer science; see, e.g., the exposition
of Tao [19, Section 3.9].

The continuous dynamics of linear hybrid automata and the evolution of continuous-time
Markov chains, amongst many other examples, are determined by linear differential equations of
the form x′(t) = Ax(t), where x(t) ∈ Rn and A is an n × n matrix of real numbers [1]. A basic
reachability question in this context is whether, starting from an initial state x(0), the system
reaches a target halfplane {y ∈ Rn : uTy = 0}, where u ∈ Rn. For example, one can ask whether
the continuous flow of a hybrid automaton in a given location leads to a particular transition
guard being satisfied. Now the function f(t) = uTx(t) satisfies a linear differential equation of the
form (1), so such reachability questions can immediately be reduced to the Continuous Skolem
Problem (see [2] for further details). Moreover, under this reduction, time-bounded reachability
problems map to instances of the Bounded Continuous Skolem Problem.

The characteristic polynomial of the linear differential equation (1) is

χ(x) := xn + an−1x
n−1 + . . .+ a0 .

Let λ1, . . . , λm be the distinct roots of χ. Any solution of (1) has the form f(t) =
∑m

i=1 Pi(t)e
λit,

where the Pi are polynomials with algebraic coefficients that are determined by (and computable
from) the initial conditions of the differential equation, see [2]. We call a function f in this form an
exponential polynomial. The Continuous Skolem Problem can equivalently be formulated in terms
of whether an exponential polynomial has a zero in a given interval of reals.

In this paper we show decidability of the Bounded Continuous Skolem Problem subject to
Schanuel’s Conjecture, a unifying conjecture in transcendental number theory, generalising both
the Lindemann-Weierstrass Theorem and Baker’s Theorem on linear independence of logarithms
of algebraic numbers. A celebrated paper of MacIntyre and Wilkie [15] obtains decidability of
the first-order theory of the real exponential field, assuming Schanuel’s conjecture. While this
result is relevant to the present paper, we emphasize that we are concerned here with complex
exponentiation. Schanuel’s conjecture is also invoked in the analysis of exponential polynomials
in [8,20], although not in the context of decidability.

Intuitively, decidability of the Bounded Continuous Skolem Problem is non-trivial because an
exponential polynomial f can approach 0 tangentially. It is not obvious a priori how to confirm the
existence of a tangential zero by finite-precision numerical computation. Moreover it is clear that
tangential zeros can arise: a very simple example is the exponential polynomial f(t) = 2+2 cos(t).
Note that in this case f can be written as a product of exponential polynomials f(t) = (1 +
eit)(1 + e−it), with the two factors having common zeros. More generally, assuming Schanuel’s
Conjecture, we show that any exponential polynomial admits a factorisation such that the zeros
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of each factor can be detected using finite-precision numerical computations. Our method however
does not enable us to bound the precision required to find zeros, so, as yet, we have no complexity
upper bound for our procedure.

In the unbounded case, by way of hardness, we show that decidability of the Continuous Skolem
Problem would entail major new effectiveness results in Diophantine approximation. These results
concern the behaviour of continued-fraction expansions of real algebraic numbers. As we discuss
further in Section 4, currently almost nothing is known about such expansions for numbers of
degree three or higher.

1.1 Related Work

As we have noted, the Continuous Skolem Problem can be seen as asking whether the solution
of a differential equation x′(t) = Ax(t) reaches a target halfplane starting from initial position
x(0). The corresponding problem of reaching a given target vector has recently been shown to be
decidable in polynomial time [4,10].

The paper [2] gives some partial decidability results for the Continuous Skolem Problem. These
results all require strong assumptions on the matrix A in the equation x′(t) = Ax(t), e.g., that A
be a Metzler matrix or that A have dimension 2. Under similarly restrictive spectral assumptions
on A [2, Theorem 14] shows how to reduce the Continuous Skolem Problem to the bounded
problem. The reachability problem for linear flows x′(t) = Ax(t) has also been considered under
the framework of o-minimal hybrid systems [13, Corollary 3.10]. Here again one requires strong
spectral assumptions on A to obtain decidability, i.e., that A be nilpotent or that its spectrum be
either entirely real or entirely imaginary.

For linear recurrence sequences, a relation is observed in [16] between Diophantine approxi-
mation properties of logarithms of algebraic numbers and the Positivity Problem: decide whether
all terms of a given sequence are positive. However no such connection is known for the (discrete)
Skolem Problem.

2 Mathematical Background

2.1 Zero Finding

Our procedure for computing zeros of exponential polynomials is based on a straightforward
sampling method. Let f : (a, b) → R be a differentiable function defined on a bounded open
interval of reals with rational endpoints. Assume that given a rational argument t ∈ (a, b) and
positive error bound ε ∈ Q we can compute f(t) to within additive error ε, i.e., we can compute
q ∈ Q such that |f(t)−q| < ε. Assume also that we are given a bound M such that |f ′(t)| ≤ M for
all t ∈ (a, b). Finally we suppose that the equations f(t) = f ′(t) = 0 have no solution t ∈ (a, b), i.e.,
f has no tangential zeros. Under the above assumptions we describe a procedure for computing
zeros of f .

For each integer N ≥ 2 we consider N − 1 evenly spaced sample points sj := (N−j)a+jb

N
,

j = 1, . . . , N − 1, in the interval (a, b). For each sample point sj , we compute a rational number
qj such that |qj − f(sj)| <

1
N

and proceed as follows:

1. If qj1 ≥ 1
N

and qj2 ≤ − 1
N

for some j1, j2 ∈ {1, . . . , N − 1} then output that f has a zero in
(a, b).

2. If qj > M+1
N

for all k ∈ {1, . . . , N − 1} or qj < −M+1
N

for all j ∈ {1, . . . , N − 1} then output
that f has no zero in (a, b).

3. If neither of the above hold then the result is inconclusive and we proceed to the next value
of N .

It is not hard to see that the above procedure eventually terminates given our assumption that f
has no tangential zeros in (a, b).
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2.2 Number-Theoretic Algorithms

Recall that a standard way to represent an algebraic number α is by its minimal polynomial M
and a numerical approximation of sufficient accuracy to distinguish α from the other roots of
M [5, Section 4.2.1]. Given two algebraic numbers α and β under this representation, the Field
Membership Problem is to determine whether β ∈ Q(α) and, if so, to return a polynomial P with
rational coefficients such that β = P (α). This problem can be decided using the LLL algorithm,
see [5, Section 4.5.4].

Given the characteristic polynomial χ of a linear differential equation we can compute ap-
proximations to each of its roots λ1, . . . , λm to within an arbitrarily small additive error [17].
Moreover, by repeatedly using an algorithm for the Field Membership Problem we can compute
a primitive element θ for the splitting field of χ and representations of λ1, . . . , λm as polynomials
in θ. Thereby we can determine maximal Q-linearly independent subsets of {ℜ(λj) : 1 ≤ j ≤ m}
and {ℑ(λj) : 1 ≤ j ≤ m}.

Let log denote the branch of the complex logarithm defined by log(reiθ) = log(r) + iθ for
a positive real number r and 0 ≤ θ < 2π. Recall that one can compute log z and ez to within
arbitrarily small additive error given a sufficiently precise approximation of z [3].

2.3 Laurent Polynomials

Fix non-negative integers r and s, and consider a single variable x and tuples of variables y =
〈y1, . . . , yr〉 and z = 〈z1, . . . , zs〉. Consider the ring of Laurent polynomials

R := C[x, y1, y
−1
1 , . . . , yr, y

−1
r , z1, z

−1
1 , . . . , zs, z

−1
s ] ,

which can be seen as a localisation of the polynomial ring A := C[x, y1, . . . , yr, z1, . . . , zs] in the
multiplicative set generated by the set of variables {y1, . . . , yr} ∪ {z1, . . . , zs}. The multiplicative
units of R are the non-zero monomials in variables y1, . . . , yr and z1, . . . , zs. As the localisation
of a unique factorisation domain, R is itself a unique factorisation domain [6, Theorem 10.3.7].
From the proof of this fact it moreover easily follows that R inherits from A the properties that a
polynomial with algebraic coefficients factors as a product of polynomials that also have algebraic
coefficients and that this factorisation can be effectively computed [12].

We extend the operation of complex conjugation to a ring automorphism of R as follows.
Given a polynomial

P =

n
∑

j=1

ajx
ujy1

vj1 . . . yr
vjrz1

wj1 . . . zs
wjs ,

where a1, . . . , an ∈ C, define its conjugate to be

P :=
n
∑

j=1

ajx
ujy1

vj1 . . . yr
vjrz1

−wj1 . . . zs
−wjs .

This definition corresponds to the intuition that variables x and y1, . . . , yr are real-valued, while
variables z1, . . . , zs take values in the unit circle in the complex plane.

We will need the following proposition concerning polynomials in R that are associated with
their conjugates. Here we use pointwise notation for exponentiation: given a tuple of integers
u = 〈u1, . . . , us〉, we write zu for the monomial zu1

1 . . . zus
s .

Proposition 1. Let P ∈ R be such that P = zuP for u ∈ Zs. Then either (i) P has an associate
Q ∈ R such that Q = Q, or (ii) there exists Q ∈ R such that P = Q+zuQ and P does not divide
Q in R.
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Proof. Consider a monomial M such that zuM = M . Then M has a real coefficient and the
exponent w of z in M satisfies 2w = u. Thus if zuM = M for every monomial M appearing in
P then P has the form Qzw, where 2w = u and Q is a polynomial in the variables x and y with
real coefficients. In particular Q = Q, and statement (i) of the proposition applies.

Suppose now that zuM 6= M for some monomial M appearing in P . Then the map sending
M to zuM induces a permutation of order 2 on the monomials on P . Thus we may write P =
∑n

j=1 Mj, where n = k + 2ℓ for some k ≥ 0 and ℓ ≥ 1 such that zuMj = Mj for 1 ≤ j ≤ k

and zuMj = Mj+ℓ for k + 1 ≤ j ≤ ℓ. Then, writing Q := 1
2

∑k

j=1 Mj +
∑k+ℓ

j=k+1 Mj , we have

P = Q+ zuQ.

The set of monomials appearing in Q is a proper subset of the set of monomials appearing
in P (up to constant coefficients). Thus Q cannot be a constant multiple of P . Furthermore for
each variable σ ∈ {x, yj , zk : 1 ≤ j ≤ r, 1 ≤ k ≤ s}, the maximum degree of σ in P is at least
its maximum degree in Q, and likewise for σ−1. It follows that Q cannot be a multiple of P by a
non-constant polynomial. We conclude that P does not divide Q. ⊓⊔

2.4 Schanuel’s Conjecture

The main result of this section depends on Schanuel’s conjecture, one of the central conjectures
in transcendental number theory [14], which, if true, generalises most known results in the field.
Recall that a transcendence basis of a field extension L : K is a subset S ⊆ L that is algebraically
independent over K and such that L is algebraic over K(S). All transcendence bases of L : K
have the same cardinality, which is called the transcendence degree of the extension.

Conjecture 2 (Schanuel’s Conjecture [14]) Let a1, . . . , an be complex numbers that are lin-
early independent over Q. Then the extension

Q(a1, . . . , an, e
a1 , . . . , ean) : Q

has transcendence degree at least n.

A special case of Schanuel’s conjecture, that is known to be true, is the Lindemann Weierstrass
Theorem: if a1, . . . , an are algebraic numbers that are linearly independent overQ, then ea1 , . . . , ean

are algebraically independent.

We apply Schanuel’s conjecture via the following proposition.

Proposition 3. Let {a1, . . . , ar} and {b1, . . . , bs} be Q-linearly independent sets of real algebraic
numbers. Furthermore, let P,Q ∈ R be two polynomials that have algebraic coefficients and are
coprime in R. Then the equations

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 (2)

Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 (3)

have no non-zero solution t ∈ R.

Proof. Consider a solution t 6= 0 of Equations (2) and 3. By passing to suitable associates, we may
assume without loss of generality that P and Q lie in A, i.e., that all variables in P and Q appear
with non-negative exponent. Moreover, since P and Q are coprime in R, their greatest common
divisor R in A is a monomial. In particular,

R(t, ea1t, . . . , eart, eib1t, . . . , eibst) 6= 0 .

Thus, dividing P and Q by R, we may assume that P and Q are coprime in A and that Equa-
tions (2) and 3 still hold.
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By Schanuel’s conjecture, the extension

Q(a1t, . . . , art, ib1t, . . . , ibst, e
a1t, . . . , eart, eib1t, . . . , eibst) : Q

has transcendence degree at least r+s. Since a1, . . . , ar and b1, . . . , bs are algebraic over Q, writing

S := 〈t, ea1t, . . . , eart, eib1t, . . . , eibst〉 ,

it follows that the extension Q(S) : Q also has transcendence degree at least r + s.

From Equations (2) and (3) we can regard S as specifying a common root of P and Q. Pick
some variable σ ∈ {x, yj , zj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} that has positive degree in P . Then the
component of S corresponding to σ is algebraic over the remaining components of S. We claim
that the remaining components of S are algebraically dependent and thus S comprises at most
r+s−1 algebraically independent elements, contradicting Schanuel’s conjecture. The claim clearly
holds if σ does not appear in Q. On the other hand, if σ has positive degree in Q then, since P
and Q are coprime polynomials, the multivariate resultant Resσ(P,Q) is a non-zero polynomial in
the set of variables {x, yj, zj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} \ {σ} which has a root at S (see, e.g., [7, Page
163]). Thus the claim also holds in this case. In either case we obtain a contradiction to Schanuel’s
conjecture and we conclude that Equations (2) and (3) have no non-zero solution t 6= 0. ⊓⊔

3 Decidability of the Bounded Skolem Problem

Let {a1, . . . , ar} and {b1, . . . , bs} be Q-linearly independent sets of real algebraic numbers and
consider the exponential polynomial

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) , (4)

where P ∈ R is irreducible. We say that f is a Type-1 exponential polynomial if P and P are
not associates in R, we say that f is Type-2 if P = αP for some α ∈ C, and we say that f is
Type-3 if P = UP for some non-constant unit U ∈ R. These three cases are mutually exhaustive
by construction.

Example 4. The simplest example of a Type-3 exponential polynomial is g(t) = 1 + eit. Here
g(t) = P (eit), where P (z) = 1+z is an irreducible polynomial that is associated with its conjugate
P (z) = 1 + z−1. Note that the exponential polynomial f(t) = 2 + cos(t) from the Introduction
factors as the product of two type-3 exponential polynomials f(t) = g(t)g(t).

In the case of a Type-2 exponential polynomial P = αP it is clear that we must have |α| = 1.
Moreover, by replacing P by βP , where β2 = α, we may assume without loss of generality that
P = P . Similarly, in the case of a Type-3 exponential polynomial, we can assume without loss of
generality that P = zuP for some non-zero vector u ∈ Zs.

Now consider an arbitrary exponential polynomial f(t) :=
∑n

j=1 Pj(t)e
λjt. Let {a1, . . . , ar} be

a basis of the Q-vector space spanned by {ℜ(λj) : 1 ≤ j ≤ n} and let {b1, . . . , bs} be a basis of the
the Q-vector space spanned by {ℑ(λj) : 1 ≤ j ≤ n}. Without loss of generality we may assume
that each characteristic root λ is an integer linear combination of a1, . . . , ar and ib1, . . . , ibs. Then
eλt is a product of positive and negative powers of ea1t, . . . , eart and eib1t, . . . , eibst. It follows that
there is a Laurent polynomial P ∈ R such that

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) . (5)

Since P can be written as a product of irreducible factors, it follows that f can be written as
product of Type-1, Type-2, and Type-3 exponential polynomials, and moreover this factorisation
can be computed from f . Thus it suffices to show how to decide the existence of zeros of these
three special forms of exponential polynomial. We will handle all three cases using Schanuel’s
conjecture.
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Theorem 5. The Bounded Continuous Skolem Problem is decidable subject to Schanuel’s conjec-
ture.

Proof. Consider an exponential polynomial

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) , (6)

where {a1, . . . , ar} and {b1, . . . , bs} are Q-linearly independent sets of real algebraic numbers, and
P ∈ R is irreducible. We show how to decide whether f has a zero in a bounded interval I ⊆ R≥0,
considering separately the case of Type-1, Type-2, and Type-3 exponential polynomials.

If f(t) = 0 and t is algebraic then ea1t, . . . , eart, eib1t, . . . , eibst are algebraically dependent
over Q. But this is impossible unless t = 0 by the Lindemann Weierstrass. Thus f(t) 6= 0 for any
non-zero rational number t and it is no loss of generality to assume that I = (c, d) is an open
interval.

Case (i): f is Type-1

By assumption, P and P are not associates in (6) and are therefore coprime. We claim that in
this case the equation f(t) = 0 has no solution t ∈ R. Indeed f(t) = 0 implies

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 ,

and the non-existence of a zero of f follows immediately from Proposition 3.

Case (ii): f is Type-2

In this case we have P = P in (6) and so f is real-valued. It will suffice to show that the equations
f(t) = f ′(t) = 0 have no solution t ∈ R, for then we can use the procedure of Section 2.1 to
determine whether or not f has a zero in (c, d).

We can write f ′(t) in the form

f ′(t) = Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) ,

where Q is the polynomial

Q =
∂P

∂x0
+

r
∑

j=1

ajxj

∂P

∂xj

+
s

∑

j=1

ibjzj
∂P

∂zj
.

We claim that P and Q are coprime. Indeed, since P is irreducible, P and Q can only fail to be
coprime if P divides Q.

If P has strictly positive degree d in x then Q has degree d−1 in x and thus P cannot divide Q.
On the other hand, if P has degree 0 in x then Q is obtained from P by multiplying each monomial
yuzv appearing in P by the constant

∑r

j=1 ajuj + i
∑s

j=1 bjvj . Moreover, by the assumption of
linear independence of {a1, . . . , ar} and {b1, . . . , bs}, each monomial in P is multiplied by a different
constant. Since P is not a unit it has at least two different monomials and so P is not a constant
multiple of Q. Furthermore, for each variable σ ∈ {yj, y

−1
j : 1 ≤ j ≤ r} ∪ {zj, z

−1
j : 1 ≤ j ≤ s},

the degree of σ in P is at least the degree of σ in Q. Thus P cannot be a multiple of Q by a
non-constant polynomial.

We conclude that P does not divide Q and hence P and Q are coprime. It now follows from
Proposition 3 that the equations f(t) = f ′(t) = 0 have no solution t ∈ R.
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Case (iii): f is Type-3

Suppose that f is a Type-3 exponential polynomial. Then in (6) we have that P = zuP for some
non-zero vector u ∈ Zs. By Proposition 1 we can write P = Q+ zuQ for some polynomial Q ∈ R
that is coprime with P .

Now define

g1(t) := Q(t, ea1t, . . . , eart, eib1t, . . . , eibst)

and g2(t) := eib1u1 . . . eibsusg1(t), so that f(t) = g1(t) + g2(t) for all t.

We show that g2(t) 6= 0 for all t ∈ R. Indeed if g2(t) = 0 for some t then we also have g1(t) = 0
and hence f(t) = 0. For such a t it follows that

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0

Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 .

But P and Q are coprime and so these two equations cannot both hold by Proposition 3. Not only
do we have g2(t) 6= 0 for all t ∈ R, but, applying the sampling procedure in Section 2.1 to |g2(t)|

2

we can compute a strictly positive lower bound on |g2(t)| over the interval (c, d).

Since g2(t) 6= 0 for all t ∈ R we may define the function h : (c, d) → R by

h(t) := i log

(

g1(t)

g2(t)

)

+ π .

Note that h(t) = 0 if and only if f(t) = 0. Our aim is to use the procedure of Section 2.1 to decide
the existence of a zero of h in the interval (c, d), and thus decide whether f has a zero in (c, d). To
this end, we first observe that using the strictly positive lower bound on |g2(t)| over the interval
(c, d), obtained above, we can compute an upper bound on |h′(t)| on (c, d). It remains to show
that h has no tangential zeros in this interval.

Now let t ∈ (c, d) be such that h(t) = 0. Then g1(t) = −g2(t). Moreover for such t, recalling
that g2(t) 6= 0, we have

h′(t) = 0 iff
g2(t)

g1(t)

g′1(t)g2(t)− g′2(t)g1(t)

g2(t)2
= 0

iff g′1(t)g2(t)− g′2(t)g1(t) = 0

iff g′1(t)g2(t) + g′2(t)g2(t) = 0

iff g′1(t) + g′2(t) = 0

iff f ′(t) = 0 .

Thus h(t) = h′(t) = 0 implies f(t) = f ′(t) = 0. But the proof in Case (ii) shows that
f(t) = f ′(t) = 0 is impossible. (Nothing in that argument hinges on f being real-valued.) Thus h
has no tangential zeros and this concludes the proof. ⊓⊔

4 The Unbounded Case

In this section we show that decidability of the Continuous Skolem Problem entails significant new
effectiveness results in Diophantine approximation, thereby identifying a formidable mathematical
obstacle to further progress in the unbounded case.

Diophantine approximation is a branch of number theory concerned with approximating real
numbers by rationals. A central role is played in this theory by the notion of continued fraction
expansion, which allows to compute a sequence of rational approximations to a given real number
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that is optimal in a certain well-defined sense. For our purposes it suffices to note that the be-
haviour of the continued fraction expansion of a real number a is closely related the (homogeneous
Diophantine approximation) type of a, which is defined to be

L(a) := inf
{

c :
∣

∣

∣
a−

n

m

∣

∣

∣
<

c

m2
for some m,n ∈ Z

}

.

If a has simple continued fraction expansion a = [n1, n2, n3, . . .], then, writing K(a) := supk≥0 nk,
it is shown in [18, pp. 22-23] that L(a) = 0 if and only if K(a) is infinite and otherwise

K(a) ≤ L(a)−1 ≤ K(a) + 2 .

It is well known that a real number algebraic number of degree two over the rationals has a
continued fraction expansion that is ultimately periodic. In particular, such numbers have bounded
partial quotients. But nothing is known about real algebraic numbers of degree three or more—no
example is known with bounded partial quotients, nor with unbounded quotients. Guy [9] asks:

Is there an algebraic number of degree greater than two whose simple continued fraction ex-
pansion has unbounded partial quotients? Does every such number have unbounded partial
quotients?

In other words, the question is whether there is a real algebraic number a of degree at least three
such that L(a) is strictly positive, or whether L(a) = 0 for all such a.

Recall that a real number x is computable if there is an algorithm which, given any rational
ε > 0 as input, returns a rational q such that |q − x| < ε. The main result of this section is
Theorem 9, which shows that the existence of a decision procedure for the general Continuous
Skolem Problem entails the computability of L(a) for all real algebraic numbers a. Now one
possibility is that all such numbers L(a) are zero, and hence trivially computable. However the
significance of Theorem 9 is that in order to prove the decidability of the Continuous Skolem
Problem one would have to establish, one way or another, the computability of L(a) for every real
algebraic number a.

Fix positive a, c ∈ R ∩ A and define the functions:

f1(t) = et(1− cos(t)) + t(1− cos(at))− c sin(at),

f2(t) = et(1− cos(t)) + t(1− cos(at)) + c sin(at),

f(t) = et(1− cos(t)) + t(1 − cos(at))− c| sin(at)| = min{f1(t), f2(t)}.

Then f1(t) and f2(t) are exponential polynomials. Moreover it is easy to check that the function
f(t) has a zero in an interval of the form (T,∞) if and only if at least one of f1(t), f2(t) has a
zero in (T,∞).

We will first prove two lemmas which show a connection between the existence zeros of f(t)
and the type L(a). We then will derive an algorithm to compute L(a) using an oracle for the
Continuous Skolem Problem, thereby demonstrating our desired hardness result.

Lemma 6. Fix a, c ∈ R ∩ A and ε ∈ Q with a, c > 0 and ε ∈ (0, 1). There exists an effective
threshold T , dependent on a, c, ε, such that if f(t) = 0 for some t ≥ T , then L(a) ≤ c/2π2(1− ε).

Proof. Suppose f(t) = 0 for some t ≥ T . Define δ1 = t− 2πm and δ2 = at− 2πn, where m,n ∈ N

and δ1, δ2 ∈ [−π, π). Then we have

∣

∣

∣
a−

n

m

∣

∣

∣
=

|δ2 − aδ1|

2πm
.

We will show that for T chosen large enough, if f(t) = 0 for t ≥ T then we can bound |δ2| and
|aδ1| separately from above and then apply the triangle inequality to bound |δ2 − aδ1|, obtaining
the desired upper bound on L(a).
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Define 0 < α < 1 by α2 = (1− ε2). Since m ≥
t− π

2π
≥

T − π

2π
, for sufficiently large T we have

t ≥ 2π(m− 1) ≥ 2πmα . (7)

Furthermore, since αx2/2 ≤ 1 − cos(x) for |x| sufficiently small, we may assume that T is large
enough such that the following is valid for |x| ≤ π:

if 1− cos(x) ≤ cπ/T then αx2/2 ≤ 1− cos(x). (8)

We have the following chain of inequalities, where (∗) follows from f(t) = 0 and et(1−cos(t)) ≥
0:

1− cos(δ2) = 1− cos(at)
(∗)

≤
c| sin(at)|

t
=

c| sin(δ2)|

t
≤

c|δ2|

t
.

It follows that 1− cos(δ2) ≤ cπ/t and so by (8) we also have

αδ22
2

≤ 1− cos(δ2) .

Combining the upper and lower bounds on 1− cos(δ2) and using (7), we have

|δ2| ≤
2c

αt
≤

2c

2πmα2
=

c

mπ(1− ε2)
.

We next seek an upper bound on |δ1|. To this end, let T be large enough so that

ce−t ≤
( cε

2aαt

)2

for t ≥ T . (9)

Then the following chain of inequalities holds:

δ21
16

≤ 1− cos(δ1) { valid for all |δ1| ≤ π }

=
c| sin(δ2)| − t(1− cos(δ2))

et
{ since f(t) = 0 }

≤ ce−t { since | sin(δ2)|, | cos(δ2)| ≤ 1}

≤
( cε

2aαt

)2

{ by (9) }

≤
( cε

4aπα2m

)2

{ by (7) }

It follows that

|aδ1| ≤
cε

πm(1− ε2)
.

Finally, by the triangle inequality and the bounds on |aδ1| and |δ2|, we have

∣

∣

∣
a−

n

m

∣

∣

∣
=

|δ2 − aδ1|

2πm
≤

|δ2|+ |aδ1|

2πm
≤

c+ cε

2π2m2(1− ε2)
=

c

2π2m2(1− ε)
,

so the natural numbers n,m witness L(a) ≤ c/2π2(1 − ε). ⊓⊔

Lemma 7. Fix a, c ∈ R ∩ A and ε ∈ Q with a, c > 0 and ε ∈ (0, 1). There exists an effective
threshold M , dependent on a, c, ε, such that if L(a) ≤ c(1 − ε)/2π2 holds and is witnessed by
natural numbers n,m with m ≥ M , then f(t) = 0 for some t ≥ 2πM .
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Proof. Select M large enough, so that c(1− ε)/πM < π and

if |x| < c(1− ε)/πM , then (1 − ε)|x| ≤ | sin(x)|. (10)

Suppose now that L(a) ≤ c(1− ε)/2π2, let this be witnessed by n,m ∈ N with m ≥ M and define
t := 2πm. We will show that f(t) ≤ 0. This suffices, because f(t) is continuous and moreover is
positive for arbitrarily large times, so it must have a zero on [t,∞).

Since L(a) ≤ c(1 − ε)/2π2, we have |am − n| ≤ c(1 − ε)/2π2m. Therefore, we can write
at = 2πam = 2πn+ δ for some δ satisfying |δ| ≤ c(1− ε)/πm < π. We have

f(t)

= { as cos(t) = 1 }

t(1− cos(δ))− c| sin(δ)|

≤ { by (10) and 1− cos(x) ≤ x2/2 }

πmδ2 − c(1 − ε)|δ|

≤ { by |δ| ≤ c(1− ε)/πm }

0.

⊓⊔

The following corollary is immediate:

Lemma 8. Fix a, c ∈ R ∩ A and ε ∈ Q with a, c > 0 and ε ∈ (0, 1). There exists an effective
threshold T , dependent on a, c, ε, such that if f(t) 6= 0 for all t ≥ T , then either L(a) < c(1−ε)/2π2

and this is witnessed by natural numbers n,m with m < T/2π, or L(a) ≥ c(1− ε)/2π2.

We now use the above lemmas to show the central result of this section:

Theorem 9. Fix a positive real algebraic number a. If the Continuous Skolem Problem is decidable
then L(a) may be computed to within arbitrary precision.

Proof. Suppose we know L(a) ∈ [p, q] for non-negative p, q ∈ Q. Choose c ∈ R∩A with c > 0 and
a rational ε ∈ (0, 1) such that

p <
c(1− ε)

2π2
<

c

2π2(1 − ε)
< q.

Write A := c(1 − ε)/2π2 and B := c/2π2(1 − ε). Calculate the maximum of the thresholds T
required by Lemmas 6 and 8. Check for all denominators m ≤ T/2π whether there exists a
numerator n such that n,m witness L(a) ≤ A. If so, then continue the approximation procedure
recursively with confidence interval [p,A]. Otherwise, use the oracle for the Continuous Skolem
Problem to determine whether at least one of f1(t), f2(t) has a zero on [T,∞). If this is the case,
then f(t) also has a zero on [T,∞), so by Lemma 6, L(a) ≤ B and we continue the approximation
recursively on the interval [p,B]. If not, then L(a) ≥ A by Lemma 8, so we continue on the
interval [A, q]. Notice that in this procedure, one can choose c, ε at each stage in such a way
that the confidence interval shrinks by at least a fixed factor, whatever the outcome of the oracle
invocations. It follows therefore that L(a) can be approximated to within arbitrary precision. ⊓⊔
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