
Improved Steganographic Embedding Using Feature
Restoration

Undergraduate dissertation of Ventsislav K. Chonev

Supervised by Andrew D. Ker

1

Chapter 1

Introduction

This project is concerned with feature restoration, a problem within the fields of steganography and
steganalysis. This chapter introduces both fields briefly, then proceeds to define the problem and
outline the structure of the work we have done to solve it.

1.1 Steganography

Cryptography is a science concerned with hiding information. In cryptography, one devises schemes
to encrypt messages in such a way that no one apart from the intended recipient may decrypt them.
However, a general weakness of cryptography is that, while its methods preserve the secrecy of
the exchanged information, they do little to hide the presence of communication. Even if an un-
breakable cryptographic cipher is used, a passive intruder would still see an unreadable message
and become aware of secret communication between the two parties, despite being unable to read
it.

The related field of steganography goes further by attempting to conceal the presence of commu-
nication altogether. This is done by hiding the message inside a cover - for example, Johannes
Trithemius’s work Steganographia (published in 1606) is ostensibly about magic and the occult
but is in fact only a covertext for a treatise of cryptography and steganography.

In the context of modern Computer Science, steganography is often expressed as the prisoners’
problem. Alice and Bob are in prison, living in separate cells. They each have access to a computer,
and may use a communication channel existing between the two computers. This channel is the
only way they can exchange information. Alice and Bob each have access to a variety of file formats
- text, pictures, video, sound, etc. - and may exchange such files over the communication channel.
They are also assumed to share a secret key which they agreed on before being imprisoned. Finally,
each of them has access to a random number generator (RNG). The warden Wendy monitors all
communication along the channel, and if she becomes suspicious, she will close it for good. It is
Alice and Bob’s goal to devise an escape plan without arousing Wendy’s suspicion. A practical way
to do so is to embed messages into cover files using the shared key for encryption and decryption.
Steganography is the field concerned with devising such embedding schemes.

2

CHAPTER 1. INTRODUCTION 3

1.2 Least Significant Bit Matching

In this project, we will focus exclusively on one steganographic scheme for embedding messages
into greyscale images1, called Least Significant Bit (LSB) matching.

Encoding a message into a cover image is done as follows:

1. Seed the RNG with the steganographic key.

2. Use the RNG to generate a permutation L of the pixels of the cover image.

3. Convert the plaintext into a bitstream B in some standard way (e.g., by concatenating the
binary representations of the ASCII codes of the characters). Assume

∣∣B∣∣5 ∣∣L∣∣.
4. Simultaneously traverse B and L, embedding one bit of B into each pixel in L. To embed a

bit b into a pixel p, examine LSB(p) - the parity of p. If LSB(p) = b, leave the pixel as it
is. Otherwise: if p = 0, increment p by 1, if p = 255, decrement p by 1, and if 0 < p < 255,
randomly choose to increment or decrement p by 1 with equal probability.

The hidden information B is called the payload, and the ratio

∣∣B∣∣∣∣L∣∣ is called the payload percentage.

For example, a payload of 7373 bytes = 58984 bits embedded into a 256× 256 image is a 90%-
payload. The pixels which hold the bit string B in their LSBs are called payload pixels.

Decoding a message from a stego-image is done similarly:

1. Seed the RNG with the steganographic key.

2. Use the RNG to generate a permutation L of the pixels of the stego-image. If the same key
was used for the encoding, this permutation will be the same as the one used to create the
stego-image.

3. Traverse L. At each pixel p in L, calculate b = LSB(p) and append b at the end of a bit-string
B.

4. Convert B into plaintext. If the message length is known, take the prefix of B of that length.

1.3 Steganalysis

Steganalysis is the complement field of steganography; it is concerned with detecting the presence
of a hidden payload in a cover file. In the context of the prisoners’ problem, steganalysis is Wendy’s
job: she wants to detect any covert communication between Alice and Bob, without accusing them

1A grayscale image is just a matrix of 8-bit values. Throughout this project, we used the pgm file format, which is
precisely such a matrix, preceded by a short header.

CHAPTER 1. INTRODUCTION 4

falsely. A common assumption in steganalysis, like in cryptanalysis, is Kerckhoffs’s principle:
Wendy knows the exact steganographic algorithm used by Alice and Bob, but not their shared key.

Most of modern steganalysis is based on statistical features. The idea of feature-based steganalysis
is introduced in [4]; since then various feature sets and techniques have been proposed ([5]-[10]).
In all cases, the central idea is that covers have a high degree of coherence, which makes their
content predictable, unlike the embedded stego signal, which is essentially additive noise. There-
fore, feature-based steganalysis performs the opposite to denoising: it strips away the content of
the cover to leave only the noise, and then measures chosen statistical characteristics (features) of
it. A good feature set should be sensitive to embedding noise, but insensitive to the image content.

Once a feature set is chosen and an extractor is built for it, machine learning techniques are used to
train a classifier to distinguish between the features of stego-covers and innocent covers. Classifiers
considered in literature include the Fisher Linear Discriminator ([2]), Support Vector Machines and
Neural Networks ([3]).

1.4 Feature Restoration

Feature restoration is a technique for reducing the suspiciousness of a stego-image, thereby de-
creasing the likelihood of detection. When a payload is embedded into a cover image, its features
are likely to become highly abnormal and indicative of hidden information. Feature restoration at-
tempts to selectively modify the non-payload pixels of the stego-image in order to bring the features
back to normal, and avoid detection by a steganalyzer. This technique is only sensible for high pay-
loads (i.e., above 50%), because efficient techniques for concealing low payloads are known and
well-studied. The concept of feature restoration was suggested in [2], but no work has been done
to investigate algorithms or to benchmark them against real steganalyzers.

1.5 This Project

This project attempts to fill the void in the literature by devising some algorithms for feature restora-
tion and comparing their performance. Throughout, we will focus solely on the steganographic
scheme LSB-matching applied to grayscale images because it is both one of the simplest and least
detectable steganographic schemes known. Chapter 2 presents the best known features for detect-
ing LSB-matching, called WAM. Chapter 3 investigates an important property of WAM. Chapter 4
defines a distance metric to measure the suspiciousness of feature vectors. Chapter 5 investigates
algorithms for feature restoration.

It should be pointed out that feature restoration is a very difficult problem to solve optimally.
Formalising it produces a Binary Integer Quadratic Problem, which is known to be an NP-hard
optimisation problem - see Chapter 5 for details. Therefore, our investigation of algorithms for
feature restoration will focus on heuristics and approximations rather than ambitiously attempting
to solve the problem optimally.

CHAPTER 1. INTRODUCTION 5

Nearly all of the programming for this project was done in C++. We implemented LSB-matching
(see Appendix A for the well-commented code), a feature extractor for WAM (see Appendix B after
reading Chapter 2), and the feature restoration algorithms that we devised (see Appendix C after
reading Chapter 5). We also wrote much miscellaneous code, such as a reader for pgm images, to
facilitate the work of these main modules. Finally, everything was glued together using bash scripts
to run experiments and Matlab to convert their results into charts.

Chapter 2

Wavelet Absolute Moments

The focus of this project is a set of image features, called Wavelet Absolute Moments (WAM).
Their calculation is a multi-stage process involving a wavelet transform. We begin by providing
some minimalistic background in wavelets and wavelet transforms. Then we proceed to define the
WAM features, and to describe the building of a feature extractor, pointing out some important
efficiency considerations.

2.1 Motivation for Wavelet Theory

Wavelet Theory is a field which evolved from Fourier Theory. At the heart of Fourier Theory is the
Fourier Transform, which is used to represent a given function in a convenient form. The function
f (x) is expressed as a (possibly infinite) sum of sine and cosine waves of varying frequencies and
amplitudes. The Fourier series of a periodic f (x) with period L is given by:

f (x) = 1
2 a0 +∑

∞
n=1 ancos

(
πnx

L

)
+∑

∞
n=1 bnsin

(
πnx

L

)
an = 1

L

´ L
−L f (x)cos

(
πnx

L

)
dx

bn = 1
L

´ L
−L f (x)sin

(
πnx

L

)
dx

The Fourier Transform of any f (x) is obtained by extending the series to complex coefficients,
replacing the discrete summation with integration, and letting L−→ ∞. The transform F (ν) gives
the amplitudes of the sine and cosine waves of frequency ν appearing in the summation of f . Thus,
there are two ways to look at a function: its spatial domain representation f (x), which allows one
to evaluate the function at a specific point, and its frequency domain representation F (ν), which
allows one to examine its frequency content.

A drawback of Fourier analysis is that sine and cosine waves are global. Hence, it is difficult
to examine an interesting region of a function in isolation because all the waves contribute to it.
Instead, one might like to zoom in on the interesting section by knowing which summands are
relevant to it. This has prompted the emergence of Wavelet Theory.

6

CHAPTER 2. WAVELET ABSOLUTE MOMENTS 7

2.2 The Discrete Wavelet Transform

Wavelet Theory provides a transformation similar to the Fourier Transform, but using a basis of
functions localised in space - wavelets. This transformation will allow us to speak of a wavelet
domain, just like the Fourier Transform produced a frequency domain. The basis consists of dilated,
compressed and translated versions of a mother wavelet, which is just a specially chosen function
satisfying certain requirements that formalise the notion of being a localised wave. In this context,
translation and scaling are only allowed in the x direction.

Allowing unconstrained translation and scaling of the mother wavelet would produce an uncount-
ably infinite basis, with a high degree of redundancy. In order to make the wavelet basis countable,
we allow only translations by a fixed step a = 1 and dilation and compression by a fixed factor
b = 2. As we are only interested in wavelets that have some overlap with the analysed signal, we
can obtain an upper and a lower bound on the translation parameter.

To bound the scaling parameter, consider the Fourier spectrum of the daughter wavelets and the
signal. The qualifying requirements for a mother wavelet imply that its spectrum is a band. Fourier
Theory shows that compressing such a function by a factor of 2 doubles each frequency present
in the spectrum, effectively doubling the spectrum’s width and shifting it up. Dilating the mother
wavelet has the opposite effect. If we choose the mother wavelet carefully, the spectra of wavelets
at consecutive scales will touch each other, or overlap slightly:

Typically, we are interested in bandlimited signals f (x). Such signals have a maximum frequency,
so compressing the mother wavelet multiple times will eventually produce wavelets whose fre-
quency spectrum does not intersect the spectrum of f (x), providing a lower bound on the scaling
parameter s. However, an upper bound does not exist. Adding an extra scale level to the wavelet
basis halves the width of the spectrum left to cover down to 0, so a finite basis of daughter wavelets
cannot be enough to represent f (x). The solution is to add an extra function (father wavelet) to the
basis. Its spectrum is low-pass, so it is a placeholder in the basis for an infinite number of daughter
wavelets. Now the basis is finite.

The Discrete Wavelet Transform (DWT) is a mechanism to obtain the wavelet domain represen-
tation of a discrete signal for a given wavelet basis. The algorithm is inductive: if the signal is
expressed as a weighted sum of daughter wavelets up to a certain scale s and the father wavelet for

CHAPTER 2. WAVELET ABSOLUTE MOMENTS 8

that scale, an inductive step may be made to include the next scale s+1 into the basis. This incor-
porates more dilated wavelets into the basis and reveals finer detail about the signal. The formal
details may be found in [12].

In practice, however, the DWT is computed using signal filtering techniques. A Quadrature Mirror
Filter (QMF) is designed, specific to the chosen wavelet basis. A QMF is a pair of filters (g,h),
such that g is low-pass and admits only frequencies up to some threshold, whereas h is high-pass
and admits only frequencies above that threshold. At each stage, the signal is fed into both filters
using a discrete convolution. The operation produces low-frequency output and high-frequency
output:

x = inputSignal

f ilterLength = length[g] = length[h]

yLow [i] = ∑
f ilterLength
j=0 g [f ilterLength− j−1]∗ x [i+ j]

yHigh [i] = ∑
f ilterLength
j=0 h [f ilterLength− j−1]∗ x [i+ j]

The high-pass output yHigh yields the wavelet coefficients for that scale. The low-pass output yLow
corresponds to the father wavelet coefficients, and is a coarse approximation of the signal. Then
yLow is downsampled - its every other entry is discarded, halving its length. The downsampled
yLow is given as input to the next stage. This is Mallat’s algorithm for computing the DWT.

The algorithm generalises to 2D. Given a 2D signal x and a QMF (g,h), we can filter each row of x
using one of (g,h), and then each column of the result using one of (g,h). Thus, 2D filtering may
be performed in four ways:

• Using g both for row filtering and column filtering gives the output matrix LL.

• Using g for rows and h for columns gives LH.

• Using h for rows and g for columns gives HL.

• Using h for rows and columns gives HH.

All four output matrices are downsampled by 2, discarding every other row and column. LL is a
coarse approximation of the input signal. After downsampling, it is used as input to the next level.
LH is typically referred to as the horizontal output band H, HL - as the vertical band V, and HH -
as the diagonal band D.

2.3 Definition of WAM Features

Now that we have some knowledge of what a wavelet domain is, we are in a position to define
WAM. Given a 2D signal S, its WAM features are defined as follows (following the exposition in
[2, 3]):

CHAPTER 2. WAVELET ABSOLUTE MOMENTS 9

1. Compute a one-level 2D DWT of S using the Daubechies QMF of length 8, without down-
sampling. Discard the low-frequency output LL. Denote the three output bands H, V , and D,
respectively.

2. Let σ2
0 denote the noise variance of the signal; for LSB-matching we have σ2

0 = 0.5. Estimate
the local variance of each element in H, V , and D, using windows of sizes 3, 5, 7 and 9:

σ
2
H (x,y) = max

(
0,min(h3,h5,h7,h9)−σ

2
0
)

= max(0,min(h3,h5,h7,h9)−0.5)

where hi = 1
|I| ∑

(a,b)∈I
(H (a,b))2 is the average squared wavelet coefficient in the i× i neigh-

bourhood of (x,y) in H. Similarly for σ2
V (x,y) and σ2

D (x,y).

3. Apply a Wiener filter to each of H, V , and D to obtain the denoised wavelet coefficients, then
subtract them from the coefficients to leave only the noise residuals:

RH (x,y) = H (x,y)−Hden (x,y) = H (x,y)− σ2
H (x,y)

σ2
0 +σ2

H (x,y)
H (x,y) =

0.5
0.5+σ2

H (x,y)
H (x,y)

and similarly for RV (x,y) and RD (x,y).

4. Compute the average noise residual in each band: RH , RV and RD.

5. Finally, compute the first nine central absolute moments of the residuals in each band:

Mk
H =

1
| I | ∑

(x,y)∈I
| RH (x,y)−RH |k

where I is the index set of H, and k takes values 1...9. Similarly for Mk
V and Mk

D.

6. The WAM features of S are the 27-dimensional vector[
M1

H , . . . ,M9
H ,M1

V , . . . ,M9
V ,M1

D, . . . ,M9
D
]T

It is worth clarifying the steps in the pipeline. Step 1 transforms the image into the wavelet domain.
This is done because it has been shown that features taken from the wavelet domain are more sen-
sitive than ones taken from the spatial domain. Steps 2 and 3 strip away the image content, in order
to leave only the noise: the wavelet coefficients are denoised using a quasi-Wiener filter1, then the
denoised coefficients are subtracted from the coefficients themselves, leaving only the noise con-
tent. The Wiener filter requires an estimation of local variance, which necessitates step 2. Finally,
absolute central moments of the noise residuals are known to provide a good characterisation of
the noise of the image ([3]), so they are used as features.

1The formula given in step 3 is exactly that of the Wiener filter, except we are applying it in the wavelet domain,
rather than the frequency domain, hence the ’quasi’.

CHAPTER 2. WAVELET ABSOLUTE MOMENTS 10

2.4 WAM Feature Extractor

For the purposes of this project, we built a feature extractor for WAM from the ground up. This
included implementing directly the 2D DWT, the estimation of local variance, and the calculation
of noise residuals and moments. This tool will be at the heart of our feature restoration algorithms.
With it, we can gauge how the features change when some pixels are perturbed in a particular way.
Using such queries, we will selectively modify specific non-payload pixels of the stego image in
order to reduce the distance2 to a target innocent feature vector.

Because we will be relying heavily on the WAM oracle in feature restoration, it is crucial to ensure
its efficiency. A very significant part of the effort spent on this project was aimed at building the
feature extractor and optimising it. This section gives a brief overview of the challenges involved
in creating this tool and how we overcame them. The full code with detailed comments appears in
the appendix.

Firstly, we implemented the 2D DWT; this is straightforward from the definition given above.
The variance estimation performed in step 2 of the WAM algorithm is more challenging. For each
output band w∈ {LH,HL,HH}, for each element w(x,y), we are required to compute the averages
of the squared 3×3, 5×5, 7×7 and 9×9 regions around (x,y) in w. Directly traversing each of
these regions for every (x,y) is wasteful, and would imply visiting each position 81 times. Instead,
we used the transformation: w→ v, where v(x,y) = ∑

i≤x, j≤y
(w(i, j))2. This transformation may be

computed much more efficiently from w:

P r e f i x e d S q u a r e s F o r m (m a t r i x w of s i z e N by M)
{
f o r i i n [0 . . N) do

f o r j i n [0 . .M) do
v (i , j) = s q u a r e (w(i , j)) ;

f o r i i n [0 . . N) do
f o r j i n [1 . .M) do

v (i , j) = v (i , j −1) + v (i , j) ;

f o r j i n [0 . .M) do
f o r i i n [1 . . N) do

v (i , j) = v (i −1, j) + v (i , j) ;
re turn v ;
}

The benefit of this form is that it allows us to compute the sum of the squared values in any
rectangular region of w using at most 3 additions, making the efficient calculation of local variance
trivial:

sumO f SquaresInRectangle(0,0,X1,Y1) = v(X1,Y1)

sumO f SquaresInRectangle(0,Y0,X1,Y1) = v(X1,Y1)− v(X1,Y0−1)

sumO f SquaresInRectangle(X0,0,X1,Y1) = v(X1,Y1)− v(X0−1,Y1)

2For a notion of distance to be defined later.

CHAPTER 2. WAVELET ABSOLUTE MOMENTS 11

sumO f SquaresInRectangle(X0,Y0,X1,Y1)= v(X1,Y1)−v(X0−1,Y1)−v(X1,Y0−1)+v(X0−1,Y0−1)

Calculating the residuals and the moments is straightforward from the definition. We should point
out that the moments are the most expensive part of the pipeline.

At this point, we have an oracle capable of computing the WAM features of any given image. For
a WAM calculation on a fresh image, this pipeline is very efficient. However, most of the time we
will be interested in the effect on the features of perturbing some pixels of an image whose features
we have already calculated. The best we can do with the oracle outlined above is to perform the
perturbation, calculate the WAM features of the resulting image from scratch, and then undo the
perturbation. This wastes a lot of computation power, especially considering the local nature of
most of the steps involved in the calculation. The following improvements are aimed at lazily
recalculating the features of a perturbed image based on cached results of the WAM pipeline prior
to the perturbation.

Firstly, consider how the DWT coefficients change when a single pixel (X ,Y) is perturbed. As 2D
filtering is local, most of the wavelet coefficients will remain the same. In fact, changes will be
present only in the 8×8 neighbourhood [X−7...X]× [Y −7...Y]. Therefore, if we cache the results
LL, LH, HL, HH, then we can redo the filtering only on the 8 rows and 8 columns in question.

A similar results holds for local variance and the residuals. As the variance around a DWT coef-
ficient depends only on the 9× 9 neighbourhood around it, changing a single pixel (X ,Y) of the
image affects only the variances in the region [X−11...X +4]× [Y −11...Y +4]. The recalculation
region for residuals is the same as for variances. If we cache the computed variances, perturbing
a single pixel would require us to recompute a very small number of them. Unfortunately, there
is no good way to update the prefixed squares structure outlined above, so instead we recalculate
the dirty variances directly from the definition - by traversing the 9×9 neighbourhood around each
changed DWT coefficient - and then update the residuals in the same region.

Unfortunately, the 27 moments need to be recomputed fully, because they are global. Nevertheless,
performing the above lazy steps has significantly speeded up the WAM oracle. If we would like
to know how the features change when one particular pixel is perturbed, we can perform a lazy
query. It does the perturbation, updates the local quantities lazily as above, calculates the moments
to obtain the feature vector of the perturbed image, and then performs the opposite perturbation in
order to return to the original.

Often we will be interested in the effect on the features of multiple perturbations, rather than
single-pixel ones. To query the effect of such a group change efficiently, we will perform lazy
updates on the local quantities around each pixel involved, then calculate the moments only once
at the end, then undo the changes. A final point on improving the feature extractor is that if too
many pixels are involved in a perturbation, it might be cheaper to calculate all the variances using
the prefixed squares form as above, instead of traversing the 9× 9 region around each perturbed
DWT coefficient. The exact number of pixels at the threshold will depend on the size of the image;
our tests show that for 256×256 images it is about 3.

For testing purposes, we compared output with M. Goljan’s original WAM code. In doing so, we
uncovered two bugs in the original code. Firstly, in the local variance estimation of 3×3, ..., 9×9
regions around the point of interest, a fixed denominator of 9, 25, 49 or 81 is used, even near the

CHAPTER 2. WAVELET ABSOLUTE MOMENTS 12

edges, where the elements contributing to the summation are fewer. Secondly, the filtering routine
underlying the DWT performs a convolution with the periodicity extension of the signal being
filtered, rather than the signal itself. Both of these errors are relevant only near the edges (if at all),
so we reimplemented them in order to be able to compare output with the original implementation
of WAM. We believe they are inconsequential to the problem of feature restoration.

Chapter 3

Linearity of the WAM Features

This chapter investigates the linearity of the WAM features.

3.1 Definition of Linearity

Let f be a vector containing certain computable features of an image A. Consider two single-
pixel changes on A: C1 and C2. Applying C1 on its own produces an image with feature vector
v1. Likewise, C2 on its own produces v2. Performing both changes yields v3. Let δ1 = v1− f ,
δ2 = v2− f , δ3 = v3− f . The feature set is said to be linear if δ1 +δ2 = δ3 for all pairs of changes
C1, C2 on all images A.

3.2 Motivation

The aims of this chapter are to determine whether the WAM features are linear in the sense defined
above, and, if they are not, to find out under what conditions two changes exhibit some degree of
linearity. The motivation is that it would generally be helpful to have an intuitive grasp of how
changing an image affects its WAM features. This intuition will be useful in designing algorithms
for feature restoration.

From the definition of the WAM features, we can expect that they are not linear. Some nonlinearity
is introduced by the calculation of local variances, and much more by the calculation of the nine
moments for each subband. Therefore, it is reasonable to expect that δ1 +δ2 = δ3 will almost never
hold. Moreover, due to the local nature of the variance estimation, we expect nonlinearities to be
more evident for changes of pixels which are close to each other.

13

CHAPTER 3. LINEARITY OF THE WAM FEATURES 14

3.3 Experiments and Conclusions

To measure linearity, we introduce two metrics. Firstly, α = δ3·(δ1+δ2)
‖δ3‖‖δ1+δ2‖ is the cosine of the angle

between δ1 + δ2 and δ3. Secondly, β = ‖δ1+δ2‖
‖δ3‖ is the ratio of their sizes. For linear features, both

metrics must be 1 for any pair of single-pixel changes.

To investigate the linearity of the WAM features, we ran the following experiments. On a fixed
image, randomly choose a pair of pixels with Manhattan distance1 within Y . Randomly choose to
perturb their values by 1 or −1. Query the WAM oracle to obtain δ1, δ2, and δ3 - the effect of
performing the first change, the second change or both changes, respectively. Then calculate the
two metrics and record them. Repeat X times. The experiment was performed with X = 20000,
Y = 2,5,15,30,∞. Below we show histograms of α and β for X = 20000, Y = 2,5.

To test linearity on arbitrarily large groups of changes, we also ran a generalisation of the experi-
ment: Pick X groups of Z changes, contained within a (a×b) neighbourhood of pixels. For each
group, query the oracle to obtain ∑

Z
i=1 δi (the sum of the individual effects) and δZ+1 (the effect of

all the changes together), and calculate the metrics. Histograms for (X ,Z,a,b) = (2000,10,5,5)
and (2000,10,∞,∞) are shown below.

Contrary to our expectations, pairs of pixel changes which exhibit linearity are very common,
particularly when the pixels affected are far apart. The nonlinear nature of the WAM features
manifests itself only for pairs of changes which are very close together. The result holds for larger
groups of changes as well. Knowledge of this pseudo-linearity will be a helpful tool ahead.

1The Manhattan distance between two points (x1,y1) and (x2,y2) is |x1− x2|+ |y1− y2|.

CHAPTER 3. LINEARITY OF THE WAM FEATURES 15

CHAPTER 3. LINEARITY OF THE WAM FEATURES 16

Chapter 4

Feature Distance Metrics

In feature restoration the goal is to make a stego-image less suspicious by changing its non-payload
pixels so that the distance between the image’s feature vector and a particular target feature vector is
minimised. Therefore, a notion of distance is needed. This chapter shows why Euclidean distance
is a poor choice for feature restoration and defines a distance measure more suited to the task.

4.1 Shortcomings of Euclidean Distance

The main disadvantage of Euclidean distance is its assumption that vector components are uncorre-
lated. When this assumption fails, the existing correlations are not taken into account by the norm.
This could lead to difficulty if we are trying to gauge whether a particular feature vector may pass
for innocent, based on an estimation of the cluster of all natural covers. To appreciate this, consider
the figure below:

17

CHAPTER 4. FEATURE DISTANCE METRICS 18

The example is a simplified one as it is in two dimensions, but it serves to illustrate the point. The
cluster shown in the figure represents the features of all innocent-looking images. When a payload
is embedded into image A, the resulting stego-image is likely to be well outside the cluster. B
and C are two candidate restored images. B is inside the cluster and looks less suspicious than
C. However, their Euclidean distances to the original A are the same, so they are equally good
solutions under Euclidean distance. The WAM features are indeed correlated, because they are 3
sets of 9 successive moments. This indicates the need to use a non-Euclidean notion of distance on
WAM feature vectors.

4.2 The Mahalanobis Norm

4.2.1 Notation

The expectation of a random variable xi is E(xi). The covariance of two random variables xi,
x j with E(xi) = µi and E(x j) = µ j is Cov(xi,x j) = E((xi− µi)(x j− µ j)). Extend this notation to
random vectors. For a multivariate, random vector x = (x1,x2, ...,xn)T with E(xi) = µi, the expected
value is E(x) = (µ1,µ2, ...,µn)T = µ , and the covariance matrix is S = E((x−µ)(x−µ)T), so that
Si j = E((xi−µi)(x j−µ j)) = Cov(xi,x j).

Note that the covariance matrix of a real-valued random vector is symmetric, therefore, by the
finite-dimensional spectral theorem, it is always diagonalizable by an orthogonal matrix Q: S =
QΛQT where QT Q = QQT = I and Λ is a diagonal matrix containing the eigenvalues of S. Recall
also that any invertible covariance matrix is positive definite, which makes its eigenvalues strictly
positive1. This implies the existence of Λ−

1
2 , obtained by replacing every diagonal entry of Λ by

the root of its reciprocal.

4.2.2 Whitening

Let the covariance matrix of the random vector x be S, diagonalized as QΛQT , and let the mean of
x be µ . Define the linear transformation w(x) = Λ−

1
2 QT (x− µ). We can make two observations

about w.

Firstly, E(w) is the zero vector. This is immediate from linearity of expectation:

E(w) = E(Λ−
1
2 QT (x−µ)) = Λ−

1
2 QT (µ−µ) = 0

Secondly, the covariance matrix of w is the identity matrix I:

E((w−E(w))(w−E(w))T) = E(wwT) = E(Λ−
1
2 QT SQΛ−

1
2) =

= E(Λ−
1
2 QT QΛQT QΛ−

1
2) = E(Λ−

1
2 IΛIΛ−

1
2) = I

1In general, covariance matrices are positive semi-definite, which allows 0 to be an eigenvalue, making the matrix
singular. This is the case exactly when one of the random variables is a linear combination of the others, which would
mean the random vector was not entirely random to begin with. In this discussion, we ignore such pathological cases.

CHAPTER 4. FEATURE DISTANCE METRICS 19

Now, consider applying the transformation w to the whole image of the random vector x. The first
observation says that the resulting cluster will be centred around the origin. The second says that
any two distinct components of the transformed vector will have zero covariance, so there will
be no correlation among the vector components. The transformation squashes the cluster into
a multi-dimensional sphere around the origin. This transformation is called whitening, and the
resulting vectors are called white.

4.2.3 Mahalanobis’s Distance

For a whitened the cluster, the issues discussed above are no longer present. A natural idea in defin-
ing a norm that accounts for correlations is to whiten the cluster using w, and then use Euclidean
distance on the result. The distance between the centre of the cluster µ and a vector x is:

‖w(x)−w(µ)‖E = ‖w(x)‖E = ‖Λ− 1
2 QT (x−µ)‖E =

√
((x−µ)T Q(Λ−

1
2)T)(Λ−

1
2 QT (x−µ)) =

=
√

(x−µ)T QΛ−1QT (x−µ) =
√

(x−µ)T S−1(x−µ)

More generally, a measure of distance between two arbitrary points x and y is:

‖w(x)−w(y)‖E =
√

w(x)T w(x)−2w(x)T w(y)+w(y)T w(y) =

=
√

(x−µ)T S−1(x−µ)−2(x−µ)T S−1(y−µ)+(y−µ)T S−1(y−µ)

=
√

xT S−1x+ yT S−1y−2xT S−1y =
√

(x− y)T S−1(x− y)

Thus, the Mahalanobis norm of x with mean µ and covariance matrix S is defined by ‖x‖M =√
(x−µ)T S−1(x−µ), and the Mahalanobis distance of x and y is DistM(x,y)=

√
(x− y)T S−1(x− y).

The Mahalanobis distance is a measure of dissimilarity. A small distance means x and y are equally
likely to belong to the cluster. Conversely, a large distance means one is well within the cluster,
and the other is far from it. This notion of distance was originally introduced in [11].

In order to use the Mahalanobis distance, we need two estimations. Firstly, the feature vector µ -
the average of the WAM vectors of all natural cover images. Here, by ’natural’ we mean ones that
carry no steganographic payload. Secondly, the 27 by 27 covariance matrix S of the WAM vector,
along with its inverse. Computing these exactly is impossible, as it would mean calculating the
WAM features of all natural images.

For the purposes of estimating µ and S, we used 17500 natural images, IMG1 to IMG17500, each
with dimensions 256×256, cropped from 500 images with dimensions 1500×2000. The original
3Mpx images were taken with a Minolta DIMAGE A1 camera, and have never been subjected to
compression. The estimation of the mean vector was:

µ =
1

17500

17500

∑
i=1

WAM (IMGi)

We obtained the unbiased estimate of the covariance matrix:

CHAPTER 4. FEATURE DISTANCE METRICS 20

Cov(xi,x j) =
1

17499

17500

∑
t=1

(WAM (IMGt)i−µi)
(

WAM (IMGt) j−µ j

)

Then we inverted the covariance matrix using Matlab. The choice was motivated by the fact that
Matlab’s implementation of the Gauss-Jordan algorithm is known to have a good degree of numer-
ical stability, hopefully reducing precision-related problems to a minimum.

4.3 Contextualising the Distance

Let g and f be the feature vectors of the original image and the stego-image, respectively. We may
choose from two distance measures to minimise in feature restoration:

• Dist(g, f)M, the Mahalanobis distance to the original image’s WAM vector

• Dist(µ, f)M, the Mahalanobis distance to the estimated mean WAM vector

Since the WAM features are sensitive to noise, and a larger payload introduces more noise, it is to
be expected that the distance measures depend on the payload percentage. This section provides
context for the numbers, and gives an intuition of how embedding various payloads changes the
distance measures.

We estimated the average value of the distances for a number of fixed payloads. For each payload
percentage, we embedded a message of the appropriate length into the covers IMG1 to IMG17500,
calculated their WAM features, and computed the distances. Finally, the average and the standard
deviation of the distances at that payload were computed. The results appear in the two figures
below. They look almost exactly the same, so at this point we make the decision that we will only
use Dist(µ, f)M to measure the performance of feature restoration algorithms. With this choice of
target, we will actually be making the features plausible, instead of restoring them.

CHAPTER 4. FEATURE DISTANCE METRICS 21

CHAPTER 4. FEATURE DISTANCE METRICS 22

Chapter 5

Feature Restoration

Now we are in a position to attack the problem of feature restoration. We have chosen a stegano-
graphic scheme for encoding and decoding messages into and from greyscale images (LSB-matching)
and a particular set of features for steganalysis (WAM), and have defined a notion of an image’s
suspiciousness (the Mahalanobis distance between its WAM vector and the estimated mean WAM
vector µ). Feature restoration is the problem of deliberately altering the non-payload pixels of a
stego-image in order to reduce its suspiciousness. At our disposal, we have two black-box tools:
an efficient oracle able to calculate the features of any image and foresee the effect of any pertur-
bation, and a distance calculator able to measure the suspiciousness of any feature vector. We are
also aware that the features are pseudo-linear.

In this chapter, we present a number of algorithms we have devised for feature restoration. We
have implemented each of these algorithms and benchmarked its performance. Each section will
describe an algorithm, along with the ideas motivating it, and give results from our benchmarking.
We conclude the chapter with a comparison and a pointer to further work that should be done on
the topic.

To benchmark each algorithm A, we used a set of 100 images of size 256×256. For each payload
size of interest, we embedded a payload of that size into each of the 100 images, obtaining a stego
set for that payload. Then we ran A on each of the 100 stego images, giving it an allowance of
50000 WAM oracle queries per image. We kept track of the distance to µ at each query count, and
averaged this distance over the 100 stego images, obtaining a curve of the average distance to µ

at each query count. The decision to measure distance reduction versus queries performed instead
of clock time was based on the idea that query usage is a performance measure independent of
implementation details and hardware1. The payloads we considered in this way were 50% (a low
payload), 90% (a high payload but nonetheless allowing some degree of freedom), and 99% (an
extremely high and constraining payload).

Some of our algorithms have a parameter space. In these cases, we use smaller-scale benchmarking
in order to explore the parameter space and converge on a good set of parameters. This uses only

1Just to give the reader an intuition of how queries used translate to time: 1000 queries take about 11 seconds when
each query refers to a single-pixel change, and about 30 seconds when each query refers to 25 changes. This is on an
Intel(R) Core(TM) I5 CPU running at 2.27 GHz with 4 GB of RAM.

23

CHAPTER 5. FEATURE RESTORATION 24

20 stego images, at only one payload percentage (90%). Then the algorithm with the chosen
parameters is benchmarked fully.

A final point concerns the maximal value by which a restoration algorithm may change each non-
payload pixel. It is clear that such a maximum must be set and adhered to in order to prevent
distortions of the image which are visible to the naked eye. However, setting such a limit is not
easy because the question of which distortions are visible is subjective. The matter is further
complicated by the fact that cameras often have imperfections which result in artifacts appearing
in natural images. We have fixed this maximum change cap at 10. This limit, though perhaps
somewhat generous, was chosen for two reasons. Firstly, 10 appears to be the threshold where
distortions of the output image are invisible to the casual observer, but barely noticeable upon very
close inspection (zooming in). Secondly, we were interested in finding out the extent to which the
nature of WAM allows the distance to µ to be reduced; therefore, we elected not to constrain the
feature restoration algorithms too much with subjective notions of how noticeable a distortion is
and whether it may be plausibly blamed on the camera. If one is indeed concerned about masking
one’s attempt at feature restoration against a human observer, one may use a smaller limit in the
interest of remaining undetected. The limit was implemented and adhered to in our algorithms and
in their benchmarking.

5.1 Greedy and Inefficient Algorithm

We begin with the only algorithm for feature restoration appearing in literature. It was suggested
in [2], more to introduce the concept of feature restoration than as a serious attempt at solving the
problem.

The algorithm performs a number of iterations. On each iteration, it considers each non-payload
pixel in turn, and queries the WAM oracle twice - once for the effect of perturbing the pixel by
1, and once for -1. Throughout the iteration, the algorithm keeps track of the perturbation which
brings the feature vector closest to µ . At the end of the iteration, the algorithm realises the best
change found. Iterations are performed for as long as there are queries available. If an iteration
finds no distance-reducing change, the algorithm terminates.

Unfortunately, this algorithm is very inefficient. At each iteration it uses a very large number
of queries - 2(1− p)NM, where p is the payload percentage and (N,M) are the dimensions of
the image - but only performs one actual change. The smaller the payload, the less feasible this
algorithm becomes, as each iteration requires a larger number of oracle queries. The care taken
in selecting the best available change at each iteration would be justified if this change entailed
a very significant distance reduction compared to runners-up. However, our experiments showed
that at each iteration, a very large number of the changes considered entail a distance reduction
virtually as good as that of the best change, so the queries spent on them are essentially wasted.
The performance graphs of the algorithm are flat:

CHAPTER 5. FEATURE RESTORATION 25

CHAPTER 5. FEATURE RESTORATION 26

5.2 Greedy Algorithm

While the algorithm in the previous section is infeasible except for very large payloads, it offers
a good starting point for refinement. As we mentioned earlier, the inefficient algorithm discards
many reducing changes in its search for the best one, thereby wasting far too many queries. Many
of these discarded changes in fact entail a large distance reduction. Moreover, having seen the
pseudo-linearity of the WAM features, we can expect that if a change C1 is distance-reducing
before change C2 is performed, then C1 is likely to still be distance-reducing after C2 is performed,
especially if the pixels involved in C1 and C2 are far apart. These observations suggest a much more
efficient greedy algorithm.

Traverse the non-payload pixels of the image in order. For each pixel (i, j), query the WAM oracle
for the result of perturbing (i, j) by 1 and -1. If neither change is reducing, move on. If one of
the two changes is reducing, perform it and move on. If both are reducing, perform the one which
entails a greater distance reduction and move on. If all non-payload pixels are traversed in this way,
wrap around and traverse them again. Repeat for as long as oracle queries are available.

The performance charts for this greedy algorithm are found below. An interesting point to note in
the chart is that the curve corresponding to our experiments at 90% payload eventually overtakes
the curve for 50%. We attribute this to the difference in the number of non-payload pixels. At 50%,
a single traversal of all the pixels takes much more queries than at 90%. Consequently, at 90%,
each individual pixel is visited by the algorithm much more frequently. The better performance of
the algorithm at 90% payload suggests that there are often pixels which should receive concetrated
attention and be perturbed multiple times for maximum distance reduction. This insight leads to
the algorithm in the next section.

CHAPTER 5. FEATURE RESTORATION 27

CHAPTER 5. FEATURE RESTORATION 28

5.3 Variance Sort Algorithm

A possible weakness of the Greedy algorithm is that it spends an equal proportion of its query
allowance on each non-payload pixel, when it might be better to traverse the pixels in a carefully
chosen order and, when visiting a pixel, attempt to do as much work on it as possible, instead of
simply perturbing it by +1 or -1 and moving on. This sets two questions: firstly, how to decide how
much work is needed at each pixel, and secondly, what order to traverse them in?

A good answer to the first question is to begin by querying the oracle for the effects of perturbing
the pixel (i, j) by +1 and -1 in order to determine a direction of change. If both changes increase
the distance to µ , ignore this pixel. If one change increases the distance, but the other decreases
it, choose the latter. If both changes decrease the distance, choose the one which entails a greater
distance reduction. After a direction d =±1 is chosen, repeatedly perturb the pixel by d, querying
the oracle for the effect of the change (i, j, d) at each step, for as long as this change reduces the
distance to µ .2

To answer the second question, we remind ourselves that the WAM features are a measure of
noise. Noisy regions of the image contribute most to the distance to µ , so we should focus on them
first. Therefore, we decided to estimate the variance in the spatial domain at each pixel, and to
consider pixels in the way outlined above in order of decreasing variance. In this way, we hope to
systematically restore the noisiest bits of the stego-image first. The algorithm is:

1. Estimate the variance in the spatial domain around each non-payload pixel (i, j). To do this,
consider the 5×5 square of pixel values with (i, j) at its centre; let these be x1 to xn (most of
the time n will be 25, near the edges it will be less). Their mean is x = 1

n ∑
n
k=1 xk, and their

variance is the unbiased estimator V̂ar(x) = 1
n−1 ∑

n
k=1 (xk− x)2. Do this for all non-payload

pixels, and sort them in order of decreasing variance to obtain the sorted list of pixels L.

2. Traverse L. For each pixel (i, j) in L, perform step 3. If you reach the end of L, wrap around
to its beginning. If you run out of oracle queries, terminate.

3. At pixel (i, j), query the WAM oracle twice - with (i, j, 1) and (i, j, -1). If both changes
increase the distance to µ , move on. Otherwise, select v = ±1 such that (i, j, v) entails a
greater reduction of the distance to µ . Then repeatedly perform change (i, j, v) and query the
oracle with (i, j, v); if the oracle predicts an increase in the distance then stop and move on
to another pixel. Also, (i, j) is allowed to differ by at most 10 from its value at the beginning
of the restoration algorithm. If this limit is reached, move on to another pixel.

The performance chart for the algorithm appears below. The Varsort algorithm is a definite im-
provement over the Greedy one. At payloads 50% and 90%, it completely conceals the payload
within the query allowance, whereas at payload 99% it brings the distance down to the same level
as the Greedy algorithm, but in fewer queries.

2And, of course, for as long as the cumulative change at pixel (i, j) is within the limit of 10 that we set at the
beginning.

CHAPTER 5. FEATURE RESTORATION 29

CHAPTER 5. FEATURE RESTORATION 30

5.4 Genetic Algorithm

The next algorithm attempts to combine randomness as a source of candidate perturbations with a
deliberate process of selecting the most beneficial ones. It was inspired by genetic algorithms.

Recall that a change or singleton change is just a triple (x, y, v) where x and y refer to the position
of a pixel, and v is the value by which it is perturbed. Recall also that a “group change” is a set
of changes. On a given image, an individual is defined as a pair (gc,distRed) where gc is a group
change and distRed is a real number - the amount by which the distance between the WAM features
of the image and µ would be reduced if gc were performed. A population is defined to be a set of
individuals.

Our genetic algorithm will maintain a population P which changes over time. The following oper-
ators are defined on it:

• Inward Migration. This is the mechanism by which the population grows. A singleton
change is randomly chosen, with its value component equal to 1 or -1. Then the WAM
oracle is queried with the change to obtain the distance reduction it entails. If this reduction
is negative (that is, the change increases the distance to µ), the change is discarded and
another attempt is made. When a singleton distance-reducing change is found, it is wrapped
with its distance reduction label to form an individual, and is inserted into P.

• Merge. This is a mechanism to hopefully obtain good distance-reducing changes from exist-
ing ones in the population and to eliminate bad ones. All the individuals in P are sorted in
decreasing order of their distance reduction labels. The worst few individuals are discarded;
the exact number or proportion may be specified as an argument to the operation. Then the
remaining individuals are paired up: the best with the 2nd best, the 3rd with the 4th, and so
on. In case of an odd number of individuals, the worst is discarded. Then the two individ-
uals in each pair are merged: the group change of the result is the union of the two group
changes3, and the distance label of the result is obtained by querying the WAM oracle.

• Outward Migration. This is the mechanism which alters the image by applying individuals
to it. The individual with the greatest distance reduction label in P is found and removed
from P. If its distance reduction label is positive, its group change is applied to the image. If
not, it is discarded. It is also discarded if performing the group change would make one or
more pixels differ from their original values by more than our limit of 10.

Note that distance reduction labels may become outdated. An individual’s distance reduction label
is correct when the individual is introduced into P with an inward migration (because the migration
explicitly queries the WAM oracle), but afterwards the image may be modified by outward migra-
tions, making distance reduction labels inaccurate. However, the pseudo-linearity of WAM implies
that the inaccuracy is likely to be small. Thus, a distance reduction label in P should be seen as
very untrustworthy only if a large number of outward migrations have been performed since the
individual was introduced into the population.

3If the two group changes being unioned both refer to some pixel (x, y) with perturbation values u and v, respectively,
then the result of the union refers to (x, y) with value u+v.

CHAPTER 5. FEATURE RESTORATION 31

The mechanism of merging serves three purposes. Firstly, it eliminates the worst elements of the
population, in the spirit of genetic algorithms. Secondly, it attempts to obtain better candidate group
changes by combining good ones appearing in the population, as is common in genetic algorithms.
More subtly, however, it refreshes the distance-reduction labels of the whole population: recall that
the label of the union of two individuals is obtained by querying the WAM oracle directly. Thus,
all the labels appearing in P are accurate immediately after a Merge, so applying this operation
occasionally should serve to increase their reliability.

Having defined the operations above, we only need to decide how to combine them in order to
obtain a full algorithm. Our algorithm has a parameter initialSize. Throughout, P will vary in size
from initialSize to 2.1*initialSize. Our algorithm is:

1. Initialise P by performing an Inward Migration initialSize times.

2. Iterate for as long as oracle queries are available:

3. On each iteration, perform two Inward Migrations and one Outward Migration. Thus, on
each iteration, the size of P grows by 1.

4. If this size reaches 2.1*initialSize, perform a Merge which begins by discarding 0.1*initial-
Size individuals. Then the merging process halves the size of the population, bringing it
down to initialSize.

5. When the query allowance is exhausted, perform Outward Migrations until P becomes empty,
then terminate.

In our implementation, the population is a priority queue, with higher priority given to individuals
with greater distance reduction, to speed up the operations defined above. As a minor implementa-
tion issue, we point out that care was needed to ensure that the algorithm does not use more queries
than it is allowed to, considering that both Merge and Inward Migration use more than one query at
a time. Trivial modifications were made to allow these routines to stop partway through and avoid
exceeding the query limit.

To obtain a good value for initialSize, we performed some partial benchmarking with a number
of possible values (see Appendix D). Our results showed that a small initialSize is preferable.
Therefore, we proceeded to fully benchmark the algorithm with initialSize = 10. The results are in
the chart below. The algorithm achieves a good distance reduction overall, but is outclassed by the
Greedy and Varsort algorithms.

CHAPTER 5. FEATURE RESTORATION 32

CHAPTER 5. FEATURE RESTORATION 33

5.5 Random Algorithm

Now that we have seen an algorithm which partly uses randomness, it is interesting to explore one
which is purely random. It is a very simple concept, but the results from it yielded two important
insights into feature restoration.

The algorithm has two parameters, lots and changesPerLot, and works as follows:

1. Iterate for as long as there are queries available:

2. On each iteration, randomly choose lots group changes. Each group change must contain
changesPerLot singleton changes. Each singleton change must have value equal to -1, 0
or 1; at least one singleton change must have a non-zero value. (Equivalently, each group
change contains upto changesPerLot singleton changes, each with value ±1.) Query the
WAM oracle for the effect of each of the lots group changes. Perform the one which reduces
the distance to µ most, discard the rest. If all the group changes increase the distance,
perform none.

3. Whilst iterating, keep track of how many consecutive void iterations (ones which perform
no change) have been done. If this number reaches 100, reduce changesPerLot by 25%, to a
minimum of 1.

Increasing the parameter lots makes the algorithm less greedy and more cautious - at each iteration,
more work is done and more queries are spent, in the hope that this will yield a better distance-
reducing change. Increasing the parameter changesPerLot has the effect of making the algorithm
conserve its queries by including more singleton changes in each group change and querying the
oracle only once for their cumulative effect.

The motivation for step 3 is that if the algorithm is consistently unable to find large distance-
reducing group changes, then perhaps there are very few of them. Perturbing many pixels of the
image creates noise more often than removing it, so it is probably worth switching to a finer distance
reduction tool, namely, smaller group changes, hence the adaptive behaviour in the step.

To obtain a good set of parameters, we partially benchmarked the algorithm with (lots,changesPerLot)∈
[1...4]× [1...4] (see Appendix E). The general shape of the 16 curves is the same. They reveal
two insights. Firstly, for a fixed parameter lots, better distance reduction is given by increasing
changesPerLot. That is, it is beneficial to conserve queries by attempting to do more work on each
perturbation. Secondly, for a fixed parameter changesPerLot, better distance reduction is given by
reducing lots. Thus, spending many queries on each iteration in order to find a very good distance-
reducing change is wasteful. The message is that greediness is better than caution.

Having seen how the parameters affect the distance reduction, we chose (lots,changesPerLot) =
(1,25) as a suitable contender against the remaining algorithms. The results of its full benchmark-
ing appear below. They look quite promising and improve on the Varsort algorithm.

CHAPTER 5. FEATURE RESTORATION 34

CHAPTER 5. FEATURE RESTORATION 35

5.6 Quadratic Programming Algorithm

The final approach we present for the problem of feature restoration is the least heuristic one. The
idea is to use Quadratic Programming.

A Quadratic Problem (QP) is the problem of assigning values to a vector x of unknowns so that
xT Hx+ f T x is minimised, and x satisfies lb 5 x 5 ub, Ax 5 b, A1x = b1, where H, A, A1 are known
matrices and f , lb, ub, b, b1 are known vectors. An Integer Quadratic Problem (IQP) has the same
form, with the additional restriction that x must be an integer vector. Finally, a Binary Integer
Quadratic Problem (BIQP) is an IQP where the constraint lb 5 x 5 ub is replaced by the restriction
that x must be a binary vector.

We begin by showing how to express feature restoration as a BIQP. Throughout, we assume linear-
ity of the features - the effect of performing many changes is the sum of the effects of performing
each change on its own. Let the WAM features of the stego-image are stego. Suppose we have
chosen a set of single-pixel changes C1 to Cn, the set of all admissible single-pixel changes on the
image. Change Ci alters the feature vector by δi. Let also x be a binary vector of length n, so that
xi specifies whether change Ci is performed or not. Then the features of the restored image are:

restored = stego+∑
n
i=1 xiδi = stego+V x, where

V =
[
δ1
∣∣· · · ∣∣δn

]
is the 27× n matrix with columns δ1 to δn. If S is the 27× 27 covariance matrix

of the WAM features, the Mahalanobis distance between the mean WAM vector µ and restored is:

‖ restored ‖2
M=‖ stego+V x ‖2

M=

(stego+V x−µ)T S−1 (stego+V x−µ) =

(stego−µ)T S−1 (stego−µ)+(V x)T S−1 (V x)−2(stego−µ)T S−1 (V x) =

xT Hx+ f T x+ c, where

H = V T S−1V , f = 2V T S−1(stego−µ), and c = (stego−µ)T S−1 (stego−µ)

In feature restoration, the goal is to choose the values of x, subject to xi ∈ {0,1}, so that ‖
restored ‖M is minimised. Additionally, we wish to specify that some changes should not be per-
formed together. For example, if a pixel (x,y) may be perturbed by -2, -1, 1 or 2, our set of changes
will include Ci = (x,y,−2), C j = (x,y,−1), Ck = (x,y,1), Ct = (x,y,2), but at most one of these
changes may be performed. This is easily specified with linear constraints: xi + x j + xk + xt 5 1.
The resulting problem is a BIQP.

It must be stressed that BIQP is very difficult to solve, completely infeasible for large-scale in-
stances with lots of variables and linear constraints. Expressing feature restoration as a BIQP
serves to give us a sense of its difficulty, and motivates focusing on heuristics and approximations,
instead of ambitiously attempting to solve the problem optimally. We also reiterate that the prob-
lem is cast as a BIQP assuming full linearity. Without this simplifying assumption, it is even harder
to solve optimally.

CHAPTER 5. FEATURE RESTORATION 36

Nonetheless, we are now aware that reducing the distance to the mean feature vector is, in effect,
minimising a quadratic objective. While it is infeasible to solve a BIQP obtained as above, a natural
idea is to repeatedly obtain smaller instances of QPs, using fewer pixels and fewer restrictions. At
each step, the feature restoration algorithm will produce a QP and give it to a solver, then recover
the solution, and repeat. The difficulty lies is in deciding how many of the restrictions of BIQP
to relax. If we create too difficult quadratic programming problems, the solver will not be able to
feasibly calculate solutions to them. On the other hand, if we relax too many constraints, we could
be losing too much optimality.

The first constraint that we dispose of is integrality of xi. A number of reasons motivate this
decision. Firstly, although there are plenty of freely available Integer Programming packages which
minimise a linear objective, it is very difficult to find ones capable of minimising a quadratic
objective. In fact, we only found one package in the public domain which advertised this ability.
However, we were disappointed to discover that it did not work correctly. On the other hand,
quadratic programming without integer restrictions has been well-studied, and there are many,
reasonably efficient QP solvers available. In particular, Matlab offers a routine quad prog which
solves precisely QPs as defined at the start of this section. Therefore, we decided to relax the
integrality constraints on the xi, and replace them with 0 5 xi 5 1. When our feature restoration
recovers the output from the QP solver, each xi will be rounded.

We also decided to omit the linear constraints which specify which changes must not be performed
together. This decision was arrived at purely by experimenting with Matlab’s quad prog routine:
adding linear constraints, even small ones such as xi + x j 5 1, drastically increases the time the
routine takes to terminate. Therefore, to build each QP, we will select a set of n pixels, then
obtain 2n changes from them: C2i = (xi,yi,1), C2i+1 = (xi,yi,−1), but we will not add constraints
x2i + x2i+1 5 1. Thus, our algorithm is:

1. Repeat steps 2-8 for as long as queries are available:

2. Choose a value of n. (See below.)

3. Select n non-payload pixels, and the set of 2n changes C1 to C2n - one for perturbing each
pixel by 1, and one for -1.

4. Use the WAM oracle to calculate δ1 to δ2n, and set them as the columns of a matrix V .

5. Obtain the current wam features of the image: f eatures.

6. Create the QP: minimise xT Hx+ f T x, where H = V T S−1V and f = 2V T S−1(f eatures−µ).

7. Give the QP to a quadratic programming solver, wait for it to finish, and recover its output x.

8. For each xi = 0.5, perform change Ci.

The only remaining question is how to specify n: the number of pixels used to create each QP. We
experimented with some values. Past 1000, the solver needs too much time to solve each instance.
Moreover, for a fixed value of n, we found that the QPs at the start of the algorithm are solved very
quickly, whereas later they begin to take a disproportionately large amount of time. Therefore, we

CHAPTER 5. FEATURE RESTORATION 37

used n = 1000 during the first 40% of the queries, then n = 500 for the next 20%, n = 250 for the
next 20%, and n = 25 for the final 20% of the queries. Of course, if fewer pixels are available for
the restoration, as is the case during the first iterations of the algorithm against payloads of 99%,
we just use all of them.

We needed to be careful about measuring the performance of this algorithm, because it includes a
time-expensive component (namely, the QP solving) which could potentially dominate the cost of
querying the oracle. With the values we have chosen, the algorithm’s timescale is similar to that of
the Random algorithm with parameters (1, 25). Therefore, it is fair to benchmark the QP algorithm
using queries as a unit of time, especially considering that for larger image sizes the cost of queries
will dominate the cost of running the QP solver.

A programming challenge was to link the feature restoration code with Matlab’s quadratic problem
routine. To do so, we wrote a Matlab script which repeatedly checks for the presence of a file,
signalling that it should read some input, solve a QP and output. After outputting the solution
to the QP, it prints another flag file to signal the feature restoration to read Matlab’s output and
continue its work. Thus, we effectively used the presence of flag files as a semaphore in order to
automate the feature restoration algorithm.

The chart for this algorithm appears below.

CHAPTER 5. FEATURE RESTORATION 38

CHAPTER 5. FEATURE RESTORATION 39

5.7 Comparison and Conclusion

In order to compare our feature restoration algorithms, we overlaid their performance charts for
each payload percentage. This produced the three final comparison charts - one for 50% payload,
one for 90% and one for 99%, all shown below.

At 50% payload, the two best are the Random algorithm with parameters (1,25), and the Variance
Sort algorithm. In 50000 queries, they reduce the distance to µ to a point corresponding to no
payload at all. However, the Random algorithm’s chart is steeper at the start, so it should be
preferred if the query allowance is smaller - say, 10000 to 15000.

At 90% payload, the situation is identical. The Random and Variance Sort algorithms outclass the
rest, achieving an apparent payload of 0%, with the Random algorithm doing so in fewer queries.

At 99% payload, the Random algorithm performs significantly better than the rest, achieving a
greater distance reduction both in the short term and long term. In 50000 queries, it reaches an
apparent payload of about 30%. This result is definitely more than we expected to achieve at the
start of this project. The Variance Sort, Greedy and Genetic algorithms all achieve an apparent
payload of about 40%. Surprisingly, the QP algorithm does not perform particularly well.

It must be stressed that the Random algorithm’s good performance is due to the amount of work it
does per query used. For each oracle query, it perturbs up to 25 pixels, whereas the other algorithms
typically use queries on single-pixel changes. Initially, we suspected this behaviour might turn out
to be very suboptimal. The results have proven us wrong; the project has discovered that the keys
to efficient feature restoration are:

1. Greediness. When you spot a beneficial change, perform it, instead of being cautious and
looking for even better ones.

2. Conserving queries. Attempt to maximise the ratio of changes performed per query used.

Also, our results show that smaller payloads like 50% are more difficult to feature restore than
payloads of around 90%. Whilst perhaps counter-intuitive, this is because at 90% the search space
of available perturbations is much smaller.

We believe this project was a successful investigation because it brought these principles to light.
We implemented an efficient WAM oracle, devised a number of algorithms for feature restoration
and obtained encouraging results from them, along with the above insights into the problem, setting
the basis for further work.

CHAPTER 5. FEATURE RESTORATION 40

CHAPTER 5. FEATURE RESTORATION 41

CHAPTER 5. FEATURE RESTORATION 42

CHAPTER 5. FEATURE RESTORATION 43

5.8 Further Work

In order to fit this investigation into the timescale of a 3rd-year project, we had to exclude a number
of important questions from its scope. Further work should focus on:

1. Devising feature restoration algorithms which conserve their queries similarly to the Random
algorithm with a large second parameter.

2. Testing feature restoration against real steganalyzers to see if it truly makes the stego images
less detectable.

3. Experimenting with various payload percentages in order to determine the best proportion of
pixels to reserve for feature restoration. We suspect the optimal payload size is close to 90%.

4. Experimenting with various image sizes (this project only worked with 256×256), and im-
age sets with different characteristics (source camera, use of compression, etc.).

5. Using feature restoration on different distance metrics and feature sets: we focused solely on
WAM and Mahalanobis’s distance, but our feature restoration algorithms treat them as black
boxes, making them applicable to other sets of features and measures of distance.

Fortunately, we will be addressing these questions over the summer of 2010 under an EPSRC
project titled “Large-Scale Benchmarking of Machine Learning Steganalysis”, and hope to answer
some of them by September.

Bibliography

[1] Kodovsky, J., and Fridrich, J., “On completeness of feature spaces in blind steganalysis,” in
[Proceedings of the 10th ACM Multimedia & Security Workshop] (2008)

[2] Goljan, M., Fridrich, J., and Holotyak, T., “New blind steganalysis and its implications,” in
[Security, Steganography and Watermarking of Multimedia Contents VIII], Proc. SPIE 6072,
0101–0113 (2006).

[3] Ker, A., and Lubenko, I., “Feature reduction and payload location with WAM steganalysis,”
in [Electronic Imaging, Media Forensics and Security XI], Proc. SPIE 6072, 0A01–0A13
(2009).

[4] Avcıbaş, I., Memon, N., and Sankur, B., “Steganalysis using image quality metrics,” in [Elec-
tronic Imaging, Security and Watermarking of Multimedia Contents II], Proc. SPIE 4314,
523–531, (2001).

[5] Farid, H., and Lyu, S.,: “Detecting hidden messages using higher-order statistics and sup-
port vector machines,” in [5th International Workshop on Information Hiding], LNCS 2578,
340–354, (2002).

[6] Lyu, S. and Farid, H., “Steganalysis using color wavelet statistics and one-class support vector
machines,” in [Security, Steganography, and Watermarking of Multimedia Contents VI], Proc.
SPIE 5306, 35–45 (2004).

[7] Harmsen, J., and Pearlman, W., “Steganalysis of additive noise modelable information hid-
ing,” in [Proc. SPIE Electronic Imaging, Security, Steganography, and Watermarking of Mul-
timedia Contents V], 131–142 (2003).

[8] Ker, A., “Steganalysis of LSB matching in grayscale images,” in [IEEE Signal Processing
Letters] 12(6), 441–444 (2005).

[9] Xuan, G., Shi, Y., Gao, J., Zou, D., Yang, C., Zhang, Z., Chai, P., Chen, C., and Chen, W.,
“Steganalysis based on multiple features formed by statistical moments of wavelet character-
istic functions,” in [Proc. 7th Information Hiding Workshop], Springer LNCS 3727, 262–277
(2005).

[10] Holotyak, T., Fridrich, J., and Voloshynovskiy, S., “Blind statistical steganalysis of additive
steganography using wavelet higher order statistics,” in [9th IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security], Springer LNCS 3677, 273–274 (2005).

44

BIBLIOGRAPHY 45

[11] Mahalanobis, P., “On the generalised distance in statistics,” in [Proc. National Institute of
Sciences of India], Vol. 2(1) (1936).

[12] Mallat, S., “A theory for multiresolution signal decomposition: the wavelet representation,”
in [IEEE Transactions on Pattern Analysis and Machine Intelligence Vol 2] (1989).

Appendix A

Code for LSB-matching

1 / / LSBEncoder . cpp
2 / / A c l a s s which t a k e s care o f e n c o d i n g .
3 # i n c l u d e " . / perms . cpp "
4 # i n c l u d e " . / b i t c o n v e r s i o n . cpp "
5 c l a s s LSBEncoder
6 {
7 p u b l i c :
8 LSBEncoder () { }
9 / / P u b l i c r o u t i n e . I t embeds a g i v e n message i n t o an image s p e c i f i e d by i t s name u s i n g a

g i v e n key .
10 / / The p a r a m e t e r s a l s o s p e c i f y t h e name o f t h e s t e g o image and t h e name o f t h e f i l e t o be

used as a
11 / / l o g o f t h e e n c o d i n g .
12 void messageIntoPgm (s t r i n g message , s t r i n g imageName , s t r i n g newName , s t r i n g l o g F i l e , i n t

key , m a t r i x I n t &u s e d P i x e l s , m a t r i x I n t &changesMade)
13 {
14 m a t r i x D o u b l e image ;
15 pgmToMatrix (imageName , image) ; / / Read t h e image .
16 m e s s a g e I n t o M a t r i x (message , image , key , u s e d P i x e l s , changesMade) ; / / Put a message i n t o

i t .
17 matrixToPgm (image , newName) ; / / W r i t e t h e image back .
18 / / The l o g c o n t a i n s i n f o r m a t i o n abou t which p i x e l s c o n t a i n and t h e payload , and how

much
19 / / each p i x e l has been changed : −1 or +1 f o r pay load p i x e l s , 0 f o r non−pay load .
20 FILE ∗ f o u t = fopen (l o g F i l e . c _ s t r () , "w") ;
21 FECHO(f o u t , "%s \ n " , imageName . c _ s t r ()) ;
22 FECHO(f o u t , "%s \ n " , newName . c _ s t r ()) ;
23 w r i t e M a t r i x (f o u t , u s e d P i x e l s) ;
24 w r i t e M a t r i x (f o u t , changesMade) ;
25 f c l o s e (f o u t) ;
26 }
27 p r i v a t e :
28 / / Encoding p r o c e d u r e . C o n v e r t s t h e message i n t o a b i t s t r i n g , i n i t i a l i s e s t h e RNG w i t h

t h e g i v e n key
29 / / and u s e s Knuth s h u f f l e t o g e n e r a t e a random p e r m u t a t i o n o f t h e p i x e l s o f t h e image .

Then i t
30 / / t r a v e r s e s t h e p i x e l s i n t h e o r d e r s p e c i f i e d by t h e p e r m u t a t i o n , and embeds each b i t o f

t h e message
31 / / i n t o a p i x e l as s p e c i f i e d by t h e a l g o r i t h m f o r LSB match ing .
32 void m e s s a g e I n t o M a t r i x (s t r i n g message , m a t r i x D o u b l e &image , i n t key , m a t r i x I n t &

u s e d P i x e l s , m a t r i x I n t &changesMade)
33 {
34 i n t N, M;
35 i n t i , j ;

46

APPENDIX A. CODE FOR LSB-MATCHING 47

36 vecBool b i t M e s s a g e ;
37 v e c I n t perm ;
38 b i t M e s s a g e = messageToBi t s (message) ; / / Ob ta in a b i t s t r i n g .
39 N = image . s i z e () ;
40 M = image [0] . s i z e () ;
41 / / Prepare m a t r i c e s .
42 u s e d P i x e l s . c l e a r () ;
43 changesMade . c l e a r () ;
44 u s e d P i x e l s . r e s i z e (N) ;
45 changesMade . r e s i z e (N) ;
46 f o r (i = 0 ; i < N; i ++) { u s e d P i x e l s [i] . r e s i z e (M) ; changesMade [i] . r e s i z e (M) ; }
47 f o r (i = 0 ; i < N; i ++)
48 f o r (j = 0 ; j < M; j ++)
49 {
50 u s e d P i x e l s [i] [j] = 0 ;
51 changesMade [i] [j] = 0 ;
52 }
53 s r a n d (key) ; / / I n i t i a l i s e t h e RNG w i t h key .
54 r and omP erm u ta t i o n (N∗M, perm) ; / / Get a random p e r m u t a t i o n .
55 / / Do t h e e n c o d i n g .
56 f o r (i = 0 ; i < b i t M e s s a g e . s i z e () ; i ++)
57 {
58 i n t p i x e l = perm [i] ;
59 i n t p i xe lX = p i x e l / M;
60 i n t p i xe lY = p i x e l % M;
61 i n t p i x e l V a l u e = (i n t) image [p i xe lX] [p i xe lY] ;
62 i n t b i t = b i t M e s s a g e [i] ;
63 i n t change = 0 ;
64 u s e d P i x e l s [p ix e l X] [p i xe l Y] = 1 ;
65 i f (LSB(p i x e l V a l u e) == b i t) c o n t in u e ;
66 e l s e
67 {
68 i f (p i x e l V a l u e == 255) change = −1;
69 e l s e i f (p i x e l V a l u e == 0) change = 1 ;
70 e l s e i f (r and () % 2 == 0) change = 1 ;
71 e l s e change = −1;
72 }
73 image [p ix e l X] [p ix e l Y] = p i x e l V a l u e + change ;
74 changesMade [p ix e l X] [p i xe l Y] = change ;
75 }
76 }
77 } ;
78 / / LSBDecoder . cpp
79 / / A c l a s s which p e r f o r m s d e c o d i n g .
80 # i n c l u d e " . / perms . cpp "
81 # i n c l u d e " . / b i t c o n v e r s i o n . cpp "
82 c l a s s LSBDecoder
83 {
84 p u b l i c :
85 LSBDecoder () { }
86 / / A p u b l i c r o u t i n e w i t h two v e r s i o n s . Given t h e name o f a pgm f i l e and a key , e x t r a c t

t h e message
87 / / embedded i n t o i t u s i n g LSB match ing . O p t i o n a l l y , a message l e n g t h may be prov ided , i f

n o t a l l
88 / / p i x e l s ho ld pay load .
89 s t r i n g messageFromPgm (s t r i n g f i leName , i n t key , i n t e x p e c t e d B i t L e n g t h)
90 {
91 m a t r i x D o u b l e image ;
92 pgmToMatrix (f i leName , image) ;
93 re turn messageFromMatr ix (image , key , e x p e c t e d B i t L e n g t h) ;
94 }
95 s t r i n g messageFromPgm (s t r i n g f i leName , i n t key)
96 {
97 m a t r i x D o u b l e image ;
98 pgmToMatrix (f i leName , image) ;
99 re turn messageFromMatr ix (image , key) ;

APPENDIX A. CODE FOR LSB-MATCHING 48

100 }
101 p r i v a t e :
102 / / Decoding p r o c e d u r e . I n i t i a l i s e s t h e RNG w i t h key , g e n e r a t e s a p e r m u t a t i o n o f t h e

p i x e l s ,
103 / / t r a v e r s e s them i n t h e o r d e r s p e c i f i e d by t h e p e r m u t a t i o n , and c o l l e c t s t h e LSBs o f t h e
104 / / t r a v e r s e d p i x e l s . Then i t lumps them i n t o groups o f 8 , t h u s g e t t i n g a b y t e message .
105 / / e x p e c t e d L e n g t h i s t h e r e t o t e l l us when t o s t o p t h e t r a v e r s a l . O b v i o u s l y t h e r e w i l l be
106 / / p i x e l s i n t o which no i n f o r m a t i o n has been embedded , so t h e r e ’ s no s e n s e i n l o o k i n g
107 / / a t t h e i r LSBs . I f t h i s parame te r i s m i s s i n g , t h e n keep go ing u n t i l a l l p i x e l s are

t r a v e r s e d .
108 s t r i n g messageFromMatr ix (m a t r i x D o u b l e &image , i n t key , i n t e x p e c t e d B i t L e n g t h)
109 {
110 i n t N, M;
111 i n t i , j ;
112 vecBool b i t S t r i n g ;
113 v e c I n t perm ;
114 N = image . s i z e () ;
115 M = image [0] . s i z e () ;
116 i f (e x p e c t e d B i t L e n g t h > N∗M) e x p e c t e d B i t L e n g t h = N∗M;
117 s r a n d (key) ;
118 r and omP erm u ta t i o n (N∗M, perm) ;
119 f o r (i = 0 ; i < e x p e c t e d B i t L e n g t h ; i ++)
120 {
121 i n t p i x e l = perm [i] ;
122 i n t p i xe lX = p i x e l / M;
123 i n t p i xe lY = p i x e l % M;
124 i n t p i x e l V a l u e = (i n t) image [p i xe lX] [p i xe lY] ;
125 b i t S t r i n g . push_back (LSB(p i x e l V a l u e)) ;
126 }
127 re turn b i t sToMessage (b i t S t r i n g) ;
128 }
129 s t r i n g messageFromMatr ix (m a t r i x D o u b l e &image , i n t key)
130 { re turn messageFromMatr ix (image , key , image . s i z e () ∗ image [0] . s i z e ()) ; }
131 } ;
132 / / perms . cpp
133 / / An i n v o k a t i o n o f an STL r o u t i n e f o r o b t a i n i n g a random p e r m u t a t i o n .
134 void r a ndo mPe rmu ta t i on (i n t N, v e c I n t &ans)
135 {
136 i n t i , j ;
137 ans . c l e a r () ;
138 ans . r e s i z e (N) ;
139 f o r (i = 0 ; i < N; i ++) ans [i] = i ;
140 r a n d o m _ s h u f f l e (ans . b e g i n () , ans . end ()) ;
141 }
142 / / b i t c o n v e r s i o n . cpp
143 / / Two r o u t i n e s t o c o n v e r t be tween b i t s t r i n g s and b y t e s t r i n g s .
144 / / Take a b i t−s t r i n g and c o n v e r t i t t o a r e g u l a r s t r i n g by g r o u p i n g b i t s i n t o
145 / / g roups o f 8 . < b i t s > i s assumed t o have a l e n g t h which i s d i v i s i b l e by 8 .
146 s t r i n g b i t sToMessage (vecBool b i t s)
147 {
148 i n t l e t t e r s = b i t s . s i z e () / 8 ;
149 i n t i , j ;
150 s t r i n g ans = " " ;
151 f o r (i = 0 ; i < l e t t e r s ; i ++)
152 {
153 i n t c = 0 ;
154 f o r (j = 0 ; j < 8 ; j ++) c += b i t s [8∗ i + j]∗ (1 << (7− j)) ;
155 c −= 128 ;
156 ans . append (1 , (char) c) ;
157 }
158 re turn ans ;
159 }
160 / / Take a s t r i n g and break each c h a r a c t e r i n t o i t s b i t r e p r e s e n t a t i o n .
161 vecBool messageToBi t s (s t r i n g message)
162 {
163 vecBool ans ;

APPENDIX A. CODE FOR LSB-MATCHING 49

164 i n t i , j ;
165 f o r (i = 0 ; i < message . l e n g t h () ; i ++)
166 {
167 i n t c = message [i] ;
168 c += 128 ;
169 vecBool tmp ;
170 f o r (j = 0 ; j < 8 ; j ++)
171 {
172 tmp . push_back (c % 2) ;
173 c /= 2 ;
174 }
175 / / tmp i s t h e r e v e r s e d b i t−r e p r e s e n t a t i o n o f message [i] . Append i t i n r e v e r s e t o ans .
176 f o r (j = 7 ; j >= 0 ; j−−) ans . push_back (tmp [j]) ;
177 }
178 re turn ans ;
179 }

Appendix B

Code for WAM

1 / / DWTCalculat ion . cpp
2 / / A c l a s s o f f e r i n g r o u t i n e s f o r t h e 2D DWT.
3
4 # d e f i n e maxDim 2048
5 # d e f i n e m a x F i l t e r L e n g t h 16
6
7 c l a s s DWTCalculat ion
8 {
9 /∗

10 e x t r a c t R o w (MX, i) means x becomes row i o f MX.
11 e x t r a c t C o l u m n (MX, j) means x becomes column j o f MX.
12 putRow (MX, i) means row i o f MX becomes x .
13 putColumn (MX, j) means column j o f MX becomes x .
14 ∗ /
15 # d e f i n e e x t r a c t R o w (MX, i) { f o r (j = 0 ; j < M; j ++) x [j] = (MX) [(i)] [j] ; xLength = M; }
16 # d e f i n e e x t r a c t C o l u m n (MX, j) { f o r (i = 0 ; i < N; i ++) x [i] = (MX) [i] [(j)] ; xLength = N; }
17 # d e f i n e putRow (v , MX, i) { f o r (j = 0 ; j < M; j ++) (MX) [(i)] [j] = (v) [j] ; }
18 # d e f i n e putColumn (v , MX, j) { f o r (i = 0 ; i < N; i ++) (MX) [i] [(j)] = (v) [i] ; }
19
20 / / These a r r a y s are used f o r c o n v e n i e n c e , as t emporary s t o r a g e o f t h e i n p u t and o u t p u t
21 / / o f t h e f i l t e r i n g r o u t i n e . x i s t h e i n p u t t o d o F i l t e r i n g () . yLow and yHigh are i t s
22 / / o u t p u t . l o w F i l t e r and h i g h F i l t e r are t h e two f i l t e r s .
23 double yLow [maxDim] , yHigh [maxDim] ;
24 double l o w F i l t e r [m a x F i l t e r L e n g t h] , h i g h F i l t e r [m a x F i l t e r L e n g t h] ;
25 double x [maxDim] ;
26 i n t xLength ;
27 i n t f i l t e r L e n g t h ;
28
29 p u b l i c :
30 DWTCalculat ion ()
31 {
32 / / S e t t h e two f i l t e r s t o be t h e Daubech ies 8− t a p QMF.
33 i n t i ;
34 vecDouble f i l t e r ;
35 f i l t e r . r e s i z e (8) ;
36 f i l t e r [0] = 0 .230377813309 ;
37 f i l t e r [1] = 0 .714846570553 ;
38 f i l t e r [2] = 0 .630880767930 ;
39 f i l t e r [3] = −0.027983769417;
40 f i l t e r [4] = −0.187034811719;
41 f i l t e r [5] = 0 .030841381836 ;
42 f i l t e r [6] = 0 .032883011667 ;
43 f i l t e r [7] = −0.010597401785;
44 f i l t e r L e n g t h = f i l t e r . s i z e () ;

50

APPENDIX B. CODE FOR WAM 51

45 f o r (i = 0 ; i < f i l t e r L e n g t h ; i ++) l o w F i l t e r [i] = f i l t e r [f i l t e r L e n g t h −i −1];
46 f o r (i = 0 ; i < f i l t e r L e n g t h ; i ++) h i g h F i l t e r [i] = f i l t e r [i] ;
47 f o r (i = 0 ; i < f i l t e r L e n g t h ; i += 2) h i g h F i l t e r [i] = −h i g h F i l t e r [i] ;
48 }
49
50 / / DWT p r o c e d u r e . I t s i n p u t i s t h e image . The f i l t e r i s f i x e d t o be 8− t a p Daubech ies .
51 / / The m a t r i c e s L and H s t o r e t h e i n t e r m e d i a t e r e s u l t s o f t h e DWT c a l c u l a t i o n − t h e
52 / / r e s u l t s o f row−wise f i l t e r i n g . These are t h e n f i l t e r e d column−wise t o
53 / / produce t h e f o u r o u t p u t m a t r i c e s LL , LH , HL and HH. The p r o c e d u r e ’ s s i g n a t u r e i s
54 / / STL−o r i e n t e d , i n sync w i t h t h e r e s t o f my code . However , t h e i n n e r w or k i n g s f a v o u r
55 / / a r r a y s over v e c t o r s . T h i s i s i n t e n t i o n a l and aims t o improve e f f i c i e n c y , as a r r a y
56 / / a c c e s s i s somewhat f a s t e r than v e c t o r a c c e s s .
57 p u b l i c :
58 void oneLevelOf2DDWT (m a t r i x D o u b l e &image , m a t r i x D o u b l e &L , m a t r i x D o u b l e &H, m a t r i x D o u b l e

&LL , m a t r i x D o u b l e &LH, m a t r i x D o u b l e &HL, m a t r i x D o u b l e &HH, bool downsample)
59 {
60 r e g i s t e r i n t i , j ;
61
62 i n t N, M; / / Dimens ions o f t h e image .
63 N = image . s i z e () ;
64 M = image [0] . s i z e () ;
65 / / S p e c i f y d i m e n s i o n s o f LL , LH , HL , HH t o be NxM . L a t e r we ’ l l downsample ,
66 / / r e d u c i n g each d i m e n s i o n by h a l f .
67 r e s i z e M a t r i x (HH, N, M)
68 r e s i z e M a t r i x (HL, N, M)
69 r e s i z e M a t r i x (LH, N, M)
70 r e s i z e M a t r i x (LL , N, M)
71 r e s i z e M a t r i x (L , N, M)
72 r e s i z e M a t r i x (H, N, M)
73 / / F i l t e r each row . S t o r e t h e low−f r e q u e n c y o u t p u t i n LL , and t h e high−f r e q u e n c y

o u t p u t i n HH.
74 f o r (i = 0 ; i < N; i ++)
75 {
76 e x t r a c t R o w (image , i)
77 d o F i l t e r i n g () ;
78 putRow (yLow , L , i)
79 putRow (yHigh , H, i)
80 }
81 f o r (j = 0 ; j < M; j ++)
82 {
83 e x t r a c t C o l u m n (L , j)
84 d o F i l t e r i n g () ;
85 putColumn (yLow , LL , j)
86 putColumn (yHigh , LH, j)
87 e x t r a c t C o l u m n (H, j)
88 d o F i l t e r i n g () ;
89 putColumn (yLow , HL, j)
90 putColumn (yHigh , HH, j)
91 }
92 i f (downsample)
93 {
94 / / Now downsample rows by d i s c a r d i n g e v e r y o t h e r .
95 N /= 2 ;
96 f o r (i = 0 ; i < N; i ++)
97 {
98 LL [i] = LL [i + i] ;
99 LH[i] = LH[i + i] ;

100 HL[i] = HL[i + i] ;
101 HH[i] = HH[i + i] ;
102 }
103 / / Now downsample columns by d i s c a r d i n g e v e r y o t h e r .
104 M /= 2 ;
105 f o r (i = 0 ; i < N; i ++)
106 f o r (j = 0 ; j < M; j ++)
107 {
108 LL [i] [j] = LL [i] [j + j] ;

APPENDIX B. CODE FOR WAM 52

109 LH[i] [j] = LH[i] [j + j] ;
110 HL[i] [j] = HL[i] [j + j] ;
111 HH[i] [j] = HH[i] [j + j] ;
112 }
113 / / Now s e t d i m e n s i o n s o f LL , LH , HL and HH t o be (M/ 2) x (N / 2) .
114 r e s i z e M a t r i x (HH, N, M)
115 r e s i z e M a t r i x (HL, N, M)
116 r e s i z e M a t r i x (LH, N, M)
117 r e s i z e M a t r i x (LL , N, M)
118 }
119 }
120
121 / / A l a z y r e c a l c u l a t i o n o f t h e DWT. I f t h e image i s changed a t (X , Y) , and L , H, LL ,
122 / / LH , HL , HH are t h e DWT r e s u l t s p r i o r t o t h e change , do t h e l e a s t amount o f work
123 / / t o up da t e t h e r e s u l t s t o r e f l e c t t h e changed image .
124 p u b l i c :
125 void r eca lcu la t eDWT (
126 m a t r i x D o u b l e &image ,
127 m a t r i x D o u b l e &L ,
128 m a t r i x D o u b l e &H,
129 m a t r i x D o u b l e &LL ,
130 m a t r i x D o u b l e &LH,
131 m a t r i x D o u b l e &HL,
132 m a t r i x D o u b l e &HH,
133 i n t X, i n t Y)
134 {
135 i n t c , i , j ;
136 i n t N, M;
137 N = image . s i z e () ;
138 M = image [0] . s i z e () ;
139 e x t r a c t R o w (image , X)
140 d o F i l t e r i n g () ;
141 putRow (yLow , L , X)
142 putRow (yHigh , H, X)
143 f o r (j = Y − 7 ; j <= Y; j ++)
144 {
145 i f (j >= 0) c = j ; e l s e c = j + M;
146 e x t r a c t C o l u m n (L , c)
147 d o F i l t e r i n g () ;
148 putColumn (yLow , LL , c)
149 putColumn (yHigh , LH, c)
150 e x t r a c t C o l u m n (H, c)
151 d o F i l t e r i n g () ;
152 putColumn (yLow , HL, c)
153 putColumn (yHigh , HH, c)
154 }
155 }
156 / / The f i l t e r i n g r o u t i n e .
157 p r i v a t e :
158 void d o F i l t e r i n g ()
159 {
160 r e g i s t e r i n t i , j , k ;
161 / / Convolve .
162 double sum0 , sum1 ;
163 f o r (i = 0 ; i < xLength ; i ++)
164 {
165 sum0 = sum1 = 0 ;
166 f o r (j = 0 ; j < f i l t e r L e n g t h ; j ++)
167 {
168 k = i + j ; i f (k >= xLength) k −= xLength ; / / Note t h e p e r i o d i c i t y e x t e n s i o n .
169 sum0 += l o w F i l t e r [f i l t e r L e n g t h − j − 1]∗ x [k] ;
170 sum1 += h i g h F i l t e r [f i l t e r L e n g t h − j − 1]∗ x [k] ;
171 }
172 yLow [i] = sum0 ;
173 yHigh [i] = sum1 ;
174 }

APPENDIX B. CODE FOR WAM 53

175 }
176 } ;
177 # undef putRow
178 # undef putColumn
179 # undef e x t r a c t R o w
180 # undef e x t r a c t C o l u m n
181 # undef maxDim
182 # undef m a x F i l t e r L e n g t h
183
184
185 / / WAMCalculation . cpp .
186 / / A s t a t e l e s s c l a s s c a p t u r i n g t h e c a l c u l a t i o n o f t h e WAM f e a t u r e s .
187
188 c l a s s WAMCalculation
189 {
190 p r i v a t e :
191 m a t r i x D o u b l e p r e f i x e d S q u a r e s ;
192
193 p u b l i c :
194 WAMCalculation () { }
195
196 vecDouble calculateWAM (
197 m a t r i x D o u b l e &image ,
198 m a t r i x D o u b l e &L ,
199 m a t r i x D o u b l e &H,
200 m a t r i x D o u b l e &LL ,
201 m a t r i x D o u b l e &LH,
202 m a t r i x D o u b l e &HL,
203 m a t r i x D o u b l e &HH,
204 m a t r i x D o u b l e &v a r i anc esH ,
205 m a t r i x D o u b l e &v a r i anc esV ,
206 m a t r i x D o u b l e &v a r i anc esD ,
207 m a t r i x D o u b l e &r e s i d u a l s H ,
208 m a t r i x D o u b l e &r e s i d u a l s V ,
209 m a t r i x D o u b l e &r e s i d u a l s D ,
210 vecDouble &momentsH ,
211 vecDouble &momentsV ,
212 vecDouble &momentsD
213)
214 {
215 vecDouble f e a t u r e s ;
216
217 / / Dimens ions o f t h e image .
218 i n t N = image . s i z e () ;
219 i n t M = image [0] . s i z e () ;
220
221 / / C a l c u l a t e t h e DWT.
222 DWTCalculat ion DWT = DWTCalculat ion () ;
223 DWT. oneLevelOf2DDWT (image , L , H, LL , LH, HL, HH, f a l s e) ;
224
225 / / C a l c u l a t e t h e 9 moments from H.
226 c o m p u t e V a r i a n c e s (LH, v a r i a n c e s H) ;
227 c o m p u t e R e s i d u a l s (LH, v a r i anc e sH , r e s i d u a l s H) ;
228 computeMoments (r e s i d u a l s H , momentsH) ;
229
230 / / C a l c u l a t e t h e 9 moments from V .
231 c o m p u t e V a r i a n c e s (HL, v a r i a n c e s V) ;
232 c o m p u t e R e s i d u a l s (HL, v a r i anc e sV , r e s i d u a l s V) ;
233 computeMoments (r e s i d u a l s V , momentsV) ;
234
235 / / C a l c u l a t e t h e 9 moments from D.
236 c o m p u t e V a r i a n c e s (HH, v a r i a n c e s D) ;
237 c o m p u t e R e s i d u a l s (HH, v a r i anc e sD , r e s i d u a l s D) ;
238 computeMoments (r e s i d u a l s D , momentsD) ;
239
240 / / Assemble t h e 27−d f e a t u r e v e c t o r .

APPENDIX B. CODE FOR WAM 54

241 f e a t u r e s . i n s e r t (f e a t u r e s . end () , momentsH . b e g i n () , momentsH . end ()) ;
242 f e a t u r e s . i n s e r t (f e a t u r e s . end () , momentsV . b e g i n () , momentsV . end ()) ;
243 f e a t u r e s . i n s e r t (f e a t u r e s . end () , momentsD . b e g i n () , momentsD . end ()) ;
244
245 / / Re tu rn i t .
246 re turn f e a t u r e s ;
247 }
248
249 / / The c a l c u l a t i o n o f l o c a l v a r i a n c e s . Given a m a t r i x o f dwt c o e f f i c i e n t s ,
250 / / e s t i m a t e t h e l o c a l v a r i a n c e o f t h e s u b m a t r i x (fromX , fromY) − (toX , toY) .
251 void c o m p u t e V a r i a n c e s (m a t r i x D o u b l e &dwt , m a t r i x D o u b l e &var , i n t fromX , i n t toX , i n t fromY

, i n t toY)
252 {
253 i n t N = dwt . s i z e () ;
254 i n t M = dwt [0] . s i z e () ;
255 i n t i , j , r , c ;
256 f o r (i = fromX ; i < toX ; i ++)
257 f o r (j = fromY ; j < toY ; j ++)
258 {
259 r = (i + N) % N;
260 c = (j + M) % M;
261 v a r [r] [c] = computeOneVar iance (r , c) ;
262 }
263 }
264 / / R o u t i n e t o compute t h e v a r i a n c e s o f t h e whole dwt m a t r i x .
265 void c o m p u t e V a r i a n c e s (m a t r i x D o u b l e &dwt , m a t r i x D o u b l e &v a r)
266 {
267 i n t N = dwt . s i z e () ;
268 i n t M = dwt [0] . s i z e () ;
269 r e s i z e M a t r i x (var , N, M) ;
270 t r a n s f o r m (dwt) ;
271 c o m p u t e V a r i a n c e s (dwt , var , 0 , N, 0 , M) ;
272 }
273
274 / / Each c o e f f i c i e n t ’ s l o c a l v a r i a n c e i s e s t i m a t e d s e p a r a t e l y , based on f o u r
275 / / windows c e n t r e d around i t − o f s i z e s 3 , 5 , 7 and 9 .
276 double computeOneVar iance (i n t x , i n t y)
277 {
278 double v [6] = {0 , 0 , 0 , 0 , 0 } ;
279 i n t d ;
280 i n t X, Y, F , G;
281 i n t N = p r e f i x e d S q u a r e s . s i z e () ;
282 i n t M = p r e f i x e d S q u a r e s [0] . s i z e () ;
283 v [1] = v [2] = v [3] = v [4] = 0 ;
284
285
286 f o r (d = 1 ; d <= 4 ; d ++) / / For each window s i z e 2∗d+1:
287 {
288 / / The window i s (X , Y) − (F , G) .
289 X = x − d ;
290 Y = y − d ;
291 F = x + d ;
292 G = y + d ;
293
294 / / Crop window a t edges .
295 i f (X < 0) X = 0 ;
296 i f (Y < 0) Y = 0 ;
297 i f (F >= N) F = N−1;
298 i f (G >= M) G = M−1;
299
300 / / Use p r e f i x e d S q u a r e s t o g e t t h e numera tor .
301 i f (!X && !Y) v [d] = p r e f i x e d S q u a r e s [F] [G] ;
302 e l s e i f (!X) v [d] = p r e f i x e d S q u a r e s [F] [G] − p r e f i x e d S q u a r e s [F] [Y−1];
303 e l s e i f (!Y) v [d] = p r e f i x e d S q u a r e s [F] [G] − p r e f i x e d S q u a r e s [X−1][G] ;
304 e l s e v [d] = p r e f i x e d S q u a r e s [F] [G] − p r e f i x e d S q u a r e s [F] [Y−1] − p r e f i x e d S q u a r e s [X−1][G]

+ p r e f i x e d S q u a r e s [X−1][Y−1];

APPENDIX B. CODE FOR WAM 55

305
306 # i f d e f WAM_fix_denominator
307 / / Use a f i x e d denomina tor . We used t h i s .
308 v [d] /= (2∗ d + 1) ∗ (2∗ d + 1) ;
309 # e l s e
310 / / Use a non− f i x e d denomina tor .
311 v [d] /= (F−X+1) ∗ (G−Y+1) ;
312 # e n d i f
313 }
314
315 / / Find t h e l e a s t v [d] .
316 double b e s t = v [1] ;
317 f o r (d = 2 ; d <= 4 ; d ++) b e s t = MIN(b e s t , v [d]) ;
318
319 / / S u b t r a c t a h a l f , clamp t o 0 .
320 b e s t −= 0 . 5 ;
321 i f (b e s t < 0) b e s t = 0 ;
322
323 / / Re tu r n .
324 re turn b e s t ;
325 }
326
327 / / The c a l c u l a t i o n o f a l l r e s i d u a l s , g i v e n t h e dwt and v a r i a n c e m a t r i c e s . For a
328 / / c o e f f i c i e n t x w i t h l o c a l v a r i a n c e e s t i m a t e v , t h e r e s i d u a l i s 0 .5∗ x / (0 .5+ v) .
329 void c o m p u t e R e s i d u a l s (m a t r i x D o u b l e &dwt , m a t r i x D o u b l e &var , m a t r i x D o u b l e &r e s)
330 {
331 i n t N = dwt . s i z e () ;
332 i n t M = dwt [0] . s i z e () ;
333 r e s i z e M a t r i x (r e s , N, M) ;
334 c o m p u t e R e s i d u a l s (dwt , var , r e s , 0 , N, 0 , M) ;
335 }
336
337 / / The c a l c u l a t i o n o f o n l y some r e s i d u a l s .
338 / / Those a p p e a r i n g i n t h e window (fromX , fromY) − (toX , toY) .
339 void c o m p u t e R e s i d u a l s (m a t r i x D o u b l e &dwt , m a t r i x D o u b l e &var , m a t r i x D o u b l e &r e s , i n t fromX ,

i n t toX , i n t fromY , i n t toY)
340 {
341 i n t i , j , r , c ;
342 i n t N = dwt . s i z e () ;
343 i n t M = dwt [0] . s i z e () ;
344 f o r (i = fromX ; i < toX ; i ++)
345 f o r (j = fromY ; j < toY ; j ++)
346 {
347 r = (i + N) % N;
348 c = (j + M) % M;
349 r e s [r] [c] = 0 .5∗ dwt [r] [c] / (0 . 5 + v a r [r] [c]) ;
350 }
351 }
352
353 / / The c a l c u l a t i o n o f moments , g i v e n t h e r e s i d u a l s . The m−t h moment i s d e f i n e d by
354 / / (sum (i , j) o f | r e s i d u a l s [i] [j] − average | ^m) / (M∗N) , where average i s t h e
355 / / mean v a l u e o f t h e m a t r i x r e s i d u a l s . We ’ re i n t e r e s t e d i n t h e f i r s t n i n e moments .
356 void computeMoments (m a t r i x D o u b l e &r e s , vecDouble &moments)
357 {
358 i n t N = r e s . s i z e () ;
359 i n t M = r e s [0] . s i z e () ;
360 i n t i , j , m;
361 double a v e r a g e = 0 ;
362
363 / / I n i t i a l i s e .
364 moments . r e s i z e (9) ;
365 f o r (m = 0 ; m < 9 ; m++) moments [m] = 0 ;
366
367 / / Find average r e s i d u a l .
368 f o r (i = 0 ; i < N; i ++)
369 f o r (j = 0 ; j < M; j ++)

APPENDIX B. CODE FOR WAM 56

370 a v e r a g e += r e s [i] [j] ;
371 a v e r a g e /= (N∗M) ;
372
373 / / Do t h e moments .
374 f o r (i = 0 ; i < N; i ++)
375 f o r (j = 0 ; j < M; j ++)
376 {
377 double R = r e s [i] [j] − a v e r a g e ;
378 R = ABS(R) ;
379
380 double v = R ;
381 f o r (m = 0 ; m < 9 ; m++)
382 {
383 moments [m] += v ;
384 v ∗= R ;
385 }
386 }
387 f o r (m = 0 ; m < 9 ; m++) moments [m] /= (M∗N) ;
388 }
389
390 / / R o u t i n e which computes t h e p r e f i x e d s q u a r e s form o f mx and
391 / / p u t s i t i n t o p r e f i x e d S q u a r e s . U s e f u l f o r v a r i a n c e s .
392 void t r a n s f o r m (m a t r i x D o u b l e &mx)
393 {
394 i n t i , j ;
395 i n t N = mx . s i z e () ;
396 i n t M = mx [0] . s i z e () ;
397 r e s i z e M a t r i x (p r e f i x e d S q u a r e s , N, M) ;
398
399 f o r (i = 0 ; i < N; i ++)
400 f o r (j = 0 ; j < M; j ++)
401 p r e f i x e d S q u a r e s [i] [j] = mx[i] [j]∗mx[i] [j] ;
402
403 f o r (i = 0 ; i < N; i ++)
404 f o r (j = 1 ; j < M; j ++)
405 p r e f i x e d S q u a r e s [i] [j] += p r e f i x e d S q u a r e s [i] [j −1];
406
407 f o r (j = 0 ; j < M; j ++)
408 f o r (i = 1 ; i < N; i ++)
409 p r e f i x e d S q u a r e s [i] [j] += p r e f i x e d S q u a r e s [i −1][j] ;
410 }
411 } ;
412
413
414 / / WAMUpdater . cpp
415 / / T h i s i s t h e most i m p o r t a n t c l a s s o f t h e WAM p i p e l i n e . I t h o l d s an image , and
416 / / a l l t h e i n f o r m a t i o n from i t s WAM c a l c u l a t i o n . I t p r o v i d e s an i n t e r f a c e t o m od i f y
417 / / t h e image w h i l s t k e e p i n g t h e WAM i n f o r m a t i o n i n sync w i t h i t . I t a l s o o f f e r s
418 / / an i n t e r f a c e f o r h y p o t h e t i c a l q u e r i e s : " I don ’ t want t o change t h i s image
419 / / i n t h i s way y e t , b u t i f I d id , what would t h e e f f e c t be ?"
420
421 c l a s s WAMUpdater
422 {
423
424 p r i v a t e :
425
426 m a t r i x D o u b l e image ; / / The image .
427 m a t r i x D o u b l e L , H, LL , LH, HL, HH; / / The r e s u l t s from t h e DWT c a l c u l a t i o n .
428 m a t r i x D o u b l e va r i ance sH , v a r i anc e sV , v a r i a n c e s D ; / / The v a r i a n c e m a t r i c e s .
429 m a t r i x D o u b l e r e s i d u a l s H , r e s i d u a l s V , r e s i d u a l s D ; / / The r e s i d u a l s m a t r i c e s .
430 vecDouble momentsH , momentsV , momentsD ; / / The t h r e e s e t s o f moments .
431 i n t q u e r i e s U s e d ; / / A c o u n t e r o f many q u e r i e s have been answered so f a r .
432
433 / / R e f e r e n c e s t o t h e two above c l a s s e s .
434 WAMCalculation W;
435 DWTCalculat ion DWT;

APPENDIX B. CODE FOR WAM 57

436
437 p u b l i c :
438 / / Obvious a c c e s s methods .
439 i n t getN () { re turn image . s i z e () ; }
440 i n t getM () { re turn image [0] . s i z e () ; }
441 i n t g e t Q u e r i e s U s e d () { re turn q u e r i e s U s e d ; }
442 i n t g e t P i x e l V a l u e A t (i n t x , i n t y) { re turn (i n t) image [x] [y] ; }
443
444 / / To g e t t h e WAM v e c t o r , c o n c a t e n a t e t h e 3 s e t s o f moments .
445 vecDouble getWAM ()
446 {
447 vecDouble f e a t u r e s ;
448 f e a t u r e s . i n s e r t (f e a t u r e s . end () , momentsH . b e g i n () , momentsH . end ()) ;
449 f e a t u r e s . i n s e r t (f e a t u r e s . end () , momentsV . b e g i n () , momentsV . end ()) ;
450 f e a t u r e s . i n s e r t (f e a t u r e s . end () , momentsD . b e g i n () , momentsD . end ()) ;
451 re turn f e a t u r e s ;
452 }
453
454 / / N u l l c o n s t r u c t o r .
455 WAMUpdater () { }
456
457 /∗
458 I n i t i a l i s a t i o n . Given a f i l e c o n t a i n i n g an image ,
459 do a f i r s t −t i m e WAM c a l c u l a t i o n t o i n i t i a l i s e a l l
460 t h e i n f o .
461 ∗ /
462 WAMUpdater (s t r i n g i m a g e F i l e)
463 {
464 / / Read i n .
465 pgmToMatrix (i m a g e F i l e , image) ;
466 i n t N, M;
467 N = image . s i z e () ;
468 M = image [0] . s i z e () ;
469
470 / / I n i t i a l i s e query c o u n t e r .
471 q u e r i e s U s e d = 0 ;
472
473 / / S e t up s i z e s .
474 r e s i z e M a t r i x (va r i anc e sH , N, M)
475 r e s i z e M a t r i x (va r i anc e sV , N, M)
476 r e s i z e M a t r i x (va r i anc e sD , N, M)
477 r e s i z e M a t r i x (r e s i d u a l s H , N, M)
478 r e s i z e M a t r i x (r e s i d u a l s V , N, M)
479 r e s i z e M a t r i x (r e s i d u a l s D , N, M)
480 momentsH . r e s i z e (9) ;
481 momentsV . r e s i z e (9) ;
482 momentsD . r e s i z e (9) ;
483
484 / / C a l c u l a t e e v e r y t h i n g .
485 W. calculateWAM (
486 image ,
487 L , H, LL , LH, HL, HH,
488 va r i ance sH ,
489 va r i ance sV ,
490 va r i ance sD ,
491 r e s i d u a l s H ,
492 r e s i d u a l s V ,
493 r e s i d u a l s D ,
494 momentsH ,
495 momentsV ,
496 momentsD) ;
497 }
498
499 / / Check method :
500 / / Can I p e r t u r b p i x e l (x , y) by v ?
501 bool canMakeOneChange (i n t x , i n t y , i n t v)

APPENDIX B. CODE FOR WAM 58

502 {
503 re turn (x >= 0 &&
504 x < image . s i z e () &&
505 y >= 0 &&
506 y < image [0] . s i z e () &&
507 (i n t) image [x] [y] + v >= 0 &&
508 (i n t) image [x] [y] + v <= 255) ;
509 }
510 bool canMakeOneChange (Change c)
511 { re turn canMakeOneChange (c . x , c . y , c . v) ; }
512
513 /∗
514 Check method f o r group changes .
515 We ’ re r e l y i n g on no d u p l i c a t e p i x e l s
516 a p p e a r i n g i n t h e group change . In t h e r e s t
517 o f our code , we arrange t h i s t o be so .
518 ∗ /
519 bool canMakeGroupChange (v e c t o r <Change > v)
520 {
521 f o r (i n t i = 0 ; i < v . s i z e () ; i ++) i f (! canMakeOneChange (v [i])) re turn f a l s e ;
522 re turn true ;
523 }
524
525 / / Query r o u t i n e .
526 vecDouble QueryOneChange (Change C)
527 {
528 / / Count t h e query .
529 q u e r i e s U s e d ++;
530 / / Make t h e change .
531 makeOneChange (C) ;
532 / / Remember t h e f e a t u r e s .
533 vecDouble f e a t u r e s = getWAM () ;
534 / / Undo t h e change .
535 undoOneChange (C) ;
536 / / Re tu rn .
537 re turn f e a t u r e s ;
538 }
539
540 / / Same b u t f o r group q u e r i e s .
541 vecDouble QueryGroupChange (v e c t o r <Change > &v)
542 {
543 q u e r i e s U s e d ++;
544 makeGroupChange (v) ;
545 vecDouble f e a t u r e s = getWAM () ;
546 undoGroupChange (v) ;
547 re turn f e a t u r e s ;
548 }
549
550 /∗
551 The i n t e r f a c e t o change t h e image .
552 Given a s i n g l e t o n change , c a s t i t
553 t o a group change and a p p l y i t .
554 ∗ /
555 void makeOneChange (Change C)
556 {
557 v e c t o r <Change > v ;
558 v . push_back (C) ;
559 makeGroupChange (v) ;
560 }
561
562 / / R o u t i n e t o a p p l y a group change .
563 void makeGroupChange (v e c t o r <Change > &v)
564 {
565 i n t i ;
566 / / F i r s t l y change t h e image .
567 f o r (i = 0 ; i < v . s i z e () ; i ++)

APPENDIX B. CODE FOR WAM 59

568 {
569 image [v [i] . x] [v [i] . y] += v [i] . v ;
570 image [v [i] . x] [v [i] . y] = MIN(image [v [i] . x] [v [i] . y] , 255) ;
571 image [v [i] . x] [v [i] . y] = MAX(image [v [i] . x] [v [i] . y] , 0) ;
572 / / R e c a l c u l a t e t h e DWT s t u f f around each changed p i x e l .
573 i f (v [i] . v != 0)
574 reca lcu la t eDWT (v [i] . x , v [i] . y) ;
575 }
576 / / R e c a l c u l a t e t h e v a r i a n c e s and r e s i d u a l s around t h e changes v .
577 r e c a l c u l a t e V a r i a n c e s (v) ;
578 r e c a l c u l a t e R e s i d u a l s (v) ;
579 / / R e c a l c u l a t e t h e moments .
580 r e c a l c u l a t e M o m e n t s () ;
581 }
582
583 / / Mechanism f o r undo ing changes .
584 / / Yes , I ’m aware t h a t i t ’ s
585 / / code d u p l i c a t i o n .
586 void undoOneChange (Change C)
587 {
588 v e c t o r <Change > v ;
589 v . push_back (C) ;
590 undoGroupChange (v) ;
591 }
592
593 void undoGroupChange (v e c t o r <Change > &v)
594 {
595 i n t i ;
596 f o r (i = 0 ; i < v . s i z e () ; i ++)
597 {
598 image [v [i] . x] [v [i] . y] −= v [i] . v ;
599 image [v [i] . x] [v [i] . y] = MIN(image [v [i] . x] [v [i] . y] , 255) ;
600 image [v [i] . x] [v [i] . y] = MAX(image [v [i] . x] [v [i] . y] , 0) ;
601 reca lcu la t eDWT (v [i] . x , v [i] . y) ;
602 }
603 r e c a l c u l a t e V a r i a n c e s (v) ;
604 r e c a l c u l a t e R e s i d u a l s (v) ;
605 r e c a l c u l a t e M o m e n t s () ;
606 }
607
608 p r i v a t e :
609 / / To r e c a l c u l a t e t h e DWT s t u f f around (x , y) ,
610 / / j u s t i n v o k e t h e r e l e v a n t method i n t h e DWT c l a s s .
611 void r eca lcu la t eDWT (i n t x , i n t y)
612 {
613 DWT. reca lcu la t eDWT (image , L , H, LL , LH, HL, HH, x , y) ;
614 }
615
616 / / D i r e c t r e c a l c u l a t i o n o f moments .
617 void r e c a l c u l a t e M o m e n t s ()
618 {
619 W. computeMoments (r e s i d u a l s H , momentsH) ;
620 W. computeMoments (r e s i d u a l s V , momentsV) ;
621 W. computeMoments (r e s i d u a l s D , momentsD) ;
622 }
623
624 / / R e c a l c u l a t i o n o f v a r i a n c e s around group change v .
625 void r e c a l c u l a t e V a r i a n c e s (v e c t o r <Change > &v)
626 {
627 i n t i , x , y ;
628 / / I f b i g group , r e c a l c u l a t e v a r i a n c e s u s i n g p r e f i x e d S q u a r e s .
629 i f (v . s i z e () > 2) r e c a l c u l a t e V a r i a n c e s B y T r a n s f o r m (v) ;
630 / / I f smal l , j u s t r e c a l c u l a t e t h e d i r t y v a r i a n c e s by w a l k i n g over t h e 9 x9 r e g i o n around

them .
631 e l s e r e c a l c u l a t e V a r i a n c e s F r o m D e f i n i t i o n (v) ;
632 }

APPENDIX B. CODE FOR WAM 60

633
634 / / OK(i , j) means (i , j) i s i n range .
635 # d e f i n e OK(i , j) ((i) >= 0 && (i) < N && (j) >= 0 && (j) < M)
636
637 void r e c a l c u l a t e V a r i a n c e s F r o m D e f i n i t i o n (v e c t o r <Change > v)
638 {
639 i n t x0 , y0 , x1 , y1 , x , y ;
640 i n t i , j , r , c ;
641 i n t N = image . s i z e () ;
642 i n t M = image [0] . s i z e () ;
643
644 f o r (i n t i n d = 0 ; i n d < v . s i z e () ; i n d ++)
645 {
646 i f (v [i n d] . v == 0) c o n t i nu e ;
647 / / (x , y) i s t h e changed p i x e l .
648 x = v [i n d] . x ;
649 y = v [i n d] . y ;
650 / / [x0 . . x1] x [y0 . . y1] are t h e a f f e c t e d v a r i a n c e s .
651 x0 = x − 1 1 ;
652 y0 = y − 1 1 ;
653 x1 = x + 4 ;
654 y1 = y + 4 ;
655
656 / / For each d i r t y v a r i a n c e ,
657 f o r (i = x0 ; i <= x1 ; i ++)
658 f o r (j = y0 ; j <= y1 ; j ++)
659 {
660 / / r e c a l c u l a t e i t .
661 / / Note t h a t because t h e DWT f i l t e r i n g u s e s a p e r i o d i c i t y
662 / / e x t e n s i o n , we need t o wrap around i n bo th d i r e c t i o n s ,
663 / / because t h e d i r t i n e s s o f t h e DWT c o e f f i c i e n t s wraps around
664 / / t h e image . Behold , we ’ re a c t u a l l y t a k i n g p a i n s t o e m u l a t e
665 / / t h e bug i n t h e o r i g i n a l WAM code .
666 r = (i + 2∗N) % N;
667 c = (j + 2∗M) % M;
668 v a r i a n c e s H [r] [c] = c a l c u l a t e O n e V a r i a n c e F r o m D e f i n i t i o n (LH, r , c) ;
669 v a r i a n c e s V [r] [c] = c a l c u l a t e O n e V a r i a n c e F r o m D e f i n i t i o n (HL, r , c) ;
670 v a r i a n c e s D [r] [c] = c a l c u l a t e O n e V a r i a n c e F r o m D e f i n i t i o n (HH, r , c) ;
671 }
672 }
673 }
674
675 / / To c a l c u l a t e one d i r t y v a r i a n c e ,
676 double c a l c u l a t e O n e V a r i a n c e F r o m D e f i n i t i o n (m a t r i x D o u b l e &dwt ,
677 i n t x , i n t y)
678 {
679 # i f n d e f WAM_fix_denominator
680 double den [6] ;
681 # e n d i f
682 double v [6] = {0 , 0 , 0 , 0 , 0 } ;
683 i n t d , dx , dy ;
684 i n t N = image . s i z e () ;
685 i n t M = image [0] . s i z e () ;
686 / / walk around (x , y) summing t h i n g s up as n e c e s s a r y .
687 f o r (dx = −4; dx <= 4 ; dx ++)
688 f o r (dy = −4; dy <= 4 ; dy ++)
689 i f (OK(x + dx , y + dy))
690 f o r (d = 1 ; d <= 4 ; d ++)
691 i f (ABS(dx) <= d && ABS(dy) <= d)
692 {
693 v [d] += SQUARE(dwt [x + dx] [y + dy]) ;
694 # i f n d e f WAM_fix_denominator
695 den [d] + + ;
696 # e n d i f
697 }
698 # i f d e f WAM_fix_denominator

APPENDIX B. CODE FOR WAM 61

699 / / D i v i d e by a f i x e d denomina to r .
700 v [1] /= 9 ;
701 v [2] /= 2 5 ;
702 v [3] /= 4 9 ;
703 v [4] /= 8 1 ;
704 # e l s e
705 / / Or a v a r i a b l e one . We used f i x e d .
706 f o r (d = 1 ; d <= 4 ; d ++) v [d] /= den [d] ;
707 # e n d i f
708 / / Find t h e s m a l l e s t .
709 double b e s t , b e s t 1 , b e s t 2 ;
710 b e s t 1 = MIN(v [1] , v [2]) ;
711 b e s t 2 = MIN(v [3] , v [4]) ;
712 / / S u b t r a c t a h a l f and clamp t o z e r o .
713 b e s t = MIN(b e s t 1 , b e s t 2) − 0 . 5 ;
714 i f (b e s t < 0) b e s t = 0 ;
715 / / Re tu rn .
716 re turn b e s t ;
717 }
718 # undef OK
719
720 / / I f t h e r e are t o o many v a r i a n c e s t o update ,
721 void r e c a l c u l a t e V a r i a n c e s B y T r a n s f o r m (v e c t o r <Change > v)
722 {
723 i n t i , x , y ;
724 / / C a l c u l a t e t h e p r e f i x e d s q u a r e s form .
725 W. t r a n s f o r m (LH) ;
726 / / Then up da t e t h e d i r t y v a r i a n c e s .
727 f o r (i = 0 ; i < v . s i z e () ; i ++)
728 {
729 i f (v [i] . v == 0) c o n t in u e ;
730 x = v [i] . x ; y = v [i] . y ;
731 W. c o m p u t e V a r i a n c e s (LH, v a r i anc e sH , x − 11 , x + 5 , y − 11 , y + 5) ;
732 }
733 / / Same .
734 W. t r a n s f o r m (HL) ;
735 f o r (i = 0 ; i < v . s i z e () ; i ++)
736 {
737 i f (v [i] . v == 0) c o n t in u e ;
738 x = v [i] . x ; y = v [i] . y ;
739 W. c o m p u t e V a r i a n c e s (HL, v a r i anc e sV , x − 11 , x + 5 , y − 11 , y + 5) ;
740 }
741 / / Same .
742 W. t r a n s f o r m (HH) ;
743 f o r (i = 0 ; i < v . s i z e () ; i ++)
744 {
745 i f (v [i] . v == 0) c o n t in u e ;
746 x = v [i] . x ; y = v [i] . y ;
747 W. c o m p u t e V a r i a n c e s (HH, v a r i anc e sD , x − 11 , x + 5 , y − 11 , y + 5) ;
748 }
749 }
750
751 / / To r e c a l c u l a t e t h e r e s i d u a l s around a group change v ,
752 void r e c a l c u l a t e R e s i d u a l s (v e c t o r <Change > &v)
753 {
754 i n t i , x , y ;
755 f o r (i = 0 ; i < v . s i z e () ; i ++)
756 {
757 i f (v [i] . v == 0) c o n t in u e ;
758 / / Take each x , y i n v .
759 x = v [i] . x ;
760 y = v [i] . y ;
761 / / And redo t h e r e s i d u a l s i n [x−11 . . x +4] x [y−11 . . y +4] .
762 W. c o m p u t e R e s i d u a l s (LH, v a r i anc e sH , r e s i d u a l s H , x − 11 , x + 5 , y − 11 , y + 5) ;
763 W. c o m p u t e R e s i d u a l s (HL, v a r i anc e sV , r e s i d u a l s V , x − 11 , x + 5 , y − 11 , y + 5) ;
764 W. c o m p u t e R e s i d u a l s (HH, v a r i anc e sD , r e s i d u a l s D , x − 11 , x + 5 , y − 11 , y + 5) ;

APPENDIX B. CODE FOR WAM 62

765 }
766 }
767
768 / / Ou tpu t methods .
769 p u b l i c :
770 void o u t p u t I m a g e (s t r i n g f i l eName)
771 { matrixToPgm (image , f i l eName) ; }
772
773 void outputWAM (s t r i n g f i l eName)
774 {
775 vecDouble f e a t u r e s = getWAM () ;
776 w r i t e V e c t o r (f i leName , f e a t u r e s) ;
777 }
778
779 void o u t p u t A l l (s t r i n g f i l eName)
780 {
781 w r i t e M a t r i x (f i l eName +" . dwt .H" , LH) ;
782 w r i t e M a t r i x (f i l eName +" . dwt .V" , HL) ;
783 w r i t e M a t r i x (f i l eName +" . dwt .D" , HH) ;
784
785 w r i t e M a t r i x (f i l eName +" . v a r .H" , v a r i a n c e s H) ;
786 w r i t e M a t r i x (f i l eName +" . v a r .V" , v a r i a n c e s V) ;
787 w r i t e M a t r i x (f i l eName +" . v a r .D" , v a r i a n c e s D) ;
788
789 w r i t e M a t r i x (f i l eName +" . r e s .H" , r e s i d u a l s H) ;
790 w r i t e M a t r i x (f i l eName +" . r e s .V" , r e s i d u a l s V) ;
791 w r i t e M a t r i x (f i l eName +" . r e s .D" , r e s i d u a l s D) ;
792
793 w r i t e V e c t o r (f i l eName +" .mom.H" , momentsH) ;
794 w r i t e V e c t o r (f i l eName +" .mom.V" , momentsV) ;
795 w r i t e V e c t o r (f i l eName +" .mom.D" , momentsD) ;
796 }
797 } ;

Appendix C

Code for Feature Restoration

1 / / R e s t o r e r . cpp
2 / / A s u p e r c l a s s f o r our r e s t o r e r s . I t p r o m i s e s t h e a p p l y () r o u t i n e , which i s imp lemen ted

by s u b c l a s s e s .
3
4 c l a s s R e s t o r e r
5 {
6 p r o t e c t e d :
7 WAMUpdater W;
8 vecDouble g o a l ;
9 m a t r i x I n t u s e d P i x e l s ;

10 m a t r i x I n t changesMade ;
11
12
13 s t r i n g o r i g i n a l F i l e ;
14 s t r i n g s t e g o F i l e ;
15
16 / / A l i s t o f a l l t h e non−pay load p i x e l s a v a i l a b l e f o r r e s t o r a t i o n .
17 v e c t o r < P i x e l > a v a i l a b l e P i x e l s ;
18
19 p u b l i c :
20
21 v i r t u a l vo id a p p l y () = 0 ;
22
23 R e s t o r e r (s t r i n g e n c o d i n g L o g F i l e)
24 {
25 char x [1 2 8] ;
26 i n t i , j ;
27 FILE ∗ f i n = fopen (e n c o d i n g L o g F i l e . c _ s t r () , " rb ") ;
28
29 f s c a n f (f i n , "%s " , x) ;
30 o r i g i n a l F i l e = s t r i n g (x) ;
31
32 f s c a n f (f i n , "%s " , x) ;
33 s t e g o F i l e = s t r i n g (x) ;
34
35
36 l o a d M a t r i x (f i n , u s e d P i x e l s) ;
37 l o a d M a t r i x (f i n , changesMade) ;
38
39 W = WAMUpdater (s t e g o F i l e) ;
40 f c l o s e (f i n) ;
41
42 p r e p a r e M a h a l a n o b i s () ;
43 s e t G o a l (" means ") ;

63

APPENDIX C. CODE FOR FEATURE RESTORATION 64

44
45 i n t N, M; N = W. getN () ; M = W. getM () ;
46 / / Find a l l t h e non−pay load p i x e l s , and p u t them i n t o a v e c t o r . T h i s w i l l a l l o w q u i c k

g e n e r a t i o n o f v a l i d group changes .
47
48 f o r (i = 0 ; i < N; i ++)
49 f o r (j = 0 ; j < M; j ++)
50 i f (! u s e d P i x e l s [i] [j])
51 a v a i l a b l e P i x e l s . push_back (newPixe l (i , j)) ;
52 a v a i l a b l e P i x e l s . r e s i z e (a v a i l a b l e P i x e l s . s i z e ()) ;
53 }
54
55
56 /∗
57 R o u t i n e t o s e t t h e goa l . The c h o i c e i s be tween a iming f o r t h e o r i g i n a l f e a t u r e s , and

a iming f o r t h e mean f e a t u r e s . We are go ing t o use t h e mean f e a t u r e s .
58 ∗ /
59 void s e t G o a l (s t r i n g i n s t r u c t i o n)
60 {
61 i f (i n s t r u c t i o n == " means ")
62 { g o a l = means ; }
63 e l s e i f (i n s t r u c t i o n == " o r i g i n a l ")
64 {
65 WAMUpdater F = WAMUpdater (o r i g i n a l F i l e) ;
66 g o a l = F . getWAM () ;
67 }
68 e l s e
69 { e x i t (0) ; }
70 }
71
72 / / RANGE: [a . . b)
73 i n t randomNumberInRange (i n t a , i n t b)
74 { re turn a + (r and () % (b−a)) ; }
75
76 p r o t e c t e d :
77 / / R e t u r n s a c o m b i n a t i o n o f k e l e m e n t s , drawn from [0 . . m) , where m i s t h e number o f

a v a i l a b l e p i x e l s .
78
79 v e c I n t randomSample (i n t k)
80 {
81 i n t i , i n d ;
82 bool hasDups ;
83 i n t m = a v a i l a b l e P i x e l s . s i z e () ;
84
85 v e c I n t c o m b i n a t i o n ;
86 c o m b i n a t i o n . r e s i z e (k) ;
87
88 do
89 {
90 f o r (i = 0 ; i < k ; i ++)
91 {
92 i n d = randomNumberInRange (0 , m) ;
93 c o m b i n a t i o n [i] = i n d ;
94 }
95 s o r t (c o m b i n a t i o n . b e g i n () , c o m b i n a t i o n . end ()) ;
96 hasDups = f a l s e ;
97 f o r (i = 1 ; i < k && ! hasDups ; i ++)
98 i f (c o m b i n a t i o n [i] == c o m b i n a t i o n [i −1]) hasDups = t rue ;
99 } whi le (hasDups) ;

100
101
102 re turn c o m b i n a t i o n ;
103 }
104
105
106 v e c t o r <Change > randomNodupGroupChange (i n t s i z e , i n t vmin , i n t vmax)

APPENDIX C. CODE FOR FEATURE RESTORATION 65

107 {
108 i n t i , ind , v , x , y ;
109 bool hasDups ;
110 v e c t o r <Change > groupChange ;
111 v e c I n t i n d i c e s ;
112
113 groupChange . r e s i z e (s i z e) ;
114 i n d i c e s . r e s i z e (s i z e) ;
115
116 vmax += 1 ;
117
118 do
119 {
120 i n d i c e s = randomSample (s i z e) ;
121 f o r (i = 0 ; i < s i z e ; i ++)
122 {
123 i n d = i n d i c e s [i] ;
124 x = a v a i l a b l e P i x e l s [i n d] . x ;
125 y = a v a i l a b l e P i x e l s [i n d] . y ;
126 do
127 { v = randomNumberInRange (vmin , vmax) ; }
128 whi le (ABS(changesMade [x] [y] + v) > PIXEL_CHANGE_CAP) ;
129
130 groupChange [i] = newChange (x , y , v) ;
131 }
132 } whi le (!W. canMakeGroupChange (groupChange)) ;
133
134 re turn groupChange ;
135 }
136
137 } ;
138
139 / / R e s t o r e r I n e f f . cpp
140 / / The r e s t o r e r f o r t h e i n e f f i c i e n t a l g o r i t h m .
141
142 c l a s s R e s t o r e r I n e f f : p u b l i c R e s t o r e r
143 {
144 p r i v a t e :
145 i n t i t e r a t i o n s ;
146
147 p u b l i c :
148 R e s t o r e r I n e f f (s t r i n g encodingLog , i n t ITERATIONS) : R e s t o r e r (encodingLog)
149 {
150 i t e r a t i o n s = ITERATIONS ;
151 }
152
153
154 void a p p l y ()
155 {
156 i n t N, M;
157 i n t i t ;
158 i n t i , j , v ;
159 Change C , bes tChange ;
160 double d i s t , b e s t d i s t ;
161
162 N = W. getN () ;
163 M = W. getM () ;
164
165 vecDouble c u r = W. getWAM () ;
166 b e s t d i s t = D i s t a n c e (goa l , c u r) ;
167 f o r (i t = 1 ; i t <= i t e r a t i o n s ; i t ++)
168 {
169 ECHO("%d %.12 l f \ n " , W. g e t Q u e r i e s U s e d () , b e s t d i s t) ;
170
171 bes tChange = newChange (−1 , −1, −1) ;
172 f o r (i = 0 ; i < N; i ++)

APPENDIX C. CODE FOR FEATURE RESTORATION 66

173 f o r (j = 0 ; j < M; j ++)
174 i f (! u s e d P i x e l s [i] [j])
175 f o r (v = −1; v <= 1 ; v += 2) / / v i n {−1 , 1}
176 {
177 C = newChange (i , j , v) ;
178
179 i f (W. canMakeOneChange (C) && ABS(changesMade [i] [j] + v) <= PIXEL_CHANGE_CAP)
180 {
181 vecDouble w = W. QueryOneChange (C) ;
182 d i s t = D i s t a n c e (w, g o a l) ;
183 i f (d i s t < b e s t d i s t)
184 { bes tChange = C ; b e s t d i s t = d i s t ; }
185 }
186 }
187 i f (bes tChange . x == −1) break ;
188 e l s e
189 {
190 W. makeOneChange (bes tChange) ;
191 changesMade [bes tChange . x] [bes tChange . y] += bes tChange . v ;
192 }
193
194 c u r = W. getWAM () ;
195 b e s t d i s t = D i s t a n c e (goa l , c u r) ;
196 }
197 ECHO("%d %.12 l f \ n " , W. g e t Q u e r i e s U s e d () , b e s t d i s t) ;
198 W. o u t p u t I m a g e (" r e s t o r e d . pgm") ;
199 }
200 } ;
201
202
203 / / R e s t o r e r G r e e d y . cpp
204 / / The r e s t o r e r c l a s s f o r t h e Greedy a l g o r i t h m .
205
206 c l a s s R e s t o r e r G r e e d y : p u b l i c R e s t o r e r
207 {
208 p r i v a t e :
209 i n t q u e r y L i m i t ;
210
211 p u b l i c :
212 R e s t o r e r G r e e d y (s t r i n g encodingLog , i n t QUERIES) : R e s t o r e r (encodingLog)
213 {
214 q u e r y L i m i t = QUERIES ;
215 }
216
217 void a p p l y ()
218 {
219 i n t N, M; / / D imens ions o f t h e image .
220 i n t m; / / Number o f p i x e l s a v a i l a b l e f o r r e s t o r a t i o n .
221
222 / / Temporary v a r i a b l e s used below .
223 i n t x , y , p i x e l V a l u e , v ;
224 double h y p D i s t P l u s , hypDis tMinus , bes tHypDis t , c u r D i s t ;
225 vecDouble hypWAMplus , hypWAMminus , bestHypWAM , curWAM ;
226 i n t i , j ;
227
228 / / Dimens ions .
229 N = W. getN () ;
230 M = W. getM () ;
231
232 / / WAM f e a t u r e s o f t h e image and t h e i r d i s t a n c e t o t h e goa l f e a t u r e s .
233 curWAM = W. getWAM () ;
234 c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
235
236 / / Cr ea t e a l i s t o f t h e p i x e l s a v a i l a b l e f o r r e s t o r a t i o n .
237 v e c t o r < P i x e l > a v a i l a b l e P i x e l s ;
238 f o r (i = 0 ; i < N; i ++)

APPENDIX C. CODE FOR FEATURE RESTORATION 67

239 f o r (j = 0 ; j < M; j ++)
240 i f (! u s e d P i x e l s [i] [j])
241 a v a i l a b l e P i x e l s . push_back (newPixe l (i , j)) ;
242 m = a v a i l a b l e P i x e l s . s i z e () ;
243 a v a i l a b l e P i x e l s . r e s i z e (m) ;
244
245 / / I t e r a t e w h i l e t h e r e are q u e r i e s a v a i l a b l e .
246 whi le (W. g e t Q u e r i e s U s e d () < q u e r y L i m i t)
247 f o r (i = 0 ; i < m && W. g e t Q u e r i e s U s e d () < q u e r y L i m i t ; i ++)
248 {
249 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
250 / / For each non−pay load p i x e l (x , y) ,
251 x = a v a i l a b l e P i x e l s [i] . x ;
252 y = a v a i l a b l e P i x e l s [i] . y ;
253 p i x e l V a l u e = W. g e t P i x e l V a l u e A t (x , y) ;
254
255 / / C a l c u l a t e t h e WAM o f t h e image o b t a i n e d by p e r t u r b i n g t h e p i x e l by 1 .
256 / / Avoid p o s s i b i l i t y o f i n c r e m e n t i n g p i x e l o u t s i d e 8− b i t range .
257 i f (p i x e l V a l u e != 255 && ABS(changesMade [x] [y] + 1) <= PIXEL_CHANGE_CAP)
258 {
259 hypWAMplus = W. QueryOneChange (newChange (x , y , 1)) ;
260 h y p D i s t P l u s = D i s t a n c e (hypWAMplus , g o a l) ;
261 }
262 e l s e h y p D i s t P l u s = 1000000;
263
264 / / Same f o r −1.
265 / / C a l c u l a t e t h e h y p o t h e t i c a l d i s t a n c e s o f t h e two p o s s i b i l i t i e s .
266 i f (p i x e l V a l u e != 0 && ABS(changesMade [x] [y] − 1) <= PIXEL_CHANGE_CAP)
267 {
268 hypWAMminus = W. QueryOneChange (newChange (x , y , −1)) ;
269 hypDis tMinus = D i s t a n c e (hypWAMminus , g o a l) ;
270 }
271 e l s e hypDis tMinus = 1000000;
272
273 / / De termine which o f t h e s e two changes l e a d s t o a g r e a t e r d i s t a n c e r e d u c t i o n .
274 i f (h y p D i s t P l u s < hypDis tMinus)
275 {
276 b e s t H y p D i s t = h y p D i s t P l u s ;
277 bestHypWAM = hypWAMplus ;
278 v = 1 ;
279 }
280 e l s e
281 {
282 b e s t H y p D i s t = hypDis tMinus ;
283 bestHypWAM = hypWAMminus ;
284 v = −1;
285 }
286
287 / / F i n a l l y , check i f t h i s d i s t a n c e r e d u c t i o n i s p o s i t i v e . I f so , per fo rm t h e change

.
288 i f (b e s t H y p D i s t < c u r D i s t)
289 {
290 W. makeOneChange (newChange (x , y , v)) ;
291 changesMade [x] [y] += v ;
292 c u r D i s t = b e s t H y p D i s t ;
293 curWAM = bestHypWAM ;
294 }
295 }
296 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
297 W. o u t p u t I m a g e (" r e s t o r e d . pgm") ;
298 }
299 } ;
300
301 / / R e s t o r e r G e n e t i c . cpp
302 / / The r e s t o r e r f o r our G e n e t i c a l g o r i t h m
303

APPENDIX C. CODE FOR FEATURE RESTORATION 68

304 s t r u c t P o p u l a t i o n I n d i v i d u a l
305 {
306 GroupChange vc ;
307 double d i s t a n c e R e d u c t i o n ;
308 } ;
309
310 bool operator <(P o p u l a t i o n I n d i v i d u a l a , P o p u l a t i o n I n d i v i d u a l b)
311 {
312 i f (a . d i s t a n c e R e d u c t i o n < b . d i s t a n c e R e d u c t i o n) re turn true ;
313 e l s e re turn f a l s e ;
314 }
315
316 P o p u l a t i o n I n d i v i d u a l n e w I n d i v i d u a l (GroupChange gc , double d i s t R e d)
317 {
318 P o p u l a t i o n I n d i v i d u a l ans ;
319 ans . vc = gc ;
320 ans . d i s t a n c e R e d u c t i o n = d i s t R e d ;
321 re turn ans ;
322 }
323
324 t y p e d e f P o p u l a t i o n I n d i v i d u a l I n d i v i d u a l ;
325 t y p e d e f p r i o r i t y _ q u e u e < P o p u l a t i o n I n d i v i d u a l > P o p u l a t i o n ;
326
327 c l a s s R e s t o r e r G e n e t i c : p u b l i c R e s t o r e r
328 {
329 p r i v a t e :
330 P o p u l a t i o n P ; / / The p o p u l a t i o n f o r t h e g e n e t i c a l g o r i t h m .
331 i n t i n i t i a l S i z e ; / / Parame ter s o f t h e g e n e t i c a l g o r i t h m .
332 i n t q u e r y L i m i t ; / / What i t s a y s on t h e t i n .
333
334 p u b l i c :
335 / / C o n s t r u c t o r .
336 R e s t o r e r G e n e t i c (s t r i n g e n c o d i n g L o g F i l e , i n t i n i t S i z e , i n t q u e r i e s) : R e s t o r e r (

e n c o d i n g L o g F i l e)
337 {
338 / / S e t s t a t e space o f t h e g e n e t i c a l g o r i t h m r e s t o r e r .
339 i n i t i a l S i z e = i n i t S i z e ;
340 q u e r y L i m i t = q u e r i e s ;
341 }
342
343 void a p p l y ()
344 {
345 i n i t i a l i s e G e n e t i c A l g o r i t h m () ;
346 i t e r a t e () ;
347 dwind le () ;
348 W. o u t p u t I m a g e (" r e s t o r e d . pgm") ;
349 }
350
351 p r i v a t e :
352 void i n i t i a l i s e G e n e t i c A l g o r i t h m ()
353 {
354 i n t i , j ;
355 i n t N, M;
356 N = W. getN () ; M = W. getM () ;
357
358 vecDouble curWAM ;
359 double c u r D i s t ;
360 curWAM = W. getWAM () ;
361 c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
362 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
363
364 f o r (i = 0 ; i < i n i t i a l S i z e ; i ++)
365 m i g r a t e I n () ;
366 }
367
368 void i t e r a t e ()

APPENDIX C. CODE FOR FEATURE RESTORATION 69

369 {
370 vecDouble curWAM ;
371 double c u r D i s t ;
372
373 curWAM = W. getWAM () ;
374 c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
375 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
376
377 whi le (1)
378 {
379 i f (W. g e t Q u e r i e s U s e d () >= q u e r y L i m i t) break ;
380 m i g r a t e I n () ;
381 i f (W. g e t Q u e r i e s U s e d () >= q u e r y L i m i t) break ;
382 m i g r a t e I n () ;
383 i f (W. g e t Q u e r i e s U s e d () >= q u e r y L i m i t) break ;
384
385 m i g r a t e O u t () ;
386 curWAM = W. getWAM () ;
387 c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
388 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
389
390 i f (P . s i z e () == 2∗ i n i t i a l S i z e + i n i t i a l S i z e / 10) merge () ;
391 }
392 }
393
394 void m i g r a t e I n ()
395 {
396 v e c t o r <Change > groupChange ;
397 vecDouble hypWAM, curWAM ;
398 double c u r D i s t , hypDis t , d i s t R e d ;
399
400 curWAM = W. getWAM () ;
401 c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
402 whi le (1)
403 {
404 i f (W. g e t Q u e r i e s U s e d () >= q u e r y L i m i t) re turn ;
405 do
406 { groupChange = randomNodupGroupChange (1 , −1, 1) ; }
407 whi le (groupChange [0] . v == 0) ;
408 hypWAM = W. QueryGroupChange (groupChange) ;
409 h y p D i s t = D i s t a n c e (hypWAM, g o a l) ;
410 d i s t R e d = c u r D i s t − h y p D i s t ;
411 i f (d i s t R e d > 0 . 0 0 0 0 0 1) break ;
412 }
413 P . push (n e w I n d i v i d u a l (groupChange , d i s t R e d)) ;
414 }
415
416 void m i g r a t e O u t ()
417 {
418 i n t i ;
419 i n t x , y , v ;
420 I n d i v i d u a l b e s t ;
421
422 b e s t = P . t o p () ; P . pop () ; / / E x t r a c t t h e t o p e l e m e n t from P .
423
424 / / Check t h a t a p p l y i n g i t does n o t v i o l a t e t h e p i x e l change cap .
425 f o r (i = 0 ; i < b e s t . vc . s i z e () ; i ++)
426 {
427 x = b e s t . vc [i] . x ;
428 y = b e s t . vc [i] . y ;
429 v = b e s t . vc [i] . v ;
430 / / I f i t does , break e a r l y . I f not , f i n i s h n o r m a l l y .
431 i f (ABS(changesMade [x] [y] + v) > PIXEL_CHANGE_CAP) break ;
432 }
433 / / I f haven ’ t f i n i s h e d normal l y , t h e n a p p l y i n g b e s t v i o l a t e s p i x e l change cap . Di scard

i t .

APPENDIX C. CODE FOR FEATURE RESTORATION 70

434 i f (i != b e s t . vc . s i z e ()) re turn ;
435
436 / / Check t h a t a p p l y i n g b e s t w i l l n o t t a k e a p i x e l o u t s i d e [0 . . 2 5 5] . Also , t h a t t h e

d i s t a n c e
437 / / r e d u c t i o n l a b e l i s p o s i t i v e .
438 i f (W. canMakeGroupChange (b e s t . vc) && b e s t . d i s t a n c e R e d u c t i o n > 0)
439 {
440 / / I f so , make t h e change .
441 W. makeGroupChange (b e s t . vc) ;
442 / / Record t h a t p i x e l s have been t o u c h e d .
443 f o r (i = 0 ; i < b e s t . vc . s i z e () ; i ++)
444 changesMade [b e s t . vc [i] . x] [b e s t . vc [i] . y] += b e s t . vc [i] . v ;
445 }
446 }
447
448 void merge ()
449 {
450 I n d i v i d u a l f i r s t , second ;
451 I n d i v i d u a l merged ;
452 vecDouble hypWAM, curWAM ;
453 double c u r D i s t , hypDis t , d i s t R e d ;
454 i n t i ;
455
456 v e c t o r < I n d i v i d u a l > m e r g e R e s u l t s ;
457 f o r (i = 0 ; i < i n i t i a l S i z e ; i ++)
458 {
459 f i r s t = P . t o p () ; P . pop () ;
460 second = P . t o p () ; P . pop () ;
461 i f (W. g e t Q u e r i e s U s e d () < q u e r y L i m i t)
462 {
463 merged . vc = mergeTwoGroupChanges (f i r s t . vc , second . vc) ;
464
465 hypWAM = W. QueryGroupChange (merged . vc) ;
466 curWAM = W. getWAM () ;
467 c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
468 h y p D i s t = D i s t a n c e (hypWAM, g o a l) ;
469 merged . d i s t a n c e R e d u c t i o n = c u r D i s t − h y p D i s t ;
470 m e r g e R e s u l t s . push_back (merged) ;
471 }
472 e l s e
473 {
474 m e r g e R e s u l t s . push_back (f i r s t) ;
475 m e r g e R e s u l t s . push_back (second) ;
476 }
477 }
478
479 whi le (! P . empty ()) P . pop () ;
480
481 f o r (i = 0 ; i < m e r g e R e s u l t s . s i z e () ; i ++)
482 P . push (m e r g e R e s u l t s [i]) ;
483 }
484
485 void dwind le ()
486 {
487 whi le (! P . empty ())
488 m i g r a t e O u t () ;
489
490 vecDouble curWAM = W. getWAM () ;
491 double c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
492 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
493 }
494
495
496 } ;
497
498 / / R e s t o r e r R a n d . cpp

APPENDIX C. CODE FOR FEATURE RESTORATION 71

499 / / The r e s t o r e r f o r t h e Random a l g o r i t h m .
500 c l a s s R e s t o r e r R a n d : p u b l i c R e s t o r e r
501 {
502 p r i v a t e :
503 i n t LOTS , CHANGES;
504 i n t q u e r y L i m i t ;
505
506 p u b l i c :
507 R e s t o r e r R a n d (s t r i n g encodingLog , i n t l o t s , i n t changes , i n t q u e r i e s) : R e s t o r e r (

encodingLog)
508 {
509 LOTS = l o t s ;
510 CHANGES = changes ;
511 q u e r y L i m i t = q u e r i e s ;
512 }
513
514 void a p p l y ()
515 {
516 i n t i , j ;
517 i n t i t e r a t i o n s W i t h o u t R e d u c t i o n = 0 ;
518 i n t N = W. getN () ;
519 i n t M = W. getM () ;
520
521 double hypDis t , b e s t D i s t ;
522 v e c t o r <Change > groupChange , bes tGroupChange ;
523 vecDouble curWAM, hypWAM;
524
525 whi le (W. g e t Q u e r i e s U s e d () < q u e r y L i m i t)
526 {
527 curWAM = W. getWAM () ;
528 b e s t D i s t = D i s t a n c e (goa l , curWAM) ;
529 bes tGroupChange . c l e a r () ;
530
531 ECHO(" %.12 l f %d \ n " , b e s t D i s t , W. g e t Q u e r i e s U s e d ()) ;
532
533 i f (i t e r a t i o n s W i t h o u t R e d u c t i o n == 100)
534 {
535 i t e r a t i o n s W i t h o u t R e d u c t i o n = 0 ;
536 CHANGES = MAX(1 , (CHANGES∗3) / 4) ;
537 }
538
539 f o r (i = 0 ; i < LOTS ; i ++) / / Randomly choose LOTS groups o f p i x e l s t o change .
540 {
541 / / Each group has CHANGES p i x e l s i n i t . Each i s p e r t u r b e d by 1 , 0 or −1.
542 / / E f f e c t i v e l y , t h e group has up to CHANGES p e r t u r b a t i o n s , each o f v a l u e 1 or −1.
543 groupChange = randomNodupGroupChange (CHANGES, −1, 1) ;
544
545 / / For l a r g e v a l u e s o f CHANGES i t i s v i r t u a l l y i m p o s s i b l e f o r t h e group change t o

c o n t a i n a l l
546 / / z e r o e s . However , f o r a s m a l l v a l u e o f CHANGES, i t i s wor th c h e c k i n g . I f so ,

r e s e l e c t .
547 i f (CHANGES <= 10)
548 {
549 f o r (j = 0 ; j < groupChange . s i z e () ; j ++)
550 i f (groupChange [j] . v != 0)
551 break ;
552 i f (j == groupChange . s i z e ())
553 { i−−; c o n t in u e ; }
554 }
555
556 / / Change i s n o t v o i d . Query t h e o r a c l e f o r i t s e f f e c t s .
557 / / I f b e t t e r than b e s t , r e c o r d i t .
558 hypWAM = W. QueryGroupChange (groupChange) ;
559 h y p D i s t = D i s t a n c e (goa l , hypWAM) ;
560 i f (h y p D i s t < b e s t D i s t)
561 {

APPENDIX C. CODE FOR FEATURE RESTORATION 72

562 b e s t D i s t = h y p D i s t ;
563 bes tGroupChange = groupChange ;
564 }
565
566 }
567 i f (bes tGroupChange . empty ())
568 { i t e r a t i o n s W i t h o u t R e d u c t i o n ++; }
569 e l s e
570 {
571 i t e r a t i o n s W i t h o u t R e d u c t i o n = 0 ;
572 W. makeGroupChange (bes tGroupChange) ;
573 f o r (i = 0 ; i < bes tGroupChange . s i z e () ; i ++)
574 changesMade [bes tGroupChange [i] . x] [bes tGroupChange [i] . y] += bes tGroupChange [i] . v ;
575 }
576 }
577 curWAM = W. getWAM () ;
578 b e s t D i s t = D i s t a n c e (goa l , curWAM) ;
579 ECHO(" %.12 l f %d \ n " , b e s t D i s t , W. g e t Q u e r i e s U s e d ()) ;
580 W. o u t p u t I m a g e (" r e s t o r e d . pgm") ;
581 }
582 } ;
583
584 / / Res torerQP . cpp
585 / / The r e s t o r e r f o r t h e q u a d r a t i c programming a l g o r i t h m .
586 c l a s s Res to re rQP : p u b l i c R e s t o r e r
587 {
588 p r i v a t e :
589 i n t q u e r y L i m i t ;
590 i n t COUNT;
591
592 v e c t o r <Change > changes ;
593
594 m a t r i x D o u b l e A;
595 m a t r i x D o u b l e V;
596 vecDouble b ;
597
598 p u b l i c :
599 Res to re rQP (s t r i n g encodingLog , i n t q u e r i e s) : R e s t o r e r (encodingLog)
600 {
601 q u e r y L i m i t = q u e r i e s ;
602 COUNT = 2000 ;
603 }
604
605 void a p p l y ()
606 {
607 c l o c k () ;
608 s r a n d (t ime (0)) ;
609
610 vecDouble curWAM = W. getWAM () ;
611 double c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
612 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
613
614 whi le (W. g e t Q u e r i e s U s e d () < q u e r y L i m i t)
615 {
616 i f (W. g e t Q u e r i e s U s e d () >= 20000) COUNT = 1000 ;
617 i f (W. g e t Q u e r i e s U s e d () >= 30000) COUNT = 500 ;
618 i f (W. g e t Q u e r i e s U s e d () >= 40000) COUNT = 5 0 ;
619
620 p ickChanges () ;
621 c a l c u l a t e M o d e l () ;
622 w r i t e M a t l a b I n p u t () ;
623 s i g n a l M a t l a b () ;
624 i d l e U n t i l M a t l a b I s R e a d y () ;
625 per fo rmChanges () ;
626 }
627 W. o u t p u t I m a g e (" r e s t o r e d . pgm") ;

APPENDIX C. CODE FOR FEATURE RESTORATION 73

628 }
629
630 void p ickChanges ()
631 {
632 i n t i , x , y , v ;
633
634 r a n d o m _ s h u f f l e (a v a i l a b l e P i x e l s . b e g i n () , a v a i l a b l e P i x e l s . end ()) ;
635 changes . c l e a r () ;
636 f o r (i = 0 ; i < a v a i l a b l e P i x e l s . s i z e () && changes . s i z e () < COUNT && changes . s i z e () + W.

g e t Q u e r i e s U s e d () < q u e r y L i m i t ; i ++)
637 {
638 x = a v a i l a b l e P i x e l s [i] . x ;
639 y = a v a i l a b l e P i x e l s [i] . y ;
640 i f (ABS(changesMade [x] [y]) == PIXEL_CHANGE_CAP) c o n t in u e ;
641 Change c = newChange (x , y , −1) ;
642 changes . push_back (c) ;
643 c = newChange (x , y , 1) ;
644 changes . push_back (c) ;
645 }
646 s o r t (changes . b e g i n () , changes . end ()) ;
647 }
648
649 void c a l c u l a t e M o d e l ()
650 {
651 i n t i , j ;
652 vecDouble f , v , d e l t a ;
653 i n t n = changes . s i z e () ;
654
655 A. c l e a r () ;
656 V. c l e a r () ;
657 b . c l e a r () ;
658 f = W. getWAM () ;
659 V. r e s i z e (2 7) ;
660 f o r (i = 0 ; i < 2 7 ; i ++) V[i] . r e s i z e (n) ;
661 f o r (i = 0 ; i < n ; i ++)
662 {
663 Change c = changes [i] ;
664 v = W. QueryOneChange (c) ;
665 d e l t a = v − f ;
666 f o r (j = 0 ; j < 2 7 ; j ++)
667 V[j] [i] = d e l t a [j] ;
668 }
669 / / A = V ’∗ c o v I n v ∗V ;
670 m a t r i x D o u b l e Vprimed = t r a n s p o s e (V) ;
671 m a t r i x D o u b l e a = Vprimed∗ covInv ;
672 A = a∗V;
673 / / b = 2∗V ’∗ c o v I n v ∗ (f − means) ;
674 vecDouble c = f − means ;
675 f o r (i = 0 ; i < 2 7 ; i ++) c [i] ∗= 2 ;
676 b = a∗c ;
677 }
678
679 void w r i t e M a t l a b I n p u t ()
680 {
681 i n t i , j ;
682 i n t n = changes . s i z e () ;
683 / / D e s c r i b e t h e q u a d r a t i c o b j e c t i v e . Note t h a t Matlab ’ s
684 / / i n p u t i s 1 / 2 x ’Hx , so I need t o do ub l e my A b e f o r e p u t t i n g i t i n .
685 FILE ∗ f o u t = fopen ("H. d a t " , "wb") ;
686 f o r (i = 0 ; i < n ; i ++)
687 {
688 f o r (j = 0 ; j < n ; j ++)
689 FECHO(f o u t , " %.12 l f " , 2∗A[i] [j]) ;
690 FECHO(f o u t , " \ n ") ;
691 }
692 f c l o s e (f o u t) ;

APPENDIX C. CODE FOR FEATURE RESTORATION 74

693
694 / / D e s c r i b e t h e l i n e a r o b j e c t i v e . Matlab ’ s f i s my b .
695 f o u t = fopen (" f . d a t " , "wb") ;
696 f o r (i = 0 ; i < n ; i ++)
697 FECHO(f o u t , " %.12 l f " , b [i]) ;
698 FECHO(f o u t , " \ n ") ;
699 f c l o s e (f o u t) ;
700 / / L i n e a r c o n s t r a i n t m a t r i x .
701 / / A c o n s t r a i n t f o r each i , i + 1 . We d i d n o t use t h e s e ! The Matlab s c r i p t i g n o r e s them

.
702 f o u t = fopen ("A. d a t " , "wb") ;
703 f o r (i = 0 ; i < n ; i += 2)
704 {
705 f o r (j = 0 ; j < n ; j ++)
706 i f (j == i | | j == i + 1)
707 FECHO(f o u t , " 1 ") ;
708 e l s e
709 FECHO(f o u t , " 0 ") ;
710 FECHO(f o u t , " \ n ") ;
711 }
712 f c l o s e (f o u t) ;
713 / / R igh t−hand s i d e o f t h e l i n e a r c o n s t r a i n t s .
714 f o u t = fopen (" b . d a t " , "wb") ;
715 f o r (i = 0 ; i < n ; i += 2)
716 FECHO(f o u t , " 1 ") ;
717 FECHO(f o u t , " \ n ") ;
718 f c l o s e (f o u t) ;
719 }
720
721 void s i g n a l M a t l a b ()
722 {
723 FILE ∗ f o u t ;
724 f o u t = fopen (" s i g n a l T o M a t l a b " , "wb") ;
725 FECHO(f o u t , " 112233\ n ") ;
726 f c l o s e (f o u t) ;
727 }
728
729 void i d l e U n t i l M a t l a b I s R e a d y ()
730 {
731 i n t x ;
732 FILE ∗ f i n ;
733 whi le (1)
734 {
735 f i n = fopen (" s i g n a l F r o m M a t l a b " , " rb ") ;
736 i f (f i n != NULL)
737 {
738 f s c a n f (f i n , "%d " , &x) ;
739 i f (x == 998877) break ;
740 }
741 }
742 f c l o s e (f i n) ;
743 remove (" s i g n a l F r o m M a t l a b ") ;
744 }
745
746 void per formChanges ()
747 {
748 i n t n = changes . s i z e () ;
749 i n t i ;
750 v e c t o r <Change > gc ;
751 double x ;
752 FILE ∗ f i n = fopen (" m a t l a b O u t p u t " , " rb ") ;
753 f o r (i = 0 ; i < n ; i ++)
754 {
755 f s c a n f (f i n , "%l f " , &x) ;
756 i f (x >= 0 . 5) { gc . push_back (changes [i]) ; }
757 }

APPENDIX C. CODE FOR FEATURE RESTORATION 75

758 f c l o s e (f i n) ;
759 W. makeGroupChange (gc) ;
760 vecDouble curWAM = W. getWAM () ;
761 double c u r D i s t = D i s t a n c e (curWAM, g o a l) ;
762 f o r (i = 0 ; i < gc . s i z e () ; i ++)
763 {
764 i n t p i x e l x = gc [i] . x ;
765 i n t p i x e l y = gc [i] . y ;
766 i n t changev = gc [i] . v ;
767 changesMade [p i x e l x] [p i x e l y] += changev ;
768 }
769 ECHO(" %.12 l f %d \ n " , c u r D i s t , W. g e t Q u e r i e s U s e d ()) ;
770 }
771 } ;
772
773 % The Mat lab s c r i p t we used t o a u t o m a t e t h e QP a l g o r i t h m .
774 whi le t rue
775 c l e a r ;
776 f i d = fopen (’ s i g n a l T o M a t l a b ’ , ’ r ’) ;
777 i f (f i d == −1) c o n t in u e ; end ;
778 x = f s c a n f (f i d , ’%d ’ , 1) ;
779 f c l o s e (f i d) ;
780 i f x ~= 112233 c o n t in u e ; end ;
781 l o a d − a s c i i H. d a t ;
782 l o a d − a s c i i f . d a t ;
783 n = 2000 ;
784 l b = ones (n , 1) − ones (n , 1) ;
785 ub = ones (n , 1) ;
786 t i c
787 xs = quadprog (H, f , [] , [] , [] , [] , lb , ub) ;
788 t o c
789 save − a s c i i −double ’ m a t l a b O u t p u t ’ xs ;
790 d e l e t e (’ s i g n a l T o M a t l a b ’) ;
791 d e l e t e (’H. d a t ’) ;
792 d e l e t e (’ f . d a t ’) ;
793 f i d = fopen (’ s i g n a l F r o m M a t l a b ’ , ’w’) ;
794 f p r i n t f (f i d , ’ 998877 ’) ;
795 f c l o s e (f i d) ;
796 end

Appendix D

Partial Benchmarking of Genetic
Algorithm

76

Appendix E

Partial Benchmarking of Random
Algorithm

77

