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Chapter 1

Introduction

1.1 Veri�cation of linear programs

This project falls within the scope of Computer-Aided Veri�cation. The �eld is
concerned with developing methods to analyse software and hardware systems.
This direction of research is motivated by the idea that as systems grow in
scale and complexity, it becomes impossible to prove manually that they sat-
isfy desirable properties. Manual inspection is expensive, because it requires
human input, but is simultaneously error-prone. Testing is widely applied in
the industry, but is incomplete and can only be used to show the existence of
errors, never to prove their absence. Thus, the need for automated methods
for veri�cation is evident.

Verifying programs is inherently di�cult. One of the earliest results of com-
putability theory is the undecidability of the Halting Problem. A more general
result, Rice's Theorem, states that all non-trivial properties of Turing Machines
are undecidable. However, an important point is that these results place no re-
strictions on the program to be veri�ed, allowing any Turing Machine as input.
Another point is that the veri�cation procedure is required to terminate and
produce a correct answer. Therefore, modern research in software veri�cation
lifts these restrictions and focuses on two main directions:

1. Partial veri�cation procedures, which are allowed to return no answer.

2. Complete veri�cation procedures for restricted classes of programs.

One restricted class of programs is linear programs, which consist of unnested
while loops de�ned in terms of linear or a�ne guards and assignments, such as
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CHAPTER 1. INTRODUCTION 4

while (Bx > 0) do x := Ax+ c end

where A,B are matrices of constants, c is a vector of constants and x is a vector
of program variables.

Within this class, there is a wide variety of subclasses that may be considered,
depending on the domain of the relevant variables (natural, integer, rational,
algebraic, real, complex), the type of constraints in the loop guard (equalities,
disequalities, strict and non-strict inequalities), the type of assignments (linear
or a�ne), the dimension of the relevant state space. For linear programs written
in matrix form, one may also consider special cases of matrices (stochastic,
symmetric, diagonalisable, unitary).

Linear programs have elicited a considerable amount of interest in recent years.
Questions about them are related to questions about Markov chains, quantum
automata, probabilistic automata, linear recurrent sequences, and probabilis-
tic model checking problems. Studying them is of practical value because they
occur frequently in practice. A tool called Terminator, developed at Microsoft
Research, Cambridge, uses theoretical results about the veri�cation of linear
programs to automatically prove termination and liveness properties of Win-
dows device drivers.

This reduced computational model allows a variety of properties to be decided.
Algorithms for such problems typically rely on polynomial-time reductions and
various mathematical �elds such as computational linear algebra, algebraic
number theory and Galois theory. We will now sketch some examples of recent
work on such problems.

Tiwari [11] showed that it is decidable whether the program

while (Bx > b) do x := Ax+ c end

terminates on all initial values of x in Rn. This work was later generalised
by Braverman [12], who showed that termination is decidable over Q in the
general case and over Z in the homogeneous case c = 0.

The form of the termination problem considered in [11, 12] has an implicit
universal quanti�cation over a large set of possible initial states. Alternatively,
one can ask about termination from a subset of the state space, such as a lower-
dimensional subspace, a semi-linear set, or even a single point. The latter is
related to Skolem's problem: determine whether there exists a positive integer
n such that uTAnv = 0, for given vectors u, v and a square matrix A. Observe
that Skolem's problem is equivalent to the question of whether the program



CHAPTER 1. INTRODUCTION 5

while (uTx 6= 0) do x := Ax end

halts on initial value x := v. Another equivalent formulation of the problem,
though slightly less obvious, is whether a given linear recurrent sequence (xn)
has a zero: an index n such that xn = 0.

The solvability of Skolem's problem is open. Algorithms are known for it in the
case of matrices of small dimension, or equivalently, recurrences of low depth. A
paper by Vereshchagin [13] gives a solution for recurrences of depth at most 4.
Recently, an attempt was made by Halava et al. [8] to show decidability for
recurrences of depth 5. Ongoing e�orts are focusing on �nding algorithms
to solve further special cases. The general problem is known to be NP-hard
(Blondel and Portier, [14]), but since it is not at all clear whether it is decidable
in general, there is a large gap between the known upper and lower complexity
bounds.

A related problem is the Positivity problem, which asks whether a linear recur-
rence is always non-negative. It has been solved for recurrences of depth 2 by
Halava et al. [15]. The question of its decidability in the general case is open,
but a reduction from Skolem to Positivity is known.

Much e�ort has been devoted to partial decision procedures for termination
through the synthesis of ranking functions. This approach consists of �nding
a function f from the state space of the program into some well-founded set.
This function must have the property that if x is a valuation of the variables
which satis�es the loop guard, and the loop body transforms it into x′, then
f(x′) < f(x). A complete method for �nding linear ranking functions was
described by Podelski and Rybalchenko [16].

1.2 Overview of this project

This project is concerned with the Orbit problem:

Given vectors x, y ∈ Qn and a matrix A ∈ Qn×n,
does there exist m ∈ N such that Amx = y?

This is equivalent to asking whether the linear program

while (x 6= y) do x := Ax end
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halts. The problem was shown to be decidable, and in fact decidable in poly-
nomial time, in a seminal paper of Kannan and Lipton [1]. In their conclusion,
the authors discuss a related problem, the generalised Orbit problem:

Given a vector x ∈ Qn, a matrix A ∈ Qn×n and a vector subspace S
speci�ed by a basis, does there exist m ∈ N such that Amx ∈ S?

The Orbit problem concerns reachability from point to point in a linear system,
whereas the generalised Orbit problem replaces the target point with a vector
space. Thus, in a sense, the former is a zero-dimensional version of the latter.
The authors conjecture that the generalised Orbit problem is decidable, and
that its one-dimensional version is decidable in polynomial time. They suggest
that future work should focus on showing decidability, and possibly low com-
plexity, for versions of the problem of small dimension, in order to gain insight
into the general case. Since the paper was published in 1986, no progress has
been recorded in the literature regarding the decidability of these problems.

The contribution of this dissertation is to prove that the one-dimensional Orbit
problem is decidable in polynomial time, as Kannan and Lipton conjectured.
Additionally, we give a simpler proof of the polynomial-time decidability of the
zero-dimensional version. Our proof eliminates the need to reason about the
cumbersome Jordan canonical form and is much less involved.

Chapter 2 provides the necessary mathematical background and proves the
results needed later. Chapter 3 investigates the zero-dimensional Orbit problem
and proves that it is polynomial-time decidable. Chapter 4 shows the same for
the one-dimensional version. Finally, Chapter 5 concludes this dissertation and
gives suggestions for future work.



Chapter 2

Mathematical Foundations

A subset of the complex numbers which is of special mathematical interest is
the set of algebraic numbers, that is, the roots of polynomials with rational
coe�cients. They frequently arise in matrix and polynomial problems over
Q. A problem concerning a rational matrix may often be reduced to ques-
tions regarding its eigenvalues, which arise as the roots of its characteristic
polynomial.

In our solution to the one-dimensional Orbit problem, we will exploit such a
connection between matrices and their eigenvalues. Sections 2.1 to 2.4 contain
the textbook results which are necessary for our proof. The main theme is to
show that operations on algebraic numbers can be carried out e�ciently. For
a broader view of algebraic number theory, we suggest Cohen [4] and Stewart
and Tall [5].

Sections 2.5 and 2.6 discuss a decision problem on algebraic numbers and two
of its special cases. The general problem is known to be decidable. Kannan
and Lipton proved a polynomial-time bound for the �rst special case and used
it to prove the zero-dimensional Orbit problem decidable in polynomial time.
We will prove a polynomial-time bound for the second special case, and use it
in our result for the one-dimensional Orbit problem. This complexity analysis
is the subject of Section 2.6 and makes use of bounds given in Section 2.5.

2.1 Basic de�nitions and properties

We say that α ∈ C is an algebraic number just if there exists a non-zero
polynomial p ∈ Q [x] such that p (α) = 0. Further, if p may be chosen to
be in Z [x] and monic, then α is an algebraic integer. We de�ne the minimal

7
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polynomial of α, denoted fα (x), to be the monic polynomial in Q [x] of least
degree which vanishes at α. The degree and height of α are de�ned as the
degree and height1 of fα.

Proposition 1. The minimal polynomial fα (x) of α is unique and irreducible
over Q. Further, any polynomial which vanishes at α must be a multiple of
fα (x).

Proof. If f (x) and g (x) are minimal polynomials of α, then h (x) = f (x)−g (x)
is of lower degree and vanishes at α, so h (x) is the zero polynomial. This proves
uniqueness.

If fα (x) = u (x) v (x) for some u, v ∈ Q [x] of non-zero degree, then u (α) = 0
or v (α) = 0 must hold. But the degrees of u, v are strictly smaller than the
degree of fα, which contradicts the minimality of fα. This proves irreducibility.

Suppose p (α) = 0 for some p ∈ Q [x]. If u and v are the quotient and the
remainder of the polynomial division of p (x) by fα (x), then

0 = p (α) = u (α) fα (α) + v (α) = v (α)

But deg (v) < deg (fα), so v must be identically zero. Therefore, fα divides p.

�

The roots of fα (x) (including α) are called the Galois conjugates of α. By
Proposition 1, if α satis�es some polynomial equation p (x) = 0, then fα di-
vides p, so the Galois conjugates of α must also satisfy the equation. There-
fore, we say that Galois conjugates are algebraically indistinguishable from each
other.

Proposition 2. The polynomial fα has no repeated roots.

Proof. Suppose α is a repeated root of fα (x). Then fα (x) = (x− α)2 u (x) for
some u ∈ C [x]. The derivative of fα is

f ′α (x) = (x− α) (2u (x) + (x− α)u′ (x))

Therefore, f ′α (α) = 0, which contradicts the minimality of fα because f ′α (x) ∈
Q [x] and deg (f ′α) < deg (fα).

1The height of a polynomial is the maximum absolute value of its coe�cients.
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�

An algebraic number α is an n-th root of unity just if it is a root of xn − 1.
The least n ∈ N+ such that α is an n-th root of unity is called the order of α.
An n-th root of unity is called primitive just if its order is n. The n-th roots of
unity are exactly exp (2πit/n), for t ∈ {1, . . . , n}. Moreover, exp (2πit/n) has
order n if and only if gcd (t, n) = 1. If α is an n-th root of unity, then so are all
integer powers of α. Further, if α is primitive, then α1, . . . , αn are exactly the
n-th roots of unity in some order. The n-th cyclotomic polynomial is de�ned
as

Cn (x) =
∏

1≤t≤n
gcd(t,n)=1

(x− exp (2πit/n))

It is easy to prove by induction that Cn ∈ Z [x] and that it is minimal for the
primitive n-th roots of unity. Its degree is ϕ (n), where ϕ is Euler's totient
function:

ϕ (n) = pk1−1
1 pk2−1

2 . . . pks−1
s (p1 − 1) (p2 − 1) . . . (ps − 1)

where pk11 . . . pkss is the decomposition of n into primes. It satis�es the inequality

√
n ≤ ϕ (n) ≤ n− 1

Therefore, if α is algebraic with degree d, either α is not a root of unity, or it
is a root of unity of order at most d2.

Given monic polynomials f, g ∈ Q [x] with roots {αi} , {βj}, their resultant is
de�ned as

R(f, g) =
deg(f)∏
i=1

deg(g)∏
j=1

(αi − βj)

Viète's Laws may be used to show that R (f, g) ∈ Q. The resultant is com-
putable in polynomial time, see section 3.3 of [4].

Proposition 3. The algebraic numbers form a �eld under addition and mul-
tiplication.
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Proof. It su�ces to show closure under addition, subtraction, multiplication
and division.

Let α, β be algebraic numbers and g (x) be the resultant of fα (x− y) and
fβ (y), interpreted as polynomials in y. One of the roots of fα (x− y) is y =
x− α. Therefore, α+ β is a root of g (x). Similarly,

1. α− β is a root of R (fα (x+ y) , fβ (y)),
2. αβ is a root of R

(
ydeg(α)fα (x/y) , fβ (y)

)
,

3. α/β is a root of R (fα (xy) , fβ (y)),

�

The absolute norm of an algebraic number α, denoted N (α), is the product of
its Galois conjugates, including itself:

N (α) =
∏

β : fα(β)=0

β

By Viète's Laws,

N (α) = (−1)deg(α)
a0

where a0 is the constant term of fα.

The notion of minimal polynomial extends to matrices. For A ∈ Qn×n, the
minimal polynomial of A, denoted fA (x), is the monic polynomial in Q [x] of
least degree such that fA (A) is the zero matrix. If p ∈ Q [x], p (A) = 0 if and
only if fA divides p. A well-known result is the following:

Theorem. (Cayley-Hamilton) The minimal polynomial fA of A divides the
characteristic polynomial of A.

Thus, the minimal polynomial is of degree at most the size of the matrix, and
its roots coincide with the eigenvalues of A, up to multiplicity.
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2.2 Algebraic number �elds

Let K and L be �elds, and K be a sub�eld of L. Then L is called a �eld
extension of K, denoted L : K. In this case, L may be seen as a vector space
over K, where vector addition is addition in L, and scalar multiplication takes
λ ∈ K, v ∈ L and returns λv ∈ L. The dimension of this vector space is called
the degree or dimension of the �eld extension, denoted [L : K].

A number �eld is a �eld extension L of Q such that [L : Q] is �nite. For
α1, . . . , αn ∈ C, de�ne Q (α1, . . . , αn) to be the smallest �eld extension of Q
containing α1, . . . , αn.

Proposition 4. If α is algebraic with degree d, then [Q (α) : Q] = d and

B =
{
α0, . . . , αd−1

}
is a basis for Q (α).

Proof. If c0α
0 + · · · + cd−1α

d−1 = 0 for some coe�cients ci ∈ Q, then the
polynomial c0x

0 + · · · + cd−1x
d−1 vanishes at α and is of smaller degree than

fα. Therefore, c0 = · · · = cd−1 = 0, proving linear independence.

Moreover, αd is linearly dependent on B, evidenced by fα (α) = 0. Therefore,
for all i, αi ∈ span (B), so span (B) = Q (α). This proves that B is a basis and
[Q (α) : Q] = |B| = d.

�

In general, if K is a number �eld, then K = Q (α1, . . . , αn) for �nitely many
algebraic numbers α1, . . . , αn. In fact, a stronger property holds:

Theorem. (Primitive Element) If K is a number �eld, then K = Q (θ) for
some algebraic number θ.

Proof. See Theorem 2.2 of [5].

�

2.3 Representation of algebraic numbers

A canonical way of specifying an algebraic number α is to refer to it by its
minimal polynomial fα. We include a numerical approximation of Re (α) and
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Im (α) of su�cient accuracy to distinguish α from its Galois conjugates. More
precisely, we represent α as a tuple

(fα, x, y, R) ∈ (Q [x]×Q×Q×Q)

with the meaning `α is the unique root of fα which is inside the circle centred at
(x, y) in the complex plane with radius R'. In order to make this well-de�ned,
we invoke a root separation bound. One such bound, due to Mignotte [6], states
that for roots αi 6= αj of a polynomial p (x),

|αi − αj | >
√

6

n
n+1

2 Hn−1

where n = deg (p) and H is the height of p. If we restrict R to be less than half
of the root separation bound for fα, the disk (x, y,R) is guaranteed to include
at most one root of fα, making the representation unambiguous. However, we
will restrict R to be less than a quarter of the root separation bound, in order
to allow equality checking.

Observe that if we adopt the convention that R = 2−t for some t ∈ N, then
this requirement becomes

t > 2 +
n+ 1

2
log2 n+ (n− 1) log2H − log2

√
6

which is bounded by a polynomial in n and log2H. Therefore, given fα, the
number of bits required to describe α is polynomial in the size of the input. Pan
[7] gives an algorithm to obtain polynomially many bits of the roots of a given
polynomial in polynomial time. Thus, the crux of identifying an algebraic
number will be �nding its minimal polynomial. The rest is just numerical
approximation, which we assume we can always do.

Proposition 5. Given canonical representations α = (fα, xα, yα, Rα) and β =
(fβ , xβ , yβ , Rβ), canonical representations of α + β, α − β, αβ and α/β are
computable in polynomial time. Moreover, it is decidable in polynomial time
whether α ∈ N, α ∈ Z, α ∈ Q, α = β.

Proof. Clearly, α ∈ N i� fα (x) = x − t for some t ∈ N, which can be decided
by inspection. Similarly for α ∈ Z and α ∈ Q.

To decide α = β, �rst examine fα and fβ . If they are distinct, then clearly
α 6= β. Otherwise, determine if the disks (xα, yα, Rα), (xβ , yβ , Rβ) have a
common point by calculating
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d2 = |(xα + iyα)− (xβ + iyβ)|2

and checking d2 ≤ (Rα +Rβ)
2
. If not, then α 6= β. Otherwise, observe that

the distance from any point in one disk to any point in the other is at most
2Rα + 2Rβ , which is less than the root separation bound. Therefore, α = β.

For the arithmetic operations, we use the resultant method. We compute the
relevant resultant (see Proposition 3), factor it into irreducible polynomials [3]
and use the numerical approximations of α and β to determine which factor is
the minimal polynomial of the resulting algebraic number.

�

Proposition 6. Given a canonical description α = (fα, xα, yα, Rα), it is de-
cidable in polynomial time whether α is a root of unity. Further, if it is, its
order n is computable in polynomial time, along with the integer t ∈ {1, . . . , n}
such that α = exp (2πit/n).

Proof. Let d = deg (α). It su�ces to check whether fα divides some polynomial
xj − 1 for j = 1, . . . , d2. If not, then α is not a root of unity. Otherwise, n is
the least j such that fα divides xj − 1. Then we use numerical approximation
to determine which n-th root of unity is equal to α.

�

When the intermediate results of an algorithm are con�ned to some number
�eld Q (γ), it is convenient to represent algebraic numbers by their coordinates
with respect to a basis for Q (γ). If d = deg (γ), the tuple

(a0, a1, . . . , ad−1) ∈ Qd

is called the standard representation of
∑d−1
i=0 aiγ

i with respect to Q (γ). By
linear independence, each algebraic number in Q (γ) has a unique standard
representation.

Proposition 7. Given a canonical representation of γ and standard repre-
sentations of α = (a0, . . . , ad−1) and β = (b0, . . . , bd−1) with respect to Q (γ),
the standard representations of α + β, α − β, αβ and α/β are computable in
polynomial time. Moreover, it is decidable in polynomial time whether α ∈ N,
α ∈ Z, α ∈ Q, α = β.
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Proof. The decidability questions are immediate from the uniqueness of the
representation: α = β i� their tuples are equal, α ∈ Q i� there are only zeroes
in components 1, . . . , d − 1 of the description of α, and so on. Addition and
subtraction are also trivial.

For multiplication, we inductively precompute the standard representations
of γd, γd+1, . . . , γ2d−2. In the base case, we obtain the coordinates of γd =
(u0, u1, . . . , ud−1) directly from the identity fγ (γ) = 0. If for some i we have
γi = (t0, . . . , td−1), then

γi+1 =

d−1∑
j=0

tjγ
j

 γ = td−1γ
d +

d−1∑
j=1

tj−1γ
j

so the coordinates of γi+1 are:

td−1 (u0, u1, . . . , ud−1) + (0, t0, . . . , td−2)

Having done this precomputation, we expand the product

αβ =

d−1∑
j=0

ajγ
j

d−1∑
j=0

bjγ
j


and substitute the coordinates of γ0, . . . , γ2d−2.

To divide, we use the extended Euclidean algorithm on the polynomial b (x)
with coe�cients b0, . . . , bd−1 and fγ . As b and fγ are coprime, this gives u, v ∈
Q [x] such that

u (x) b (x) + v (x) fγ (x) = 1

Then we have

α

β
=
a (γ)
b (γ)

= a(γ)u (γ)

whose coordinates may be calculated by multiplication.

�
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2.4 Monomorphisms

A monomorphism from �eld a K to a �eld L is a function ϕ which preserves
addition, multiplication and the units:

ϕ (x+ y) = ϕ (x) + ϕ (y) for all x, y ∈ K
ϕ (xy) = ϕ (x)ϕ (y) for all x, y ∈ K
ϕ(1K) = 1L
ϕ (0K) = 0L

A well-known result is the following:

Theorem. If K = Q (α) is a number �eld of degree n, then there exist exactly
n distinct monomorphisms σ1, . . . , σn from K into C, de�ned by σi (α) = αi,
where α1, . . . , αn are the Galois conjugates of α.

For example, take K = Q
(
i
√

3
)
. There are exactly two monomorphisms from

K to C:

σ1 (α) = i
√

3

σ2 (α) = −i
√

3

For a proof of the theorem, see [5], page 38. Another well-known result is the
Monomorphism Extension Theorem:

Theorem. If K, L and H are �elds, where L : K, and there exists a monomor-
phism σ from K to H, then there exists a monomorphism ϕ from L to H which
agrees with σ.

A good way of thinking about monomorphisms is as functions permuting the
Galois conjugates. More precisely, we have the following:

Proposition 8. If α is algebraic and σ is a monomorphism of Q (α) into C,
then σ (α) is a Galois conjugate of α.

Proof. We have σ (p (y)) = p (σ (y)) for all polynomials p ∈ Q [x] and all
y ∈ Q (α). Hence,

fα (σ (α)) = σ (fα (α)) = σ (0) = 0
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which shows that σ (α) is a Galois conjugate of α.

�

This allows us to determine the Galois conjugates of a polynomial applied to
an algebraic number:

Proposition 9. If α = α1 is algebraic, with Galois conjugates α1, . . . , αk
and q ∈ Q [x], the Galois conjugates of q (α) are the distinct elements of the
sequence q (α1) , . . . , q (αk).

Proof. Consider some αi and its associated monomorphism σi from Q (α) to
C. Then

q (αi) = q (σi (α)) = σi (q (α))

But by the previous proposition, this must be a Galois conjugate of q (α).

Now suppose θ is some Galois conjugate of q (α). There must be a monomor-
phism σ from Q (q (α)) to C which maps q (α) to θ. Moreover, Q (q (α)) is a
sub�eld of Q (α), so by the Monomorphism Extension Theorem, there must be
a monomorphism ϕ from Q (α) into C which agrees with σ. Therefore,

θ = σ (q (α)) = ϕ (q (α)) = q (ϕ (α))

But there are only k monomorphisms from Q (α) to C, one for each αi, so ϕ
must be among them and θ = q (αi) for some i.

�

Note that the sequence q (αi) may contain duplicates. For example, take q (x) =
x2 and α = α1 = i, α2 = −i.

2.5 Magnitude bounds

Now we focus on the two main results of this chapter. In this section, we quote
bounds on magnitudes of algebraic numbers. In particular, we are concerned
with upper and lower bounds on the magnitude of a polynomial evaluated at
an algebraic number, in terms of the degrees and heights of the polynomial and
the algebraic number.
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While we have stated the bounds precisely for the sake of completeness, their
exact detail is unimportant. Notice, however, that in all of them, heights
appear only in the base position, whereas degrees appear both in the base and
the exponent. Thus when we take logarithms, the resulting expressions will be
bounded by polynomials in the degrees and the logarithms of heights.

Let nt andHt denote the degree and the height of t, where t can be a polynomial
or an algebraic number.

Proposition 10. If p ∈ C [x] and p (α) = 0, then

|u|
Hp + |u|

< |α| < Hp + |v|
|v|

where u and v are respectively the constant term and the leading coe�cient of p.
In particular, if p (x) ∈ Q [x] is the minimal polynomial of α, then |α| < Hp+1.

Proof. See page 30 of Shidlovskii [17].

�

Proposition 11. (Blanksby and Montgomery) If α is an algebraic integer and
not a root of unity, then there exists some Galois conjugate θ of α such that

|θ| > 1 +
1

30n2
α ln (6nα)

Proof. See [9].

�

It is easy to show that the Blanksby and Montgomery bound implies

1
log2 |θ|

≤ 60n2
α ln (6nα)

Proposition 12. If α is an algebraic number, and p ∈ Q [x] such that p (α) 6=
0, then

|p (α)| ≥ 1
(3nα−1Hnα

α )np Hnα−1
p

Proof. See page 31 of Shidlovskii [17].

�
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Proposition 13. If α is an algebraic number and p ∈ Q [x], then

|α| > 1⇒ |p (α)| ≤ (np + 1)Hp (Hα + 1)np

and

|α| ≤ 1⇒ |p (α)| ≤ (np + 1)Hp

Proof.

|p (α)| =
∣∣∑np

i=0 piα
i
∣∣

(triangle inequality)

≤
∑np
i=0 |pi| |α|

i

(|pi| ≤ Hp)

≤ Hp

∑np
i=0 |α|

i

If |α| > 1, then the largest term in the summation is |α|np , which is bounded
above by (Hα + 1)np according to Proposition 10. If |α| ≤ 1, then the largest

term is |α|0 = 1. This gives the desired inequalities.

�

2.6 Algebraic Number Power problem

We close this chapter by examining the following decision problem, which is
related to the Orbit problem:

Algebraic Number Power
Given algebraic numbers α, β,
does there exist m ∈ N such that αm = β?

Reference [8] shows that Algebraic Number Power is decidable. We give
a brief recapitulation of the proof. Then we consider two special cases of the
problem and show that the bounds used for decidability in the general case are
polynomial in the special cases.

Proposition 14. Algebraic Number Power is decidable.
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Proof (Sketch). We consider three cases:

1. α is a root of unity.

2. α is an algebraic integer, but not a root of unity.

3. α is not an algebraic integer.

Case 1. If α is a primitive k-th root of unity, then the set of witnesses W =
{m | αm = β} is either empty, or one of the equivalence classes of N modulo k,
depending on whether β is a k-th root of unity.

Case 2. If α is an algebraic integer but not a root of unity, α must have a Galois
conjugate αi such that |αi| > 1, by Blanksby and Montgomery's theorem. The
monomorphism σi from Q (α) into C de�ned by σi (α) = αi must extend to
a monomorphism ϕ from C to C by the Monomorphism Extension Theorem.
Applying it to αm = β gives

ϕ (αm) = αmi = ϕ (β)

Since |αi| > 1, m is bounded by

m ≤ log2 |ϕ (β)|
log2 |αi|

Case 3. If α is not an algebraic integer, then a bound on m is obtained from
ideal theory. A consequence of α not being an algebraic integer is that there
exists a prime ideal P and an associated function vP (the p-adic valuation)
from algebraic numbers into N, such that

• vP (xy) = vP (x) + vP (y) for all x, y

• 2vP (x) ≤ |N (x)| for all x

• vP (α) 6= 0

This is the only place in this report where we use ideals and p-adic valuation,
so we take the existence of vP for granted. For details, see reference [8].

Thus if αm = β, we have

vP (β) = vP (αm) = mvP (α)
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which gives the bound

log2 |N (β)| ≥ vP (β) = mvP (α) ≥ m

In Case 2 and Case 3, we can decide ∃m.αm = β by computing the powers of
α up to the appropriate bound and comparing with β at each step.

�

Of particular interest for the Orbit problem are the following cases:

1. When β = q (α) for some q ∈ Q [x], which arises in Kannan and Lipton's
argument for the zero-dimensional case.

2. When α = αi/αj , β = q (αi) /q (αj) for some algebraic numbers αi, αj
and q ∈ Q [x], which arises in our solution for the one-dimensional case.

We will show that the bounds on m are polynomial in the length of the input.

Proposition 15. Suppose we are given a canonical description of an algebraic
α which is not a root of unity and a polynomial q ∈ Q [x]. If αm = q (α)
for some m ∈ N, then m is bounded by a polynomial in nα, nq, log2Hα and
log2Hq.

Proof. If α is an algebraic integer, then we choose its Galois conjugate θ which
satis�es the Blanksby and Montgomery bound. By algebraic indistinguishabil-
ity, we have

αm = q (α) ⇐⇒ θm = q (θ)

Hence, the bound on m is

m ≤ log2 |q (θ)|
log2 |θ|

Applying the upper bound on |q (θ)| from Proposition 13 and the Blanksby and
Montgomery bound on 1/ log2 |θ| gives a polynomially-bounded expression.

If α is not an algebraic integer, the bound on m is



CHAPTER 2. MATHEMATICAL FOUNDATIONS 21

m ≤ log2 |N (q (α))|

By Proposition 9, the Galois conjugates of q (α) are of the form q (αi), where αi
are the Galois conjugates of α. Then |N (q (α))| is a product of terms |q (αi)|.
Each term can be bounded above by Proposition 13, and there are at most nα
such terms. Taking logarithms gives a polynomial bound.

�

Proposition 16. Suppose we are given a canonical description of algebraic
α, β such that α/β is not a root of unity, and a polynomial q ∈ Q [x]. If(

α

β

)m
=
q (α)
q (β)

for some m ∈ N, then m is bounded by a polynomial in nα, nβ, nq, log2Hα,
log2Hβ and log2Hq.

Proof.

If γ = α/β is an algebraic integer, then choose its Galois conjugate γk which
satis�es the Blanksby and Montgomery bound. If ϕ is the extension to C of
the monomorphism from Q (γ) to C which maps γ to γk, we need a polynomial
upper bound on

m ≤
log2

∣∣∣ϕ( q(α)
q(β)

)∣∣∣
log2 |γk|

=
log2 |q (ϕ (α))| − log2 |q (ϕ (β))|

log2 |γk|

By Proposition 8, ϕ (α) is some Galois conjugate of α, and ϕ (β) is some
Galois conjugate of β. Propositions 12 and 13 give a polynomial bound on
log2 |q (ϕ (α))| − log2 |q (ϕ (β))|. Proposition 11 gives a polynomial bound on
1/ log2 |γk| in terms of nγ , which is at most nαnβ .

If γ is not an algebraic integer, then we need a polynomial upper bound on

m ≤ log2

∣∣∣∣N (q (α)
q (β)

)∣∣∣∣ = log2 |N (q (α))| − log2 |N (q (β))|

The Galois conjugates of q (α) are of the form q (αi) where αi are the Ga-
lois conjugates of α. There are at most nα of them, so we can use Proposi-
tion 13 to obtain a polynomial upper bound on log2 |N (q (α))|. Similarly for
− log2 |N (q (β))| using Proposition 12.

�



Chapter 3

The Zero-dimensional Orbit

Problem

The zero-dimensional Orbit problem was originally proven decidable by Kan-
nan and Lipton [1] in a two-step proof. First, the problem was reduced in
polynomial time to a form of the Matrix Power problem. Then a connection
between matrices and their eigenvalues was exploited to obtain a polynomial-
time algorithm.

A central idea of the paper is to circumvent the di�culties associated with
matrix problems and replace them with questions regarding algebraic num-
bers. However, near the end, the authors encounter a problematic case, and
the argument reverts back to matrices. It makes use of the cumbersome Jordan
canonical form, which detracts from the elegance of the original idea. Addi-
tionally, the reduction argument from the Orbit problem to the Matrix Power
problem is set in the usual basis of unit vectors and overlooks a more convenient
basis for the vector space of interest.

In this chapter, we give a simpler proof of Kannan and Lipton's result. We
present our polynomial-time reduction in Section 3.1 and our solution to the
reduced problem in Section 3.2.

3.1 Reduction

We begin with a polynomial-time reduction from Orbit to Matrix Power.
The two problems are de�ned as follows:

22
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Orbit
Given vectors x, y ∈ Qn and a matrix A ∈ Qn×n,
does there exist m ∈ N such that Amx = y?

Matrix Power
Given matrices A,D ∈ Qn×n,
does there exist m ∈ N such that Am = D?

Suppose we have an instance (A, x, y) of Orbit. De�ne

ν = max {m | x,Ax, . . . , Amx are linearly independent}

We compute ν in polynomial time using Gaussian elimination to check linear
independence. Let B = {x,Ax, . . . , Aνx} and S = span (B). It is clear that
Amx ∈ S for all m.

We use Gaussian elimination to check y ∈ S. If y 6∈ S, then (A, x, y) is a
negative instance. Suppose otherwise. We will switch from the usual basis of
unit vectors to B.

We compute the coordinates yB = [a0, . . . , aν ]
T

of y and the coordinates

[b0, . . . , bν ]
T
of Aν+1x with respect to B. Note that the coordinates of x are

xB = [1, 0, . . . , 0]T .

Now suppose we have a point p with coordinates [p0, . . . , pν ]
T
with respect to

B. Then for Ap, we have:

Ap

= A
∑ν
i=0 pi

(
Aix

)
=

(∑ν
i=1 pi−1

(
Aix

))
+ pν

(
Aν+1x

)
=

∑ν
i=1 (pi−1 + pνbi)

(
Aix

)
+ pνb0

(
A0x

)
=

[
x Ax . . . Aνx

]
M
[
p0 p1 . . . pν

]T
where

M =


0 0 0 0 b0
1 0 0 0 b1
0 1 0 0 b2
...

...
. . . 0

...
0 0 0 1 bν





CHAPTER 3. THE ZERO-DIMENSIONAL ORBIT PROBLEM 24

Therefore, M describes the linear transformation of premultiplying by A with
respect to B. Thus,

Amx− y =
[
x Ax . . . Aνx

]
(MmxB − yB)

which gives

Amx = y ⇐⇒ MmxB = yB

Note that xB, . . . ,M
νxB are exactly the unit vectors of dimension ν + 1, so

MmxB = yB
⇐⇒

Mm
[
xB MxB . . . MνxB

]
=
[
yB MyB . . . MνyB

]
⇐⇒

Mm =
[
yB MyB . . . MνyB

]
which gives an equivalent instance of Matrix Power.

We proceed with a reduction to the following problem:

Matrix Power (Polynomial Version)
Given a matrix A ∈ Qn×n and a polynomial q ∈ Q [x],
does there exist m ∈ N such that Am = q (A)?

Suppose we have an instance (A,D) of Matrix Power. We de�ne q0, . . . , qn−1

to be unknowns ranging over Q, and solve the linear system of n2 equations∑n−1
i=0 qiA

i = D. If it has no solution, then we conclude that (A,D) is a
negative instance of Matrix Power and terminate. Otherwise, we choose a
solution q0, . . . , qn−1 and output (A, q) as the result of the reduction.

Proposition 17. If (A,D) is a positive instance of Matrix Power, then

the system
∑n−1
i=0 qiA

i = D has a solution.

Proof. Suppose Am = D and let

xm = fA (x)u (x) + r (x)

where u and r are respectively the quotient and the remainder of the polynomial
division of xm by fA (x). Then
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D = Am = fA (A)u (A) + r (A) = r (A)

Since deg (r) < deg (fA) ≤ n, r is a solution of the linear system.

�

Thus, if (A,D) is a positive instance of Matrix Power, the linear system is
guaranteed to have a solution q. Any such solution yields a positive instance
(A, q) of Matrix Power (Polynomial Version). If (A,D) is a negative
instance and the system has no solution, we correctly determine that (A,D) is
negative. Finally, if (A,D) is negative and the system has a solution q, then
for all m, Am 6= D = q (A), so (A, q) is a negative instance of Matrix Power
(Polynomial Version). This proves the correctness of the reduction.

3.2 Solution

Suppose we have an instance (A, q) of Matrix Power (Polynomial Ver-
sion). To determine the existence of m ∈ N such that Am = q (A), we �rst
calculate the minimal polynomial fA (x) of A. A conceptually simple proce-
dure for computing fA in polynomial time is to consider each possible degree
d ∈ {1, . . . , n}, determine if there is a polynomial of degree d which vanishes

at A by solving the linear equation system
∑d
i=0 aiA

i = 0 in a0, . . . , ad, and
take the least d for which such a polynomial is found. If needed, we scale the
polynomial to make it monic. An e�cient procedure which would be of more
practical use is given in [2].

Having computed fA (x), we factor it [3] into irreducible polynomials in Q [x].
Each factor is the minimal polynomial of its roots, so we can construct canonical
representations of the roots of fA in polynomial time. Let these roots be
α1, . . . , αk, with respective multiplicities c1, . . . , ck. We construct a system of
equations in m based on the roots and their multiplicities:

αmi = q (αi)
mαm−1

i = q′ (αi)
∀i ∈ {1, . . . , k} m (m− 1)αm−2

i = q′′ (αi)
...

...
...

m (m− 1) . . . (m− ci + 2)αm−ci+1
i = q(ci−1) (αi)
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Each root αi contributes ci equations to the system. Their left-hand sides are
xm and its �rst ci − 1 derivatives evaluated at αi. The respective right-hand
sides are q (x) and its �rst ci − 1 derivatives evaluated at αi. For example, if
there are three distinct roots α1, α2, α3 with respective multiplicities 1, 2, 3, the
system is:

αm1 = q (α1)
αm2 = q (α2)

mαm−1
2 = q′ (α2)
αm3 = q (α3)

mαm−1
3 = q′ (α3)

m (m− 1)αm−2
3 = q′′ (α3)

Let the system be S. We will now show that Am = q (A) if and only if m is a
solution of S.

Proposition 18. If p (x) ∈ C [x] and α is a root of p with multiplicity c, then
α is a root of p(0), p(1), . . . , p(c−1), but not p(c).

Proof. Easy induction on c.

�

Proposition 19. Am = q (A) if and only if m is a solution of S.

Proof.

Am = q (A)
⇐⇒

fA divides xm − q (x)
⇐⇒

for all i ∈ {1, . . . , k}, xm − q (x) has root αi with multiplicity at least ci
⇐⇒

for all i ∈ {1, . . . , k}, αi is a root of (xm − q (x))(0) , . . . , (xm − q (x))(ci−1)

⇐⇒
m solves S

�

Therefore, the system S is equivalent to the matrix equation Am = q (A). Now
we will describe a procedure for solving it.
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First, we perform some preliminary calculations. We check directly whether
m = 0 is a witness for the problem instance. If so, we are done. Assume
otherwise. Next, we check if some αi is 0. If this is the case, the left-hand
sides of the equations contributed by αi are 0 for all m. We directly evaluate
the right-hand sides. If one of them is non-zero, we can conclude the problem
instance is negative. If all of them are 0, then the equations contributed by
αi are vacuously satis�ed, so we discard them from the system. We may now
assume that m ranges over N+ and that αi 6= 0 for all i.

Second, we consider three cases:

1. Some αi is not a root of unity.

2. All αi are roots of unity, unrepeated in fA.

3. All αi are roots of unity, at least one of which is repeated in fA.

Case 1. We use the bound on m from Proposition 15. It is polynomial in the
length of the input, so it su�ces to compute Am for all m up to the bound and
compare with q (A) at each step.

Case 2. The system S contains only equations of the form αm = q (α), with α
a root of unity. Consider one such equation and let the order of α be s. For
all values of m, the left-hand side is an s-th root of unity. The right-hand side
q (α) is an s-th root of unity if and only if q (α) has the same coordinates in
Q (α) as one of α, . . . , αs. We check this using arithmetic in Q (α).

If q (α) is not an s-th root of unity, then the problem instance is negative.
Otherwise, the equation αm = q (α) = αr is equivalent to the congruence
m ≡ r mod s, where r and s are known. We transform the entire system S in
this way into an equivalent system of linear congruences, which we then solve
in polynomial time [10].

Case 3. Let α be a root of unity that is repeated in fA. Then S contains the
equations:

αm = q (α)
mαm−1 = q′ (α)

By the preliminary analysis, the left-hand sides of these two equations are non-
zero. We check whether the right-hand sides are 0 using polynomial division
of q and q′ by fα. If either right-hand side is 0, we conclude the instance is
negative. Otherwise, we divide the two equations to obtain
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m =
q′ (α)
q (α)

α

We directly calculate the right-hand side using arithmetic in Q (α) and check
if it is in N. If not, then the instance is negative. Otherwise, we need only
determine if this m = m0 is a solution. We check that m0 satis�es each
equation (αm)(t) = q(t) (α) using arithmetic in Q (α). For the left-hand side,
we use αu = αu mod s, where s is the order of α.

This completes the proof that Orbit is decidable in polynomial time.



Chapter 4

The One-dimensional Orbit

Problem

The one-dimensional Orbit problem is de�ned as:

1D Orbit
Given vectors x, y ∈ Qn and a matrix A ∈ Qn×n,
do there exist m ∈ N and k ∈ Q such that Amx = ky?

In this chapter, we show that 1D Orbit is decidable, and in fact decidable in
polynomial time, as Kannan and Lipton conjectured. Our proof has a similar
shape to that of the zero-dimensional version. First we reduce the problem to
a one-dimensional version of Matrix Power and then use techniques from
algebraic number theory to solve it.

4.1 Reduction

De�ne 1D Matrix Power to be the following decision problem:

1D Matrix Power
Given matrices A,D ∈ Qn×n, do there
exist m ∈ N and k ∈ Q such that Am = kD?

We will reduce 1D Orbit to 1D Matrix Power. The reduction is essentially
the same as the one given in Section 3.1 for the zero-dimensional version. Given
an instance (A, x, y) of 1D Orbit, we calculate

29
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ν = max {m | x,Ax, . . . , Amx are linearly independent}

and set

B = {x,Ax, . . . , Aνx}

We compute the coordinates yB of y and the coordinates [b0, . . . , bν ]
T
of Aν+1x

with respect to B, and set xB = [1, 0, . . . , 0]T . If y /∈ span (B), then the problem
instance is negative and we are done. Otherwise, we have

Amx = ky ⇐⇒ MmxB = kyB ⇐⇒ Mm = k
[
yB MyB . . . MνyB

]
where

M =


0 0 0 0 b0
1 0 0 0 b1
0 1 0 0 b2
...

...
. . . 0

...
0 0 0 1 bν


This gives an equivalent instance of 1D Matrix Power. Next, we reduce fur-
ther to the polynomial version of 1D Matrix Power, de�ned as the following
decision problem:

1D Matrix Power (Polynomial Version)
Given a matrix A ∈ Qn×n and a polynomial q ∈ Q [x],
do there exist m ∈ N and k ∈ Q such that Am = kq (A)?

Given an instance (A,D) of 1D Matrix Power, we solve the system q (A) =
D in the unknowns q0, . . . , qn−1. If it has no solution, then we conclude that
(A,D) is a negative instance of 1D Matrix Power. Otherwise, we choose a
solution q and output (A, q). Then we have

Am = kD ⇐⇒ Am = kq (A)

which completes the reduction.
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4.2 Solution

Suppose we have an instance (A, q) of 1D Matrix Power (Polynomial
Version). We compute the minimal polynomial fA of A, canonical repre-
sentations of its roots α1, . . . , αs and their respective multiplicities c1, . . . , cs.
Then we construct a system S of equations in m and k:

αmi = kq (αi)
mαm−1

i = kq′ (αi)
∀i ∈ {1, . . . , s} m (m− 1)αm−2

i = kq′′ (αi)
...

...
...

m (m− 1) . . . (m− ci + 2)αm−ci+1
i = kq(ci−1) (αi)

The system is very similar to the one in the zero-dimensional case, but here we
have an additional unknown k. Each root αi contributes ci equations to the
system. The left-hand sides are xm and its �rst ci − 1 derivatives, evaluated
at αi. The respective right-hand sides are kq (x) and its �rst ci − 1 derivatives
evaluated at αi.

Proposition 20. Am = kq (A) if and only if m and k satisfy the system S.

Proof. The same as in Proposition 19, with the polynomial q (x) replaced by
kq (x). We point out that the proof does not require k ∈ Q. In particular, if
we have some solution (m, k) ∈ (N× C) of S, then Am = kq (A), which gives
k ∈ Q.

�

Now we will focus on solving S. We start with some preliminary analysis.

1. We check if k = 0 has a corresponding m ∈ N which satis�es the system,
using the algorithm for the zero-dimensional case. If so, we are done.
Assume otherwise.

2. Let c be the maximum of the multiplicities c1, . . . , cs. For each m =
0, . . . , c− 2, we calculate Am and check if it is a multiple of q (A). If so,
we are done. Otherwise, we can assume that m ≥ c− 1.

3. We check if 0 is among the roots α1, . . . , αs. If so, then the equations
contributed by this root are all of the form 0 = kq(t) (0). Since k 6= 0,
this is equivalent to q(t) (0) = 0, which we can easily check. If it holds,
we dismiss the equation as vacuous. If not, then we are done. Now we
can assume that αi 6= 0.
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4. Finally, we check if the system contains some equation with right-hand
side kq(t) (αi) equal to 0. This is done with a polynomial division of
q(t) (x) by the minimal polynomial of αi. If so, then we can conclude
the system has no solution, because the previous steps guarantee the
left-hand sides are all non-zero.

Now we can assume that both sides of all equations in S are non-zero. Next,
we compute all quotients αi/αj , obtaining their canonical representations. We
consider three cases:

1. Some quotient is not a root of unity.

2. All quotients are roots of unity, and all the roots of fA are unrepeated.

3. All quotients are roots of unity, and some roots of fA are repeated.

Case 1. Suppose some quotient αi/αj is not a root of unity. We have the
equations

αmi = kq (αi)

αmj = kq (αj)

Hence,

(
αi
αj

)m
=
q (αi)
q (αj)

so m is bounded by a polynomial in the length of the input, according to
Proposition 16. We compute Am for all values of m up to the bound, and at
each step check if Am is a multiple of q (A).

Case 2. Now suppose all quotients are roots of unity, and there are no repeated
roots in fA. Then the system S contains only equations of the shape αmi =
kq (αi). Then S is equivalent to

∧
i<j

(
αi
αj

)m
=
q (αi)
q (αj)

∧ k =
αm1
q (α1)

It is su�cient to determine whether there exists an m which solves
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∧
i<j

(
αi
αj

)m
=
q (αi)
q (αj)

If so, then k = αm1 /q (α1) is guaranteed to be rational by Proposition 20 and
we need not check it.

Consider a single equation (αi/αj)
m = q (αi) /q (αj). We need to determine

if the right-hand side is a root of unity. This is easy if we have its canoni-
cal description, but it is not obvious whether this description has polynomial
length. Evaluating q at αi requires a polynomial number of additions and mul-
tiplications, and each operation results in a polynomial increase in the length
of the representation. This gives an exponential upper bound on the length of
the representation of the result, which is not strong enough for us. It could
be that a canonical description of q (αi) may be computed in polynomial time,
but proving this will require more precise analysis.

To avoid this di�culty, we �nd a primitive element θ, such that Q (αi, αj) =
Q (θ). The proof of the Primitive Element theorem (page 37 in [5]) shows that
such a primitive element is αi + cαj for some small positive integer c which
may be computed in polynomial time. Given θ, the next task is to compute
the standard representations of αi and αj with respect to Q (θ). This may be
done using an algorithm for the Field Membership problem:

Given canonical representations of α and θ,
determine whether α ∈ Q (θ), and if so, �nd the
standard representation of α with respect to Q (θ).

Section 4.5 of [4] shows how to solve this problem in polynomial time. We
calculate the coordinates of αi and αj in Q (θ) and substitute them into the
equation. We use operations within Q (θ) to compute the standard represen-
tations l (θ) of αi/αj and r (θ) of q (αi) /q (αj). Now we have the equation
l (θ)m = r (θ).

If αi/αj has order d, then the powers l (θ)1 , . . . , l (θ)d are exactly the d-th
roots of unity. We compute their standard representations in polynomial time,
and compare each with r (θ). If there is no match, then q (αi) /q (αj) is not a
d-th root of unity, and the system has no solution. Otherwise, if r (θ) = l (θ)t,
the equation (αi/αj)

m = q (αi) /q (αj) is equivalent to the congruence m ≡
t mod d.

We process all the quotient equations in this manner, obtaining an equivalent
system of congruences, which we can solve in polynomial time [10].
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Case 3. Now suppose all quotients are roots of unity, and some roots of fA
have multiplicity greater than 1. We transform S into S′ in the following
way. First, we include in S′ the quotients of all equations αmi = kq (αi) as in
Case 2. Second, for each repeated root αi of fA, we take the quotient of its
�rst and second equation, its second and third, and so on. Third, we include
the equation k = αm1 /q (α1).

For example, suppose fA has roots α1, α2, α3 with respective multiplicities
1, 2, 3. The original system S is:

αm1 = kq (α1)
αm2 = kq (α2)

mαm−1
2 = kq′ (α2)
αm3 = kq (α3)

mαm−1
3 = kq′ (α3)

m (m− 1)αm−2
3 = kq′′ (α3)

We transform it into S′:

(α1/α2)
m = q (α1) /q (α2)

(α2/α3)
m = q (α2) /q (α3)

(α1/α3)
m = q (α1) /q (α3)

α2/m = q (α2) /q′ (α2)
α3/m = q (α3) /q′ (α3)

α3/ (m− 1) = q′ (α3) /q′′ (α3)
k = αm1 /q (α1)

It is easy to see that S′ is equivalent to S. Now we will solve it.

First, we solve the set of equations where m appears only in the exponent as
we did in Case 2 by computing a primitive element for each equation. This
subsystem either has no solution, or is solved by all m satisfying some congru-
ence. Assume the latter and suppose that the calculation returns a solution
m ≡ t1 mod t2.

The remainder of S′ is easier to solve. Each equation contributed by a repeated
root αi has the shape

αi
m− t

=
q(t) (αi)
q(t+1) (αi)

for a constant t, as we only took the quotients of successive αi equations. This
is equivalent to
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m = t+
q(t+1) (αi)
q(t) (αi)

αi

For each such equation, we compute this expression using operations within
Q (αi) and check if it is a positive integer. If not, then the system clearly has
no solution. Otherwise, this equation points to a single candidate m. We do
this for all equations where m appears outside the exponent. If they point to
di�erent values of m, the system has no solution. Otherwise, S′ is equivalent
to

k = αm1 /q (α1)
m = m0

m ≡ t1 mod t2

We check whether the candidate m0 obeys the congruence, and we are done.

This completes the proof that 1D Orbit is decidable in polynomial time.



Chapter 5

Conclusion

The idea of devising a system of equations equivalent to the matrix equation
is of central importance to our result. It allowed us to prove that the one-
dimensional Orbit problem is decidable in polynomial time, as Kannan and
Lipton conjectured in 1986. Additionally, it led to a concise argument for the
zero-dimensional version.

Future work should focus on proving the two-dimensional Orbit problem de-
cidable. A similar reduction leads to the problem of deciding whether there
exist m ∈ N, u, v ∈ Q such that

Am = up (A) + vq (A)

where p, q ∈ Q [x]. The idea of constructing an equivalent system based on the
roots of fA is also applicable. However, solving the system is more di�cult,
because the trick of considering quotients cannot be used directly to remove
one of the unknowns from consideration.

A related problem is the non-homogeneous one-dimensional version, which asks
to determine whether there exist m ∈ N, t ∈ Q such that

Amx = y + tz

That is, whether for some m, Amx is on a speci�ed line which does not pass
through the origin. This problem appears very similar to the two-dimensional
Orbit problem, and it is possible that solving it will yield insight into the
two-dimensional case.
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