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ABSTRACT

Our work focuses on Feature Restoration (FR), a technique which may be used in conjunction with steganographic
schemes to reduce the likelihood of detection by a steganalyzer. This is done by selectively modifying the stego
image to reduce a given distortion metric to a chosen target feature vector. The technique is independent of the
exact steganographic algorithm used and can be applied with respect to any set of steganalytic features and any
distortion metric. The general FR problem is NP-complete and hence intractable, but randomized algorithms are
able to achieve good approximations. However, the choice of distortion metric is crucial: our results demonstrate
that, for a poorly chosen metric or target, reducing the distortion frequently leads to an increased likelihood of
detection. This has implications for other distortion-reduction schemes.

Keywords: Steganography, Steganalysis, Feature Restoration, Mahalanobis Distance, Quadratic Programming,
Numerical Stability, NP-Completeness

1. INTRODUCTION

When steganography is used to hide payload within a cover object, some statistics of the cover source are
distorted. This presents the opportunity for a steganalyst to build a detector that can reliably determine
whether an object contains a payload, given knowledge of the steganographic algorithm but not the embedding
key. In turn, the steganographer may seek to reduce the statistical distortion caused by their embedding.

In digital images, most leading steganalysis algorithms are based on a vector of feature statistics chosen to
be sensitive to steganographic embedding, but less so to the content of the images. Then machine learning
techniques are used to train a classifier to distinguish between the features of innocent images and stego images.
Examples of such detectors include Refs. 1–6. When facing such a detector, it is in the steganographer’s interest
to minimize the distortion that their embedding causes to features.

There are, broadly, three ways in which steganographers seek to reduce distortion to features. First, they may
try to reduce the number of changes (to pixels, transform coefficients, or other image representation) by using
coding tricks, such as conveying the message by syndromes of low covering-radius linear codes.7,8 Certainly, if
the absolute distortion to the image itself is kept low, the feature distortion and the risk of detection should
also be low. Second, they may try to include an awareness of features in the embedding process itself, and
when presented with a choice – for example, whether to increment or decrement a pixel when flipping a Least
Significant Bit (LSB) – choosing the option which least distorts the feature vector. Such techniques, which are
usually known as distortion minimization (DM), have now reached a high level of sophistication.9–11

The third option, and one which has been relatively little explored, is to embed a payload using a conven-
tional technique, noting locations (pixels, transform coefficients, etc.) that are not used for payload. After the
embedding is completed, the unused locations are modified to move the stego object’s features towards a target
vector that is believed to appear innocent. To our knowledge, the only literature on this idea is Ref. 12. We call
these techniques feature restoration (FR). We emphasise the difference between DM and FR ideas: the former is
part of the embedding process itself, the latter applied post-hoc to “spare” parts of the cover. In principle, FR
could be applied after other distortion reduction strategies have already been applied. Both DM and FR require
a metric for distortion of feature vectors, which determines what they choose to minimize, and selection of the
right distortion metric will be an important theme in this paper.
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In such work it is assumed either that the steganographer knows the features which will be used by the
opponent, or that they minimize or reduce distortion with respect to a sufficiently large and general feature
set that it serves as a proxy for all such detectors. With the present state-of-art, it is not implausible that
the steganographer might guess their opponent’s behaviour, because the literature contains only a few leading
examples of steganalysis feature sets.3–5

In this paper, our scope will be limited to the WAM feature set from Ref. 2. They comprise 27 features,
which are the absolute moments of residuals from a wavelet-based denoising filter. For the purposes of this work,
the detail of how the WAM features are calculated is not very relevant, so it will be omitted. We also limit
ourselves to the type of embedding for which WAM was designed: spatial-domain LSB Matching steganography
in never-compressed grayscale images.

Although the topic of this paper is feature restoration, we consider this only a background for an illustration
of two messages: that intractable optimization, of which FR will turn out to be an example, can be approximated
by randomized iterative algorithms, and that steganographers must take great care in their choice of distortion
metric. The latter is an important lesson for DM too.

In Sect. 2 we will formalize the FR problem, and discuss three options for a feature distortion metric. True
minimization of the FR problem is not tractable, and Sect. 3 describes heuristics for approximate optimization
algorithms, benchmarking them by their ability to reduce feature distortion with respect to the various distance
metrics. There is also an important discussion about the numerical stability of distortion computations. Sect. 4
then examines whether minimized distortion indicates low detectability, and demonstrates that choosing the
right distortion metric is vital to achieving the aim of FR. With the wrong choice of metric, reduced feature
distortion can lead to increased probability of detection. Finally, Sect. 5 draws conclusions.

1.1 Notation

Throughout the paper, we will use uppercase Roman letters to denote original (cover) and stego objects (O, S),
and lowercase boldface letters to denote the corresponding vector of features (o, s). All other vectors will also
be written lowercase boldface (t, 1 a vector of all 1s), all matrices uppercase Greek (∆, Σ, I the identity matrix),
and all sets uppercase calligraphic (C).

The set of all objects of the type under consideration (e.g. uncompressed grayscale digital images of a par-
ticular size, or colour JPEG images of a particular size and quality factor) will be denoted O. We assume that
the aim is to counter steganalysis by a particular set of features, and will write φ : O → R

p for the map from
objects to feature vectors. The dimensionality of the feature set, p, will be implicit throughout.

2. FEATURE RESTORATION

Feature restoration (FR) is applied after a conventional embedding procedure. Locations in the cover which
have not been used for payload, and are therefore free to alter without damaging the content, are selectively
modified by small amounts with the goal of moving the stego object’s features towards a target, believed to
appear innocent to a steganalyzer. Modifications on non-payload components should be constrained to be slight,
lest they cause visible distortions. The technique has the advantage of being independent of the embedding
algorithm.

The FR problem can be formalized as follows. Consider an abstract set of allowable changes to a stego
object: some combinations of changes may not be possible (for example if one change is to increment a particular
pixel and another to decrement it then they cannot both be applied, and one or the other might take a pixel
beyond saturation), so suppose a set of all allowable combinations of changes A. Given a cover object O, and
a corresponding stego object S (the result of embedding payload by conventional means), let us write S + ci to
mean that change ci has been applied to the object S. Then the FR problem is

minimize d
(

t, φ
(

S +
∑

c∈C c
)

)

subject to C ∈ A, (1)



where d : R
p × R

p → [0,∞) is some distance metric, and t a target feature, which might be the features of the
original cover φ(O), or some canonically least-suspicious feature vector such as the mean of features from a large
cover image corpus.

As we shall see, the problem (1) is generally intractable, so we first try to simplify it by imposing conditions
on the metric d(−,−) and the response of features to multiple changes, outlined in the next two subsections.

2.1 Distance Metrics

Whether performing FR or DM, one must not forget that reduced distortion does not necessarily imply reduced

risk of detection. Everything hinges on the way one measures distortion, in this case the distance metric between
feature vectors.

We will consider quadratic form distance metrics:

d(u,v) = (u − v)T∆(u − v) (2)

where ∆ is some fixed nonnegative definite symmetric matrix. The simplest such metric is

∆ = I, (3)

the Euclidean distance. It suffers, however, from sensitivity to the scale of the features: if one feature has much
larger magnitude (or naturally larger variance) than another, its value will dominate the distance calculations
and potentially detectable small-scale differences in the other feature will be ignored. It also ignores correlation
between features.

An alternative is

∆ = Σ̂−1, where Σ̂ is an estimate of the covariance matrix for features of cover objects, (4)

the Mahalanobis distance.13 This takes account of the expected magnitude of, and correlations between, features;
it is equivalent to Euclidean distance between vectors whitened by the matrix Σ̂− 1

2 . A disadvantage of the
Mahalanobis distance is its need for an estimated covariance matrix: such estimates can be unstable (numerical
stability aside, consider that the matrix contains p2 entries, which could be large compared with the number
of available samples). An alternative, sometimes used in the machine learning literature (e.g. Ref. 14) is the
standardized Euclidean distance or diagonal distance,

∆ = Λ, the diagonal matrix with (1/σ̂2
1 , . . . , 1/σ̂2

p) on the diagonal,
where σ̂2

i is an estimate of the variance of feature i in cover objects.
(5)

This can be estimated more stably than the full covariance matrix because only variances are required; it takes
account of features having different magnitude or variance, but does not account for correlation between features
and therefore may present a weakness.

We also have a choice about the target vector t for the restoration. An obvious choice is

t = φ(O), (6)

the features of the cover before any embedding was performed. But if the cover itself is something of an outlier,
the restoration might be suboptimal. An alternative, then, is

t = µ̂, where µ̂ an estimate of the mean feature vector in cover objects. (7)

The aim is to move the features towards the “least suspicious” location.

We will consider each metric (3)–(5) and both targets (6) and (7) in all combinations. Where necessary, Σ̂
and µ̂ will be estimated from a corpus of cover images: we will discuss briefly whether the corpus is big enough
to get a sufficiently stable estimate in Subsect. 3.1. In Sect. 4 we will see that some options for distortion metric
work significantly better than others.



2.2 Additivity & Quadratic Programming

There are two ways in which we might attempt to reduce the complexity of the problem (1).

First, we seek to understand the effect of an individual change, computing

δc = φ(R + c) − φ(R),

where R represents a fixed object and c a possible change (e.g. incrementing one pixel). We wish to determine δc

as efficiently as possible, preferably without two calculations of φ. This is possible if we can trace the pixel-level
effect of c through to the resulting change in features. Such an idea is used on the PEV-274 feature set4 in
Ref. 12 where it is called differential feature computation. The WAM features are highly nonlinear, but both
the wavelet filter and the denoising operation use only local regions of pixels (though the moments have to be
recomputed in their entirety), so we have been able to cache parts of the computation and perform a type of
differential feature calculation for our purposes too: for details, see Ref. 15. This enables us to compute δc much
more quickly than a computation of φ.

Second, we try to reduce the very large search space in (1). In principle one should search all allowable
combinations of changes, which is totally infeasible. We can simplify the problem if we believe that the effect,
on a feature vector, of two separate changes equals the sum of the effect of each individually. When this happens
we say that the changes have additive effect.

If all changes have additive effect,

φ
(

R +
∑

c∈C c
)

= φ(R) +
∑

c∈C δc, where δc = φ(R + c) − φ(R),

for all R ∈ O and all sets of changes C. We would not expect this to be exactly true for features like WAM, based
on residuals of denoising filters, because of the local region used in the filter: when multiple changes occur in the
same region, their effects may cancel or magnify. Neither is it exactly true for other leading feature sets such as
PEV-2744 or SPAM.6 However, when changes are spatially well-separated, the interaction between their effects
on features is expected to be small. For WAM features it turns out that the interaction remains small even for
changes which are fairly close together and some empirical evidence, that approximate additivity holds almost
always, can be found in Ref. 15. This will allow us to make an approximation to try to reduce the complexity of
(1).

Consider, then, (1) under an assumption of exact additivity. Suppose that all possible changes,
⋃

A, are
enumerated c1, . . . , cn. Then any set of changes can be specified by a binary vector x ∈ {0, 1}n, with xi = 1
indicating that change ci is included. Write Γ ∈ R

p×n for the matrix whose columns are δc1
, . . . , δcn

. With
convex quadratic distance as in (2), the objective function of the FR problem is

d
(

t, φ
(

S +
∑

c∈C c
)

)

=
(

s +
∑

c∈C δc − t
)T

∆
(

s +
∑

c∈C δc − t
)

= (s − t)T∆(s − t) +
(
∑

c∈C δc

)T
∆

(
∑

c∈C δc

)

+ 2(s − t)T∆
(
∑

c∈C δc

)

= (s − t)T∆(s − t) + xT ΓT∆Γx + 2(s − t)T∆Γx.

The first term is constant so, if additivity holds, the FR problem can be written as

minimize xT ΓT∆Γx + 2(s − t)T∆Γx subject to x ∈ A′, (8)

where A′ is the set of vectors in {0, 1}n corresponding to the permissible combinations of changes A. The
formulation (8) is a quadratic programming problem.

Unfortunately, even though this version of the FR problem is favourable (as it assumes exact additivity), it
is still not tractable: in the Appendix, we prove that the problem is NP-complete. This means that we cannot
expect to find an efficient algorithm for solving the minimization exactly; we must look for heuristics which
find good solutions within reasonable time limits. Some of the heuristics will attempt to exploit approximate
additivity, but others will perform heuristic minimization directly on the original problem (1).



3. HEURISTICS FOR FEATURE RESTORATION

We now propose and evaluate some heuristics for tackling the FR problem. In this section, we will only consider
the ability of the algorithms to minimize the chosen distance to the chosen target; we will then consider how
well this reduces detectability in Sect. 4.

At the heart of FR algorithms are two tools: a feature oracle and a distance calculator. The feature oracle
is able to compute the feature function φ, and the effect of any change on any image. Conceptually, it should
be thought of as a black box. However, since it will be heavily relied on, its workings should be as efficient as
possible. As mentioned in section 2.2, techniques such as differential feature computation may be used to boost
its time performance significantly. The distance calculator is a simpler tool which computes the quadratic form
distance metric d, as defined in section 2.1, for any choice of ∆.

The FR heuristics maintain a current image R, with R = S, the stego image, initially. In the exposition,
we use the following terminology. Firstly, applying a change c is taken to mean setting R := R + c. Secondly,
if t is the choice of target, testing c is defined as computing d(φ(R + c), t) and comparing it to d(φ(R), t). If
d(φ(R + c), t) < d(φ(R), t), the change is considered beneficial. Finally, if d(φ(R + c1), t) < d(φ(R + c2), t), then
c1 is considered more beneficial than c2. The same applies to sets of changes.

Our heuristics for FR are briefly outlined below. They all treat the feature oracle and distance calculator as
black boxes, making them applicable to various choices of steganalytic features and distortion metrics. For more
detailed descriptions of the algorithms and the motivation behind their workings, see Ref. 15.

• Slow Greedy Algorithm. Test every change which increments or decrements a single unused pixel and
apply only the most beneficial one. Repeat to find the next most beneficial change, and continue until no
beneficial changes remain.

• Fast Greedy Algorithm. Test every change which increments or decrements a single unused pixel
and, whenever a beneficial change is found, apply it immediately. (We understand this to be the method
proposed in Ref. 12.)

• Biased Greedy Algorithm. A greedy algorithm as above, but which performs a local variance estimation
in the spatial domain to prioritise noisy regions of the image: changes to these regions are examined first
and are performed for as long as it is beneficial to do so.

• Random Algorithm. Pick a random selection of changes C and test whether it is beneficial. If so,
apply it. Then repeat. We experimented with different options (see Ref. 15), and settled on a limit of 15
single-pixel changes in each random batch. We also included an adaptive behaviour which reduces the size
of the batch by 25% if 100 consecutive iterations fail to find a beneficial C. This can be seen as a very
simple form of simulated annealing.16

• Genetic Algorithm. A greedy heuristic which borrows ideas from genetic algorithms. A population is
maintained, consisting of pairs (C, x), where C is a set of changes and x the distance reduction entailed
by applying C. The label x is correct when the pair is introduced into the population, but is not updated
when the current image R is changed. Thus, the labels x may become outdated, but the assumption of
approximate additivity guarantees that the inaccuracy will be small. On each iteration, the change with
the greatest distance reduction label is applied and removed from the population, and two new pairs (C, x),
randomly chosen, are added to it. When the population reaches a certain size, its elements are combined
(by taking the union of changes) in pairs, thereby halving its size.

• Quadratic Programming Algorithm. A set of admissible changes C is chosen at random. Under
the assumption of exact additivity the FR subproblem, considering only changes in C, is expressed as
a Binary Integer Quadratic Problem following the exposition in section 2.2. The integrality constraints
on the unknowns are relaxed17 and replaced by 0 ≤ xi ≤ 1, allowing the resulting problem to be solved
efficiently using known quadratic programming techniques.18 The answer is rounded to the nearest integer,
the appropriate changes are applied, and the algorithm is repeated with different choices of C.



We will compare the efficiency of the algorithms by their ability to reduce the chosen distance metric. In order
to abstract away from their implementation efficiencies, we will measure an algorithm’s cost as the number of
feature calculations it performs: as an increasing number of feature calculations is permitted, the best algorithms
will make more progress towards minimizing the distortion.

Initial experiments allowed us to discard the Slow Greedy Algorithm at an early stage: it is so cautious, in
only applying the very best change possible at each stage, that it requires far too many feature calculations to
make sufficient progress.

3.1 Stability of Mahalanobis Distance

The Mahalanobis distance (4) requires an estimation of the inverse covariance matrix Σ−1. In the course of
our work, we discovered that the WAM features display multicollinearity, and hence the covariance matrix is
ill-conditioned. Strong correlation is hardly surprising, given that the WAM features are absolute moments of
the same vectors of residuals.

Unfortunately, the near-singularity of the covariance matrix raises stability issues which cannot be ignored,
since computations can only be performed with a finite degree of accuracy. A small error, caused by estimating
the covariance matrix from a small finite sample, might result in a large error in the estimation of the inverse
if there is instability in the inversion algorithm, corrupting the distance measure and causing FR algorithms to
apply the wrong changes. Alternatively, a small error in the computation of features themselves, caused by the
limited precision of floating-point arithmetic, might result in large errors in the distance to target, and unduly
influence the choice of whether to apply a particular change. In the worst case, the minimization heuristics might
chase magnified rounding errors instead of true improvements in distortion.

This is an important consideration for researchers who work with multicollinear features (and almost all
feature sets commonly in use are highly redundant in this way). We considered the issue in some detail in
Ref. 19, where we analyzed the magnitudes of Mahalanobis distance errors that could be expected to arise from
various imprecisions. The reader is referred to that technical report for the details: the conclusion is that, in
our application, these covariance matrices are not quite sufficiently ill-conditioned for the errors in estimated
Mahalanobis distance adversely to affect the heuristic optimizations.

3.2 Experimental Results

We will perform experiments on three sets of never-compressed grayscale images, the first two taken from Ref. 20.

1. Set B: 2000 RAW images taken with a Minolta DiMAGE A1 camera, denoised using the Minolta software
with default options, then converted to grayscale and cropped to random 400 × 300 regions.

2. Set C: 2000 images supplied by the researchers at Binghamton University, never-compressed images taken
with a mixture of 16 digital camera models (a subset of those used in Ref. 2) converted to grayscale and
cropped to random 400 × 300 regions.

3. BOSS: 2000 images selected at random from the BOSSBase image set.21 Never-compressed images which
have been cropped and resampled to 512 × 512 pixels.

For each cover set S, we estimated

µ̂ =
1

|S|

∑

O∈S

φ(O)

Σ̂ =
1

|S| − 1

∑

O∈S

(φ(O) − µ̂)T (φ(O) − µ̂)

in order to calculate the distance measures (3)–(5).

We considered payload sizes between 0.5 bits per pixel (bpp) and 0.99 bpp. For each size, payloads were
embedded using LSB Matching, and then each FR heuristic performed with a limit of 25000 feature calculations
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Fast Greedy Biased Greedy Random Genetic Quadratic Programming

Figure 1. Comparison of FR heuristics, for various payloads and distortion metrics. From top to bottom: payload sizes
0.5 bpp, 0.9 bpp, 0.99 bpp. From left to right: Mahalanobis distance to original cover features, Mahalanobis distance
to mean cover features, Euclidean distance to original cover features. Each chart displays the relative distance of the
restored stego image compared with the unrestored stego image, averaged over all images in Set C, as the number of
feature calculations (“queries”) grows to a maximum of 25000.

per image, keeping track of the distance to the target at each stage as a fraction of the stego image’s initial
distance. This allowed us to compare the distance reduction achieved by each algorithm as the number of
permitted feature calculations increases. We then graph this proportionate distance to target, averaging over all
images, as a function of the number of feature calculations.

With images of this size, and running on a single core of a machine with a 2.67GHz Xeon processor, it takes
about ten minutes to perform feature restoration limited to 25000 calculations of the WAM features. In order
to test multiple image sets with 2000 images each, four different payload sizes, three choices of distortion metric
and two target vectors, and five different minimization heuristics, we distributed the computation amongst a



cluster with 50 cores. The experiments reported in this paper took a total of 6.4 core years to perform.

We display results only for Set C (the others are similar). The cases of Mahalanobis distance (4) and target
vector either the cover features φ(O) or estimated mean cover vector µ̂, and also Euclidean distance (3) and target
φ(O), and three payload sizes, are shown in Fig. 1. Despite a lack of sophistication, the Fast Greedy Algorithm
does not perform too badly; conversely, the complicated Quadratic Programming Algorithm (whose jumps in
distance reduction are a consequence of the large number of feature computations required to set up each FR
subproblem) does not perform well. In almost every case (including cases not displayed), the Random Algorithm
most quickly reduces the distance, though for very large numbers of queries all algorithms except Quadratic
Programming appear to converge to roughly the same performance: perhaps this is the true objective minimum
of (1). The distortion metric and target feature affect the results, but generally not the relative performance of
the different heuristics.

The results suggest that for the purposes of large distance reduction in few oracle queries, the Random
Algorithm provides the best option (for very large payloads, where there are few pixels left to change, the Biased
Greedy Algorithm may be used). It is not uncommon for randomized algorithms to provide good approximate
solutions to intractable problems.22 Our investigation into heuristics for FR also suggests the following rules of
thumb:

1. Greediness. When you spot a beneficial change, perform it, instead of being cautious and looking for
even better ones.

2. Conserving feature calculation. Try to perform many changes before recomputing features, possibly
exploiting additivity.

Finally, note that the relative distance, after restoration, is much the same whether the payload is 0.5 bpp
or 0.9 bpp: although the former leaves many more pixels available to make feature-restoring changes, the larger
search space negates any advantage. Only for very large payloads such as 0.99 bpp does the restricted search
space impede the restoration.

4. FEATURE RESTORATION AND DETECTABILITY

Although the Random Algorithm might be successful at restoring the features of a stego image towards a
target, this does not necessarily mean that it is successful at evading detection. Everything hinges on the choice
of distortion metric: the distance we use to compare features, and the target for the restoration. It is even
conceivable that the process of feature restoration makes stego images even more detectable. In this section, we
take stego images which have been subject to FR and test them against steganalysis detectors.

The original presentation of WAM steganalysis2 applied a Fisher Linear Discriminant classifier to features;
we also tested a simple linear SVM. Such classifiers need to be trained, so the images of the previous section were
divided into equal-sized training and testing sets (the same images were allocated to the training or testing set
each time, including when there are different-sized payloads, to avoid additional perturbations in the accuracy).
The question then arises: what is the proper training set? Do we train on cover and stego images, or cover and
restored stego images?

This goes to the heart of the steganalysis problem, asking whether we should take the role of a detector who
knows that the embedder is attempting FR (and indeed what sort of FR is being used) or whether the detector
only suspects plain embedding, in this case LSB Matching. We adopt the usual computer security convention,
and assume that the detector knows the entire system used by the embedder, including that feature restoration
is taking place, and therefore it is appropriate to train on cover and restored stego images before testing on a
(different) set of cover and restored stego images.

We then benchmark the accuracy of the trained classifier on the test images: the proportion of images
correctly classified as cover or (restored) stego images. Classifier sensitivity can be adjusted (by changing the
objective functions in the FLD or SVM) to trade false positive detection for false negative detection, so we
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Figure 2. Detectability of Set C stego images after FR by the Random Algorithm, for various payloads and distortion
metrics. From top to bottom: payload sizes 0.5 bpp, 0.9 bpp, 0.99 bpp. From left to right: Mahalanobis distance to
original cover features, Euclidean distance to original cover features, Euclidean distance to mean cover features. Each
chart displays both the relative distance of the restored stego image compared with the unrestored stego image (left axis),
and the detection accuracy of the FLD (+) and SVM (×) classifiers based on WAM features (right axis), as the number
of feature calculations during restoration grows to a maximum 25000.

report the maximum accuracy over all possible thresholds. This is equivalent to the benchmark commonly used
in steganalysis literature,

max(1 − PE) = 1 − 1
2

min(PFP + PFN )

where PFP and PFN indicate the false positive and false negative error probabilities.

Some of the results are displayed in Fig. 2, for payloads of 0.5 bpp, 0.9 bpp, and 0.99 bpp in Set C, and three
distortion metrics: Mahalanobis distance to original, Euclidean distance to original, and Euclidean distance to
a mean cover feature vector. We limit ourselves to the Random Algorithm, since it has been shown to be most
effective at restoring features to their target. We also show the final accuracy, after a limit of 25000 computations



Table 1. Comparison of detector (WAM features with Fisher Linear Discriminant) accuracy, before and after feature
restoration limited to 25000 feature calculations. Three images sets, four payload sizes, and six combinations of distortion
metric and restoration target. Accuracy displayed to 3 sig. fig.

WAM/FLD Accuracy after restoration using

Covers Payload accuracy on ∆=Σ̂-1 ∆=Σ̂-1 ∆ = I ∆ = I ∆ = Λ ∆ = Λ

stego images t = φ(O) t = µ̂ t = φ(O) t = µ̂ t = φ(O) t = µ̂

Set B 0.5 bpp 72.0% 52.3% 62.9% 63.4% 93.2% 59.1% 93.6%

Set B 0.7 bpp 76.8% 54.0% 61.7% 66.5% 93.5% 63.0% 94.0%

Set B 0.9 bpp 80.6% 57.1% 66.0% 69.5% 92.8% 68.8% 93.2%

Set B 0.99 bpp 81.6% 75.2% 79.8% 78.2% 82.0% 77.7% 82.0%

Set C 0.5 bpp 80.2% 76.0% 77.0% 83.7% 96.9% 81.3% 96.1%

Set C 0.7 bpp 81.5% 75.2% 77.5% 84.8% 97.1% 85.8% 97.0%

Set C 0.9 bpp 84.5% 74.6% 77.9% 87.6% 97.0% 88.6% 96.7%

Set C 0.99 bpp 86.4% 76.2% 75.9% 88.5% 89.9% 89.2% 89.5%

BOSS 0.5 bpp 65.9% 55.2% 57.8% 56.3% 90.7% 53.9% 84.2%

BOSS 0.7 bpp 66.5% 53.2% 58.6% 59.5% 91.0% 56.7% 85.1%

BOSS 0.9 bpp 67.2% 54.3% 59.7% 65.0% 90.1% 63.1% 83.2%

BOSS 0.99 bpp 68.0% 61.0% 65.5% 65.3% 68.6% 66.2% 69.3%

of features, in Tab. 1; only the FLD classifier accuracies are displayed, but all three cover sets, four payload sizes,
and all six combinations of distance measure with restoration target can be included.

These results show that feature restoration can be successful in reducing detectability: with Set C images,
for example, the WAM/FLD detector accuracy drops from 84.5% on 0.9 bpp stego images to 74.6% on the
same images after feature restoration, if the Mahalanobis distance is used and the target vector is that of the
corresponding cover. Unsurprisingly, there is less scope for reducing detectability in images with 0.99 bpp
payload, because only 1% of pixels are available to change during restoration, but even then the accuracy of the
detectors is significantly reduced. Payloads of 0.99 bpp, subject to feature restoration, become approximately as
detectable as payloads of 0.5 bpp or less, which have not been subject to restoration.

Perhaps contrary to intuition, restoration of images with only 0.5 bpp of payload seems marginally more
difficult than with 0.9 bpp, with the detector accuracy usually not reducing by quite as much in the case of
the smaller payload. We attribute this to the relatively larger search space for the problem (1) when a large
proportion of the image is unused for embedding, but the phenomenon bears further investigation.

The charts of Fig. 2 also show that most of the reduction in detector accuracy occurs within a few hundred or
thousand feature calculations, especially for images with larger payloads. So it is not necessary to expend nearly
as many as the 25000 queries we performed. Nonetheless, the computation time of the feature restoration may
become significant in larger images (where there is a larger space of potential changes to search), or for features
that are slow to compute.

The results also illustrate that the distortion metric is quite crucial to success in evading detection. In the
charts of Fig. 2, accuracy is observed to decrease (regardless of whether an FLD or SVM classifier is used) as
more work is done in restoration with respect to Mahalanobis distance to original features. Accuracy stays
roughly the same when restoration uses Euclidean distance to original features, and increases when restoration
uses Euclidean distance to the mean cover feature. In some cases the increase is dramatic. It is clear, from Tab. 1,
that it is incorrect to restore to a target which is the mean feature vector from a corpus of covers. Consider
embedding 0.9 bpp payload in Set C, for example: WAM detector accuracy increases from 84.5% to 97.0% on
restored images, even though the restoration was “successful” in reducing the Euclidean distance to this target.
In fact, we attribute the results to overly-successful restoration: the restored stego objects all cluster around the



same target point, which allows classifiers to detect them easily. This is born out by the results for 0.99 bpp
payloads, where the same effect is not as marked because the restoration has few pixels to work with and so is
unable to make restored stego objects as predictable.

We conclude that the choice of distortion metric is of key importance. One must not, at least for WAM fea-
tures, disregard the strong correlations between features when attempting the restoration. We also observe that
performance after restoration to standardized Euclidean distance (5) is not much better than with plain Euclidean
distance and certainly does not match that of the Mahalanobis distance: although standardized Euclidean dis-
tance does not present the same numerical instability as Mahalanobis distance, disregarding correlations between
features results in a severe penalty.

5. CONCLUSIONS

We have demonstrated that, under certain conditions, feature restoration can be added to conventional embedding
to reduce the likelihood of detection. This is despite it being an NP-complete optimization problem. Considering
the WAM features for detection of LSB Matching steganography, we showed that detector accuracy can be
substantially reduced when tested on a number of different cover image sets. The restoration seems to work
best for large payloads, around 0.9 bpp, and succeeds substantially even for payloads as high as 0.99 bpp, when
only 1% of the cover is available for alteration during restoration. This is complementary to the sorts of coding
tricks7,8 which reduce the number of embedding changes, since those tricks are barely effective for payloads near
the maximum.

Nonetheless, we advise caution in use of feature restoration: an important limitation, which fell outside the
scope of this paper, is that we assume knowledge of the opponent’s steganalysis feature set. Were the opponent
to use some alternative set of features, the restoration process could introduce additional distortion in the other
feature set and enable better detection.

In some respects, distortion minimization appears preferable to feature restoration: if properly implemented,
it can cope with very large feature sets (see Ref. 23 for an extreme example) and it should be less prone to
overtraining because it generally does not introduce additional distortion to the stego object. On the other hand,
one could apply feature reduction as an add-on to an embedding which already includes distortion minimization.

In examining the feature restoration problem we have illustrated some lessons which are applicable more
widely. First, that intractable optimization problems can often be attacked using randomized algorithms, and
that greedy algorithms which test lots of potential changes at once are appropriate for this situation. Second,
and more important, that the choice of distortion metric is crucial: if one fails to take account of the correlation
between features then the restoration can be futile or detrimental. The Mahalanobis distance is the simplest
metric that deals with correlation. It effectively whitens the cover feature distribution but requires some care to
avoid instability; therefore, other distances could yet prove superior.

We note that a recent distortion-minimization steganography scheme, HUGO,11 uses a distortion metric
related to standardized Euclidean distance, which cannot account for dependence between features. This may
prove to be a weakness and should be investigated further.

ACKNOWLEDGMENTS

Some of this work appeared in the first author’s BA dissertation,15 and was completed during a summer project
funded by the EPSRC Vacation Bursary scheme. The second author is a Royal Society Research Fellow.

REFERENCES

[1] Farid, H. and Lyu, S., “Detecting hidden messages using higher-order statistics and support vector ma-
chines,” in [Proc. 5th Information Hiding Workshop ], Springer LNCS 2578, 340–354 (2002).

[2] Goljan, M., Fridrich, J., and Holotyak, T., “New blind steganalysis and its implications,” in [Security,

Steganography and Watermarking of Multimedia Contents VIII ], Proc. SPIE 6072, 0101–0113 (2006).

[3] Shi, Y., Chen, C., and Chen, W., “A Markov process based approach to effective attacking JPEG steganog-
raphy,” in [Proc. 8th Information Hiding Workshop ], Springer LNCS 4437, 249–264 (2006).
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APPENDIX A. FEATURE RESTORATION IS NP-COMPLETE

“P” represents the class of decision problems (problems with yes/no answers) that can be solved in time poly-
nomial in the size of their input. “NP” is the class of decision problems that have a “certificate” – a purported
answer and succinct evidence that it is correct – which can be verified in time polynomial in the size of their
input. NP contains all of P as well as many problems that are widely believed to be difficult, for example the
travelling salesman problem (minimal Hamiltonian cycle) and the satisfiability problem from propositional logic.
A decision problem is called NP-hard if every other problem in the class NP can be reduced to it with at most
polynomial time overhead, and NP-complete if it is both in NP and NP-hard. This means that NP-complete
problems are the “hardest” in the class NP: travelling salesman and satisfiability are examples of NP-complete
problems. The same definitions can apply to optimization problems, which are transformed into decision prob-
lems by asking the question: for given k, does there exist a solution with optimal value at least as good as k?
For a general introduction to complexity, and NP-completeness in particular, see Ref. 24.

If a problem has been proved NP-complete, it means that it almost certainly has no efficient solution in
general: if it had a polynomial time solution, so would many famously-difficult problems. Let us take an easy
version of the FR problem, where all possible pixel changes lead to additive feature changes, and there are no
constraints on which pixel changes can be combined (unless there are very few possible combinations of changes,
removing the constraints always makes the quadratic programming problem easier). If the distance metric is a
positive definite quadratic form, recall that the FR problem can be described as minimization of xTΘx + kTx,
where Θ ∈ R

n×n (symmetric non-negative definite) and k ∈ R
n are determined by the distance metric, result of

the possible changes, and the difference between stego and target features, as in (8). The minimization is over
binary vectors x ∈ {0, 1}n, which tells us what changes are selected.

We now show that, even though this is a favourable formalization of the FR problem, it is NP-complete.

Theorem 1. The problem

minimize xTΘx + kTx subject to x ∈ {0, 1}n, (9)

for arbitrary nonnegative definite Θ ∈ R
n×n and k ∈ R

n, is NP-complete.

Proof. It is easy to see why a certificate to answer the question ∃x∈{0, 1}n.xTΘx + kTx ≤ k can be
checked in polynomial time: the certificate is just x, and we can perform the multiplication to verify whether
xTΘx + kTx ≤ k in cubic time or better. The challenge is to show that the problem is NP-hard.

Take any formula of propositional logic, of n free variables v1, . . . , vn, in conjunctive normal form with exactly
two literals per clause and m clauses:

φ(v1, . . . , vn) = (v′
i1
∨ v′

j1
) ∧ (v′

i2
∨ v′

j2
) ∧ · · · ∧ (v′

im

∨ v′
jm

) (10)

where each v′
k is either vk or ¬vk, and {i1, . . . , im, j1, . . . , jm} ⊆ {1, . . . , n}. Convert φ to a function F (x) : R

n →
R by the following procedure: conjunction maps to addition, and

vk ∨ vl maps to xk + xl − xkxl,
vk ∨ ¬vl maps to 1 − xl + xkxl,

¬vk ∨ ¬vl maps to 1 − xkxl.

By construction, there exists x ∈ {0, 1}n with F (x) = k if and only if there is a truth assignment to {v1, . . . , vn}
such that exactly k clauses of (10) are true. This is relevant because the maximum number of clauses which
can simultaneously be satisfied by a conjunctive normal form, with exactly two literals per clause, is known as
MAX-2-SAT and it is an NP-hard problem [24, LO5].

Note that F is a quadratic function, so can be written in the form

F (x) = xT Γx + dTx + e,

for some constant e. Γ will normally be indefinite, but we can regularise it as follows. Define the function

G(x) = e − F (x) + m

n
∑

i=1

(x2
i − xi) = xT(mI − Γ)x + (m1 − d)Tx.



We now argue that mI − Γ is nonnegative definite. Let λ be any eigenvalue of Γ; it is known that λ ≤ ‖Γ‖1,
the 1-norm of Γ. But ‖Γ‖1 ≤

∑

i,j |Γij | ≤ m, by the construction of F . Hence all the eigenvalues of mI − Γ are

nonnegative so G is in the form of (9). Furthermore, for all x ∈ {0, 1}, x2 − x = 0, so

min
x∈{0, 1}n

G(x) = e − max
x∈{0, 1}n

F (x).

This means that any solver for (9) can solve MAX-2-SAT, and hence every other NP problem.

The reduction has at worst a polynomial time overhead, because construction of F is linear and guarantees
e ≤ m. That completes the proof.


