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ABSTRACT
We consider higher-dimensional versions of Kannan and Lip-
ton’s Orbit Problem—determining whether a target vector
space V may be reached from a starting point x under re-
peated applications of a linear transformation A. Answering
two questions posed by Kannan and Lipton in the 1980s, we
show that when V has dimension one, this problem is solv-
able in polynomial time, and when V has dimension two or
three, the problem is in NPRP.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Number-theoretic
computations; F.4.3 [Formal Languages]: Decision prob-
lems

General Terms
Algorithms, Theory, Verification

Keywords
Matrix powers, Orbit Problem, Skolem’s Problem

1. INTRODUCTION
The Orbit Problem was introduced by Harrison in [17] as a

formulation of the reachability problem for linear sequential
machines. The problem is stated as follows:

Given a square matrix A ∈ Qm×m and vectors
x, y ∈ Qm, decide whether there exists a non-
negative integer n such that Anx = y.

The decidability of this problem remained open for over
ten years, until it was shown to be decidable in polynomial
time by Kannan and Lipton [19]. In the conclusion of the
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journal version of their work [20], Kannan and Lipton dis-
cuss a higher-dimensional extension of the Orbit Problem,
as follows:

Given a square matrix A ∈ Qm×m, a vector x ∈
Qm, and a subspace V of Qm, decide whether
there exists a non-negative integer n such that
Anx ∈ V .

As Kannan and Lipton point out, the higher-dimensional
Orbit Problem is closely related to the Skolem Problem:
given a square matrix A ∈ Qm×m and vectors x, y ∈ Qm,
decide whether there exists a non-negative integer n such
that yTAnx = 0. Indeed, the Skolem Problem is the spe-
cial case of the higher-dimensional Orbit Problem in which
the target space V has dimension m − 1. The sequence of
numbers un = yTAnx is a linear recurrence sequence. A
well-known result, the Skolem-Mahler-Lech theorem, states
that the set of zeros of any linear recurrence union of a fi-
nite set and finitely many arithmetic progressions [16, 21,
22, 28]. Moreover, it is known how to effectively compute
the arithmetic progressions [5]. The main difficulty in de-
ciding Skolem’s Problem is to determine whether the finite
component of the set of zeros is empty.

The decidability of the Skolem Problem has been open for
many decades [14], and it is therefore unsurprising that there
has been virtually no progress on the higher-dimensional Or-
bit Problem since its introduction in [20]. In fact, decidabil-
ity of the Skolem Problem for matrices of dimension three
and four [24, 33] only came in the two years prior to the pub-
lication of [20], and there has been no substantial progress
on this front since. In terms of lower bounds, the strongest
known result for the Skolem Problem is NP-hardness [7],
which therefore carries over to the unrestricted version of
the higher-dimensional Orbit Problem.

Kannan and Lipton speculated in [20] that for target spaces
of dimension one the Orbit Problem might be solvable,“hope-
fully with a polynomial-time bound”. They moreover ob-
served that the cases in which the target space V has di-
mension two or three seem “harder”, and proposed this line
of research as an approach towards the Skolem Problem.
In spite of this, to the best of our knowledge, no progress
has been recorded on the higher-order Orbit Problem in the
intervening two-and-a-half decades.

Our main results are the following. We show that the
higher-dimensional Orbit Problem can be solved in polyno-
mial time if the target space V has dimension one, and in
NPRP if the target space has dimension two or three. While
we make extensive use of the work of [24, 33] on Skolem’s



Problem, our results, in contrast, are independent of the
dimension of the matrix A.

The following example illustrates some of the phenomena
that emerge in the Orbit Problem for two-dimensional target
spaces. Consider the following matrix and initial vector:

A =

2664
4 6 14 21
−8 −2 −28 −7
−2 −3 −6 −9

4 1 12 3

3775 x =

2664
28
−14
−10

5

3775
Then with target space

V = {(u1, u2, u3, u4) ∈ Q4 : 4u1 + 7u3 = 0, 4u2 + 7u4 = 0}

it can be shown that Anx ∈ V if and only if n has residue
2 modulo 6. Such periodic behaviour can be analysed in
terms of the eigenvalues of the matrix A. These are λω,
λω, λω, and λω, where ω = eπi/3 is a primitive 6-th root
of unity and λ = (−1 + i

√
39)/2. The key observation is

that the eigenvalues of A fall into only two classes under the
equivalence relation ∼, defined by α ∼ β if and only if α/β
is a root of unity.

We will show that for a two-dimensional target space V ,
for any matrixA whose eigenvalues have at least three classes
under∼, there is at most one exponent n such thatAnx ∈ V .
Computable bounds on such an n can be obtained utilising
the above-mentioned work of [24, 33] on Skolem’s Problem,
which in turn is based on results in transcendental number
theory. Unfortunately the resulting bounds on n are expo-
nential in the size of the problem representation, leading to
an NPRP guess-and-check procedure, in which an RP or-
acle is used to check whether Anx ∈ V for a guessed value
of n. Finally, the case in which the eigenvalues of A have at
most two equivalence classes under ∼ can be handled using
techniques akin to those used in the solution of the original
Orbit Problem.

1.1 Related Work
Aside from its connection to the Skolem Problem, the

higher-dimensional Orbit Problem is closely related to ter-
mination problems for linear programs (see, e.g., [4, 31, 8])
and to reachability questions for discrete linear dynamical
systems (cf. [14]). Another related problem is the cham-
ber hitting problem, which replaces the target space with
an intersection of half-spaces. In [29], the chamber hitting
problem is related to decision problems in formal language
theory. Let us also mention the more recent work of Arvind
and Vijayaraghavan [2] which places the original Orbit Prob-
lem in the logspace counting hierarchy GapLH.

Another generalisation or the Orbit Problem is the so-
called A B C problem. This asks, given commuting rational
matrices A, B and C, whether there exist integers i and j
such that AiBj = C. This problem was shown to be decid-
able in polynomial time in [34]. A continuous version of the
Orbit Problem is considered in [13]. Here one studies linear
differential equations of the form x′(t) = Ax(t) for a rational
matrix A. The problem is to decide, for a given initial con-
dition x(0) and target vector v, whether there exists t such
that x(t) = v. The main result of [13] shows decidability of
this problem.

In the present paper, we provide full proofs of the main
results for the cases in which the dimension of the target
space V is one or two. Proof details for the case in which V

has dimension three have been consigned to the full version
of this paper [11].

The structure of the paper is as follows. Section 2 gathers
together mathematical background on algebraic numbers.
In Section 3 we reduce the fixed-dimension Orbit Problem
to the fixed-dimension matrix power problem. In Section 4,
we prove that the one-dimensional version is decidable in
polynomial time. In Section 5 we show decidability for the
two-dimensional case. Finally, section 6 concludes the paper
with the discussion of the complexity of the two-dimensional
case.

2. PRELIMINARIES

2.1 Algebraic Numbers
In this section we briefly summarise results about algebraic-

number computation that will be used in the paper. Fuller
explanations of the notions below can be found in [12].

A complex number α is algebraic if it is a root of a poly-
nomial with rational coefficients. The minimal polynomial
of α, denoted fα, is the unique monic polynomial of least
degree which vanishes at α. If fα has integer coefficients
then we say that α is an algebraic integer. The degree of
α is defined to be the degree of fα, and the height of α is
defined to be the maximum absolute value of the coefficients
of the integer polynomial cfα, where c is the least common
multiple of the denominators of the coefficients of fα. The
roots of fα (including α itself) are called the Galois con-
jugates of α. For each Galois conjugate β of α there is a
monomorphism σ : Q(α) → C with σ(α) = β, where Q(α)
is the field obtained by adjoining α to Q.

The norm of α, denoted N (α), is the product of its Galois
conjugates. Observe that N (α) is equal in absolute value to
the constant term in the minimal polynomial fα.

A standard representation of an algebraic number α com-
prises its minimal polynomial fα, along with a rational ap-
proximation of Re(α) and Im(α) of sufficient precision to
distinguish α from its Galois conjugates. More precisely, we
represent α by the tuple

(fα, p, q, R) ∈ (Q [x]×Q×Q×Q) ,

meaning that α is the unique root of fα inside the circle in
the complex plane of radius R centred at p+iq. A separation
bound due to Mignotte [23] states that for roots αi 6= αj of
a polynomial f(x),

|αi − αj | >
√

6

n(n+1)/2Hn−1
(1)

where n and H are the degree and height of f , respectively.
Thus, if R is restricted to be less than a quarter of the
root separation bound, the representation is well-defined.
Given a univariate polynomial f , it is known how to obtain
standard representations for each of its roots in polynomial
time [26]. Moreover, though the representation of a given
algebraic number is not unique, we can check whether two
representations denote the same number in polynomial time.

Henceforth, when we say an algebraic number α is given,
we will assume we have a standard representation of α. We
will denote by ‖α‖ the length of this representation, assum-
ing that integers are expressed in binary and rationals are
expressed as pairs of integers. Thus for a rational a, ‖a‖ is
just the sum of the lengths of its numerator and denomi-
nator written in binary. Overloading notation, for a poly-



nomial p ∈ Q [x], ‖p‖ will denote
Pn
i=0 ‖pi‖ where n is the

degree of the polynomial and pi are its coefficients.
The root-separation bound (1) implies that |α| and 1/(1−
|α|) are at most exponentially large in ‖α‖. This yields a
polynomial upper bound for log |α| and an exponential upper
bound for 1/ log |α| in terms of ‖α‖.

Lemma 1. Given standard representations of algebraic num-
bers α, β and a polynomial p ∈ Q [x], it is possible to compute
standard representations of α ± β, αβ±1 and p (α) in time
polynomial in the length of the input (that is, in ‖α‖+‖β‖+
‖p‖).

Given standard representations it is trivial to check whether
α = β and whether α belongs to one of N,Z,Q.

A number field K is a finite-dimensional extension of Q.
The set of algebraic integers in K forms a ring, denoted O.
Given α ∈ O, (α) denotes the principal ideal generated by
α. Given two ideals I, J in O, the product IJ is the ideal
generated by the elements ab, where a ∈ I and b ∈ J . An
ideal P of O is prime if ab ∈ P implies a ∈ P or b ∈ P . The
fundamental theorem of ideal theory states that any non-zero
ideal in O can be written as the product of prime ideals, and
the representation is unique if the order of the prime ideals
is ignored.

With a prime ideal P we associate a valuation vP : O \
{0} → N as follows:

vP (α) = k if and only if P k | (α) and P k+1 - (α)

That is, vP (α) is the number of times P appears in the
factorisation into prime ideals of the principal ideal (α). We
also define vP (0) =∞.

The function vP satisfies the following properties:

• vP (αβ) = vP (α) + vP (β)

• vP (α+ β) ≥ min{vP (α), vP (β)}

• If vP (α) 6= vP (β), then vP (α+β) = min{vP (α), vP (β)}

Recall that for any α ∈ K \ O we can find β ∈ O and
n ∈ Z such that α = β/n. We extend vP to K by defining
vP (α) = vP (β)− vP (n). The first of the three properties of
vP above guarantees that this value is independent of the
choice of β and n, making the extension of vP to K well-
defined. Note that the extension preserves the above three
properties of vP . Note also that if α is not an algebraic
integer then in the equation α = β/n, above, β and n cannot
be associates, and thus vP (α) 6= 0 for some prime ideal P .

We can bound the valuation of an algebraic number in
terms of its norm as follows:

vP (α) ≤ log2 | N (α) | .

It follows that vP (α) is at most polynomial in the length of
the representation of α.

2.2 Algebraic-Number Power Problems
One of the main techniques used in [20] to study the zero-

dimensional Orbit Problem is to reduce the analysis of pow-
ers of a rational matrix to that of powers of an algebraic
number. In particular [20] showed that, given algebraic num-
bers α and β, one can determine in polynomial time whether
αn = β for some integer n. We recall this result and some
associated ideas below. We also state some lower bounds

on αn − β in case αn 6= β. These are used in the generali-
sation of the Orbit Problem to higher dimensions, following
Mignotte’s and Vereshchagin’s partial decidability results on
Skolem’s Problem [24, 33].

We first consider the problem of deciding whether αn = 1
for some n, that is, whether α is a root of unity. Recall that
the minimal polynomial of a primitive r-th root of unity
is the r-th cyclotomic polynomial, which has degree ϕ(r),
where ϕ is Euler’s totient function. From the (crude) lower

bound ϕ(r) ≥
p
r/2 one obtains:

Proposition 2. [20] If α has degree d and is a primitive
r-th root of unity, then r ≤ 2d2.

Generalising to the case of deciding whether αn = β for
some n, we have the following result.

Theorem 3. [20] There exists a polynomial P such that
for any algebraic numbers α and β, where α is not a root of
unity, if αn = β for a natural number n, then n is at most
P (||α||, ||β||).

The main idea underlying the proof of Theorem 3 is a
result of Blanksby and Montgomery [6] stating that if α is
an algebraic integer of degree d that is not a root of unity
then α has a Galois conjugate σ(α) such that

|σ(α)| > 1 +
1

30d2 log(6d)
(2)

We use this result in similar fashion to generalise Theorem 3
as follows:

Theorem 4. There exists a polynomial P such that for
any algebraic numbers α, a and b, where α is not a root of
unity, if αn = an+ b then n is at most P (||α||, ||a||, ||b||).

Proof. Let d denote the degree of α. First, if α is an
algebraic integer, then by Blanksby and Montgomery’s the-
orem, it has a Galois conjugate σ(α) such that

|σ(α)| > 1 +
1

30d2 log(6d)
(3)

Now |σ(an+ b)| grows linearly in n, whereas |σ(αn)| grows
exponentially in n, with the base of the exponent having
lower bound (3). We thus obtain a polynomial bound on n.

Second, suppose α is not an algebraic integer. Then there
exists a prime ideal P in the ring of integers of Q(α, a, b)
such that vP (α) 6= 0. Then we have

|vP (αn)| = n|vP (α)|
= |vP (a+ bn)|
≤ log2 | N (a+ bn)| . (4)

But, from discussion of norms in Section 2, the value

log2 | N (a+ bn)|

is polynomial in log2 n and the size of the representations of
α, a, and b. Since the left-hand side of (4) grows linearly in
n, and the right-hand side grows polynomially in log2 n, we
obtain a polynomial bound on n such that the equation can
hold.

We pass now from the problem of deciding whether αn =
β for some n, to the question of lower bounds on |αn − β|
in case this quantity is non-zero. We consider lower bounds



with respect to the usual Archimedean absolute value as well
as with respect to P -adic valuations.

The Archimedean lower bound depends on the follow-
ing theorem of Baker and Wüstholz [3] on linear forms of
logarithms of algebraic numbers. Throughout, log refers
to the principal value of the complex logarithm given by
log z = log |z|+ i arg z, where −π < arg z ≤ π.

Theorem 5. (Baker and Wüstholz [3]) Let α1, . . . , αm be
algebraic numbers other than 0 or 1, and let b1, . . . , bm be
rational integers. Write

Λ = b1 logα1 + . . .+ bm logαm .

Let A1, . . . , Am, B ≥ e be real numbers such that, for each
j ∈ {1, . . . ,m}, Aj is an upper bound for the height of αj,
and B is an upper bound for |bj |. Let d be the degree of the
extension field Q(α1, . . . , αm) over Q. If Λ 6= 0, then

log |Λ| > −(16md)2(m+2) log(A1) . . . log(Am) log(B) .

We will need the following special case of Theorem 5,
which is standard.

Corollary 6. Let α and β be algebraic numbers of height
at most H ≥ 4 such that Q(α, β) has degree at most d. If
αβn 6= 1 then

|1− αβn| > 1

2
n−(48d)10 log2(H) .

Proof. From the power series expansion log(1 + w) =P∞
n=1(−1)n−1wn/n we get that | log(1+w)| ≤ 2|w| for |w| ≤

1/2. Writing w = αβn − 1, we have

2|1− αβn| ≥ | log(αβn)| = |n log β + logα+ 2kπi| (5)

for some k ∈ Z with |k| ≤ n. Observing that log(−1) = iπ,
the result follows by applying Theorem 5 to the right-hand
side of (5).

The next theorem, a special case of a result due to van der
Poorten [32], is an analogous bound for P -adic valuations.

Theorem 7. (van der Poorten [32]) Let α, β be algebraic
numbers of degree at most d belonging to a number field K
and with heights at most H. Let P be a prime ideal of K
containing the rational prime p. Then for any integer n ≥ 8
such that αβn 6= 1 we have

vP (αβn − 1) ≤ (48d)36
pd

log(p)
(log(H) log(n))2 .

3. REDUCTION

3.1 Matrix Power Problem
Let A be a rational m × m matrix, x ∈ Qm a vector,

and V a vector space specified by a basis y1, . . . , yk ∈ Qm.
We wish to decide whether there exists n ∈ N such that
Anx ∈ V . In our technical development we work with C as
field of scalars, regarding x as an element of Cn and consider
V as a subspace of Cn. Since all input data are rational this
does not affect the problem.

Recall (e.g., from [15, Section 58]) that we can decom-
pose Qm as the direct sum of two subspaces U1 and U2 that

are both invariant under A, such that A is nilpotent on U1

and invertible on U2. Using this decomposition, which can
be computed in polynomial time, we can assume without
loss of generality that the matrix A in the Orbit Problem is
invertible.

Next, following [19], we reformulate the generalized Orbit
Problem as a version of the so-called matrix power problem.

Let ν be maximal such that x,Ax, . . . , Aνx are linearly
independent, and write P for the matrix whose columns are
x,Ax, . . . , Aνx. Notice that the column space of P is an
invariant subspace for A. Indeed we have Aν+1x = q0x +
q1Ax + . . . + qνA

νx for some q0, . . . , qν ∈ Q, so that AP =
PM , where

M =

2666664
0 0 · · · 0 q0
1 0 · · · 0 q1
0 1 · · · 0 q2
...

...
. . .

...
...

0 0 · · · 1 qν

3777775
Writing e = (1, 0, . . . , 0)T , we have Pe = x. Furthermore,

let W = {y : Py ∈ V } be the pre-image of V under P . Then

Anx ∈ V ⇔ AnPe ∈ V
⇔ PMne ∈ V
⇔ Mne ∈W .

Let w1, . . . , wt be a basis of W . Then for a1, . . . , at ∈ C,

Mne =
Pt
i=1 aiwi

⇔ Mn[e Me . . . Mνe] =
Pt
i=1 ai[wi Mwi . . . M

νwi]

⇔ Mn =
Pt
i=1 aiTi ,

where Ti = [wi Mwi . . . M
νwi]. Thus Anx ∈ V if and only

if Mn ∈ T , where T = span{T1, . . . , Tt}. Note also that
dim(T ) = dim(W ) ≤ dim(V ).

Thus we have reduced the Orbit Problem to the problem
of determining whether some power of a given matrix lies in
a given vector space of matrices. Notice that the reduction
does not increase the dimension of the target space.

We perform one further reduction step. It is clear that
within the target space T it suffices to consider only matrices
of the shape p(M), where p is a polynomial with rational
coefficients. Writing T ′ = T ∩ span{p(M) | p ∈ Q[x]}, we
have Mn ∈ T ⇐⇒ Mn ∈ T ′. Clearly also dim(T ′) ≤
dim(T ).

In summary, we have reduced the Orbit Problem to the
matrix power problem: given a rational matrix M ∈ Qm×m

and polynomials p1, . . . , ps ∈ Q[x], determine whether Mn

lies in the span of p1(M), . . . , ps(M) for some n. All opera-
tions described in the reduction can be performed in polyno-
mial time using standard techniques from linear algebra. Fi-
nally, we remark that the matrix M produced by the reduc-
tion is non-singular since A was assumed to be non-singular.

3.2 The Master System
Suppose now that we have an instance (A, p1, . . . , ps) of

the matrix power problem, where A is an m×m matrix. A
natural approach would be to write A = P−1JP for some
similarity transformation P and Jordan matrix J . However,
the procedure for computing P , P−1, and J from A in poly-
nomial time is sophisticated [10]. The difficulty is that the
splitting field of the minimal polynomial of A may have de-
gree exponential in m. Instead, similarly to [20], we pursue a



self-contained approach that allows us to separately consider
each root of the minimal polynomial of A.

We begin by calculating the minimal polynomial fA of A
and obtaining standard representations of its roots α1, . . . , αk
(which are the eigenvalues of A). This may be done in
polynomial time, see Section 2. We denote by mul(αi) the
multiplicity of an eigenvalue αi as a root of fA. Clearly
mul(αi) ≤ m.

Fix an exponent n ≥ m and coefficients a1, . . . , as ∈
C, and define the polynomials P (x) =

Ps
i=1 aipi(x) and

Q(x) = xn. Denote by P (j) the j-th derivative of P . It is
easy to see that P (A) = Q(A) if and only if

P (j)(αi) = Q(j)(αi) for 1 ≤ i ≤ k, 0 ≤ j < mul(αi) (6)

Indeed, P −Q is zero at A if and only if fA divides P −Q,
that is, each αi is a root of P −Q with multiplicity at least
mul(αi). This is equivalent to saying that each αi is a root
the first mul(αi)− 1 derivatives of P −Q.

Thus in order to decide whether there exists an exponent
n and coefficients ai such that An =

Ps
i=1 aipi(A), it is

sufficient to solve a system of equations (6) in which the
unknowns are n ∈ N and a1, . . . , as ∈ C. Each eigenvalue αi
contributes mul(αi) equations which specify that P and its
first mul(αi)− 1 derivatives all vanish at αi.

We refer to (6) as the Master System. We denote by

eq(αi, j) the j-th derivative equation P (j)(αi) = Q(j)(αi)
contributed to the master system by αi. For example, if
fA has roots α1, α2, α3 with respective multiplicities 1, 1, 2,
and the target space is spanned by p1(A) and p2(A), then
the Master System contains four equations:

αn1 = a1p1(α1) + a2p2(α1)

αn2 = a1p1(α2) + a2p2(α2)

αn3 = a1p1(α3) + a2p2(α3)

nαn−1
3 = a1p

′
1(α3) + a2p

′
2(α3)

4. ONE-DIMENSIONAL VERSION
In this section we prove the following result.

Theorem 8. The one-dimensional Orbit Problem is de-
cidable in polynomial time.

Applying the reduction to the matrix power problem from
Section 3.1, assume that we are given an instance of the
one-dimensional matrix power problem (A, p), with A a non-
singular rational matrix and p ∈ Q[x]. We wish to decide
in polynomial time whether An ∈ span{p(A)} for some n.
We assume without loss of generality that n is at least the
dimension of A; smaller witnesses n can be found by brute
force. Under this assumption we have constructed an equiv-
alent Master System of equations (6) in the exponent n ∈ N
and the coefficient a ∈ C. For example, if the roots of fA
are α1, α2, α3 with multiplicities 1, 2, 1, the system is:

αn1 = ap(α1)

αn2 = ap(α2)

nαn−1
2 = ap′(α2)

αn3 = ap(α3)

In this section we will describe how such systems can be
solved in polynomial time.

Since A is non-singular, the eigenvalues αi are all non-
zero and thus the left-hand side of each equation eq(αi, j)

is non-zero. We can check in polynomial time whether any
equation eq(αi, j) has a right-hand side that is zero for a 6= 0.
If so, the system is unsatisfiable. Otherwise, we assume that
the right-hand side of each equation eq(αi, j) is non-zero. In
particular, we freely divide one equation by another.

Next we compute standard representations of all quotients
αi/αj . By Proposition 2 we can decide in polynomial time
whether each quotient is a root of unity. We now consider
three cases.

Case 1. Some quotient αi/αj is not a root of unity. Di-
viding equation eq(αi, 0) by eq(αj , 0) yields„

αi
αj

«n
=
p (αi)

p (αj)
(7)

By Lemma 1 in Section 2, we can compute standard rep-
resentations of p(αi)/p(αj) and αi/αj in polynomial time.
Then by Theorem 3, n is bounded by a polynomial in the
input. Thus it suffices to check whether An ∈ span{p(A)}
for all n up to the bound.

Case 2. All quotients αi/αj are roots of unity, and all
roots of fA are simple. For given n, any single equation
αni = ap(αi) has a solution a ∈ C. Thus the Master Sys-
tem is equivalent to the system of equations of the form (7)
obtained by dividing eq(αi, 0) by eq(αj , 0) for all i < j, as
shown in (7).

Suppose αi/αj is an r-th root of unity. If the right-hand
side of (7) is also an r-th root of unity, then the solutions
of (7) are n ≡ t mod r for some t. If not, then (7) has no
solution, so the entire Master System (6) has no solution,
and the problem instance is negative. By Lemma 1, we can
determine in polynomial time whether the right-hand side
of (7) is a root of unity, and if so, calculate t. We transform
each equation in (7) into an equivalent congruence in n. This
gives a system of congruences in n which is equivalent to the
set of quotient equations (7). Thus the problem instance is
positive iff the system of congruences has a solution. We
then solve the congruences using the Chinese Remainder
Theorem.

Case 3. All quotients αi/αj are roots of unity, and fA
has repeated roots. As in Case 2 we can obtain a system of
equations that is equisatisfiable with the Master System by
considering quotients of every pair of equations in the latter.
In fact, by transitivity, there is no need to consider quotients
of every pair of equations. For each i < j, we divide eq(αi, 0)
by eq(αj , 0), obtaining (7). Furthermore, for each repeated
root αi of fA and multiplicity 0 ≤ j < mul(αi)−1, we divide
eq(αi, j) by eq(αi, j + 1), obtaining

αi
n− j =

p(j) (αi)

p(j+1) (αi)

which is equivalent to

n = j +
p(j+1) (αi)

p(j) (αi)
αi . (8)

Recall from Case 2 that each equation of the form (7)
is equivalent to a congruence on n that can be computed
in polynomial time. For each equation of the form (8) we
calculate the right-hand side and check whether it is in N. If
not, then the system has no solution. Otherwise, (8) points
to a single candidate n. We do this for all such equations.
If they point to the same value of n, and this value of n
satisfies all the congruences derived from equations of the



form (7), then the Master System has a solution. Otherwise
the Master System has no solution.

5. TWO-DIMENSIONAL VERSION
Suppose we are given an instance I of the two-dimensional

Orbit Problem, comprising an m×m rational matrix A and
rational vectors x, y1, y2 ∈ Qm. Denote by ||I|| the size of
the instance. The question is to determine whether there
exists n ∈ N such that Anx ∈ span{y1, y2}. Our main result
is as follows:

Theorem 9. The two-dimensional Orbit Problem is de-
cidable in NPRP.

In fact we will show that the two-dimensional Orbit Prob-
lem is decidable in NPEqSLP. Recall that EqSLP is the
problem of determining whether an arithmetic circuit, with
addition, multiplication and subtraction gates, evaluates to
zero. Since this problem is known to be in coRP [27], we
obtain the desired bound for the Orbit Problem.

The decidability of this problem, as well as the complexity
bound, relies on showing that if Anx ∈ span{y1, y2} for some

n, then it already holds for some exponent n ∈ 2||I||
O(1)

.
Given this, there is a straightforward NPEqSLP decision
procedure: (i) guess the exponent n; (ii) compute Anx as an
arithmetic circuit in polynomial time by iterated squaring;
(iii) check that the m×3 matrix B = [Anx y1 y2] has rank at
most 2 with a single call to an EqSLP oracle. For the last
step, recall that ker(B) = ker(BTB), and so B has rank at
most 2 if and only if BTB is singular. This last condition can
be determined by checking zeroness of the 3×3 determinant
det(BTB).

Our first step is to apply the reduction from Section 3.1,
obtaining an instance of the matrix power problem (A, p, q),
with A non-singular. We wish to decide whether there exists
n ∈ N such that An ∈ span {p(A), q(A)}. We assume that
n is at least the dimension of A: smaller witnesses n can
be found by brute force. Under this assumption we have
constructed in Section 3.2 an equivalent Master System of
equations in variables n ∈ N and u, v ∈ C, of the form

αni = up(j)(αi) + vq(j)(αi) (9)

for αi a root of the minimal polynomial fA of A and 0 ≤
j < mul(αi).

In solving (9) we can assume that u, v 6= 0, otherwise we
revert to the one-dimensional case. Also, since A is non-
singular, each eigenvalue αi is non-zero, and it suffices to
search for solutions of (9) in which the right-hand side is
non-zero.

Define an equivalence relation ∼ on the roots of the min-
imal polynomial fA by

α ∼ β if and only if α/β is a root of unity .

The proof proceeds by a case analysis on the number of
equivalence classes.

Case I: At least three equivalence classes
Pick eigenvalues α, β, γ in different equivalence classes. Then
the Master System contains the following three equations:

αn =up(α) + vq(α)

βn =up(β) + vq(β)

γn =up(γ) + vq(γ)

Eliminating u and v from the above equations, we can com-
pute algebraic numbers a, b, c such that

aαn + bβn + cγn = 0 . (10)

The decidability proof of the Skolem Problem for recurrences
of order 3 [24, 33] shows that there are computable bounds
on n such that expressions of the form (10) hold. We recall
the argument from [24] below, quantifying these bounds in
order to justify the complexity claim in Theorem 9.

Assume that a, b, c are all non-zero. The case in which
only one of a, b or c is zero can be handled by Theorem 3.
Dividing by aαn, (10) is equivalent to

1 +
b

a

„
β

α

«n
+
c

a

“ γ
α

”n
= 0 . (11)

We now consider two sub-cases. The first sub-case is that
α/γ is an algebraic integer of degree d. Since α/γ is not a
root of unity, by Blanksby and Montgomery’s theorem [6] it
has a Galois conjugate σ(α/γ) such that

|σ(α/γ)| > 1 +
1

30d2 log(6d)
.

Replacing α, β, γ with their images under the monomor-
phism σ we may thus assume that˛̨̨

c

a

“ γ
α

”n ˛̨̨
<

˛̨̨̨
c

a

„
1− 1

c1

«n ˛̨̨̨
(12)

for some constant c1 = ||I||O(1). On the other hand, apply-
ing Corollary 6, we also have˛̨̨̨

1 +
b

a

„
β

α

«n ˛̨̨̨
≥ (n/2)−c2 (13)

for a constant c2 = ||I||O(1). Comparing the exponentially
decaying term in (12) with the polynomially decaying term

in (13), we can derive a computable bound c3 = ||I||O(1)

such that (10) cannot hold for n > c3.
The second sub-case is that α/γ is not an algebraic integer.

In particular, α/γ is not a unit, so there exists a prime ideal
P such that vP (γ) 6= vP (α). By interchanging α and γ, if
necessary, we can assume that vP (γ) > vP (α). Then

vP
“ c
a

“ γ
α

”n”
≥ vP (c)− vP (a) + n . (14)

On the other hand, applying Theorem 7 to the number field
Q(α, β, γ), we get

vP

„
1 +

b

a

„
β

α

«n«
≤ c4(logn)c5 . (15)

with c4 = 2||I||
O(1)

and c5 = ||I||O(1). Combining the in-
equalities (14) and (15), we derive a computable bound

c6 = 2||I||
O(1)

such that (10) cannot hold for n > c6. Note
that the exponential dependence of c6 on ||I|| can be traced
to the term pd in Theorem 7. Here we have p | N (P ) and

N (P ) | N (γ/α), so that p = 2||I||
O(1)

.

In summary, we have a computable bound for n in 2||I||
O(1)

beyond which (10) cannot hold.

Case II: Two equivalence classes
First, suppose that there are roots α 6∼ β, with α a repeated
root of fA. Then the Master System contains the following



three equations:

αn =up(α) + vq(α)

nαn−1 =up′(α) + vq′(α)

βn =up(β) + vq(β) .

Eliminating u and v, we can compute algebraic numbers
a, b, c, at least two of which are non-zero, such that

(a+ bn)αn + cβn = 0 . (16)

But then Theorem 4 gives a bound on n in (16) that is
polynomial in ||I||.

Now assume that all roots are simple. We will show that
if the Master System is satisfiable then it has a solution in
which the exponent n is bounded by an exponential function
in ||I||.

Let the two equivalence classes of roots be {α1, . . . , αs}
and {β1, . . . , βt}. Write L for the least common multiple of
the orders of the roots of unity among the quotients αi/αj
and βi/βj . We consider solutions of the Master System by
case analysis on the value of n modulo L, so let this value be
fixed. We now analyse the quotients of each pair of equations
eq(αi, 0) and eq(αj , 0), for 1 ≤ i < j ≤ s, the quotients of
each pair of equations eq(βi, 0) and eq(βj , 0), for 1 ≤ i <
j ≤ t, as well as the quotient of eq(α1, 0) by eq(β1, 0). It
is not difficult to see that the resulting system of ‘quotient
equations’ is equisatisfiable with the Master System.

Dividing eq(αi, 0) by eq(αj , 0), we have„
αi
αj

«n
=

up(αi) + vq(αi)

up(αj) + vq(αj)

=
p(αi) + tq(αi)

p(αj) + tq(αj)
(17)

where t = v/u. (Recall that u 6= 0 by assumption.) The
value of the left-hand side of (17) is determined by the
residue of nmodulo L, which is assumed fixed. If q(αi)p(αj) =
p(αi)q(αj) then the right-hand side of (17) is independent
of the value of t, and the equation is either satisfied for
all values of t or no values of t. On the other hand, if
q(αi)p(αj) 6= p(αi)q(αj), then (17) is satisfied for a single
value

t =
p(αi)− p(αj)(αi/αj)n

q(αj)(αi/αj)n − q(αi)
(18)

which is determined by the residue of n modulo L.
Consider the quotient of each pair of equations eq(αi, 0)

and eq(αj , 0), and the quotient of each pair of equations
eq(βi, 0) and eq(βj , 0). For a given residue of n modulo L,
this system of quotient equations is either satisfied for all
values of t, no values of t, or a single value of t of the form
(18).

It remains to divide eq(α1, 0) by eq(β1, 0), yielding„
α1

β1

«n
=

p(α1) + tq(α1)

p(β1) + tq(β1)
. (19)

If q(α1)p(β1) = p(α1)q(β1) then the right-hand side of (19)
is independent of t and the equation has at most one solu-
tion in n, which, if it exists, is polynomial in ||I|| by Theo-
rem 3. Otherwise, if q(α1)p(β1) 6= p(α1)q(β1), then (19) has
a unique solution in t for each value of n. If there is no other
constraint on the value of t then we can solve (19), yielding
satisfiability of the Master System for some value of n less

than L. If there is a constraint on t of the form (18), then
the right-hand side of (19) is bound to a single algebraic
number whose representation has size polynomial in ||I||.
Then Theorem 3 yields a bound on n that is polynomial in
||I||.

In all cases we obtain a bound on n that is exponential in
||I|| in case the Master System is satisfiable.

Case III: One equivalence class
Let the roots be α1, . . . , αs, and write L for the least com-
mon multiple of the orders of the roots of unity αi/αj , i < j.
Let us consider solutions of the Master System for some fixed
residue of n modulo L.

Dividing eq(αi, j) by eq(αi, j+1) for 0 ≤ j < mul(αi)−1,
we get that

αi
n− j =

up(j)(αi) + vq(j)(αi)

up(j+1)(αi) + vq(j+1)(αi)

=
p(j)(αi) + tq(j)(αi)

p(j+1)(αi) + tq(j+1)(αi)
(20)

where, again, t = v/u.

If q(j)(αi)p
(j+1)(αi) = p(j)(αi)q

(j+1)(αi), then the right-
hand side of (20) is independent of t, and (20) has a single
solution in n, whose magnitude is exponential in ||I||. On

the other hand, if q(j)(αi)p
(j+1)(αi) 6= p(j)(αi)q

(j+1)(αi),
then (20) is equivalent to a constraint of the form

t =
an+ b

cn+ d
(21)

for algebraic numbers a, b, c and d whose representations
have size polynomial in ||I||. Note that two constraints of
the form (21) yield a polynomial equation on n that is ei-
ther trivial or that has two solutions in n, both at most
exponential in ||I||.

Recall that the system of equations that arises by taking
the quotient of each pair eq(αi, 0) and eq(αj , 0) is either un-
satisfiable, is satisfied for a single value of t (of the form
(18)), or has solutions for all t. Considering also the con-
straints on t arising from quotients of the form (20), these
constraints either fix n to a value that is exponential in ||I||,
or place no restriction on n. In the last case the solvability
of the Master System depends only on the residue of n mod-
ulo L, so that if the system is satisfiable then it is satisfied
for some n < L.

6. CONCLUSION
We have shown that the higher-dimensional Orbit Prob-

lem is decidable in polynomial time when the target space
V has dimension one. We have also shown membership in
NPEqSLP in the case dim (V ) = 2. The paper [11] shows
the same complexity bound also holds if dim (V ) = 3. The
proof uses similar principles, but is more complicated. It is
known [27] that EqSLP ⊆ coRP, so membership in NPRP

follows immediately.
Decidability of the higher-dimensional Orbit Problem in

the case dim (V ) = 4 would immediately yield decidability of
Skolem’s Problem for five-dimensional matrices. The latter
is currently open: a decidability proof was claimed in [14]
but, as pointed out in [25], the argument seems to have a
serious gap.

A careful analysis of Cases II and III of the two-dimensional
Orbit Problem reveals that there is a polynomial-time pro-



cedure to handle these cases. The idea is to use the Chinese
Remainder Theorem, as in the one-dimension problem. In
fact, the failure to obtain a polynomial-time algorithm in
the two-dimensional problem can be traced to a single fac-
tor: the dependence of the P -adic lower bound in Theorem 7
on the prime p (whose magnitude can be exponential in the
problem instance). Tijdeman [30] has remarked that the de-
pendence of the bound in Theorem 7 on p is an impediment
for some applications. Bugeaud [9] shows that this depen-
dence can be avoided in certain restricted circumstances,
which unfortunately do not appear to hold in the case at
hand.

We have previously remarked that the higher-dimensional
Orbit Problem is NP-hard in general. However the hardness
proof [7], via Skolem’s Problem, requires that the dimension
of the target space V be unbounded. On the other hand,
achieving a polynomial upper bound in case the target V has
dimension two would seem to require either an improvement
in the Diophantine approximation bound in Theorem 7 or a
different approach to the problem.

Roughly speaking, the EqSLP oracle used by our main
decision procedure is invoked to check equality of entries of
the matrix An, where the exponent is given in binary. In
general the complexity of EqSLP, which is equivalent to
polynomial identity testing, is a major open problem, cf. [1].
However it may be possible to make progress on the special
case of matrix exponentiation; see [18] for some initial results
in this direction.
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