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Abstract

We consider polyhedral versions of Kannan and Lipton's Orbit Problem [14, 13]�determining
whether a target polyhedron V may be reached from a starting point x under repeated appli-
cations of a linear transformation A in an ambient vector space Qm. In the context of program
veri�cation, very similar reachability questions were also considered and left open by Lee and
Yannakakis in [15], and by Braverman in [4]. We present what amounts to a complete char-
acterisation of the decidability landscape for the Polyhedron-Hitting Problem, expressed as a
function of the dimension m of the ambient space, together with the dimension of the polyhedral
target V : more precisely, for each pair of dimensions, we either establish decidability, or show
hardness for longstanding number-theoretic open problems.
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k = 1 PSPACE PSPACE PSPACE PSPACE PSPACE PSPACE
k = 2 PSPACE PSPACE PSPACE PSPACE PSPACE
k = 3 PSPACE S5 PSPACE S5
k = 4 D D D & S5
k ≥ 5 D D & Sk+1

Figure 1: Decidability and hardness for instances of the Polyhedron-Hitting Problem in ambient
dimensionm with a k-dimensional target. The row k = 0 corresponds to Kannan and Lipton's Orbit
Problem [14, 13]. Hardness for certain Diophantine-approximation problems (detailed precisely in
Sec. 2.2) is denoted by D, whereas hardness for Skolem's Problem of order d (de�ned in Sec. 2.2) is
indicated by Sd.

1 Introduction

Given a linear transformation A over the vector space Qm, together with a starting point x, the
orbit of x under A is the in�nite sequence 〈x,Ax,A2x, . . . , Ajx, . . .〉. A natural decision problem
in discrete linear dynamical systems is whether the orbit of x ever hits a particular target set V .

An early instance of this problem was raised by Harrison in 1969 [12] for the special case in which
V is simply a point in Qm. Decidability remained open for over ten years, and was �nally settled in a
seminal paper of Kannan and Lipton, who moreover gave a polynomial-time decision procedure [14].
In subsequent work [13], Kannan and Lipton noted that the Orbit Problem becomes considerably
harder when the target V is replaced by a subspace of Qm: indeed, if V has dimension m − 1,
the problem is equivalent to the Skolem Problem, known to be NP-hard but whose decidability
has remained open for over 80 years [23]. Nevertheless, Kannan and Lipton speculated in [13] that
instances of the Orbit Problem with low-dimensional subspaces as target might remain decidable.
This was �nally substantiated in [6], which showed decidability for vector-space targets of dimension
at most 3, with polynomial-time complexity for one-dimensional targets, and complexity in NPRP

for two- and three-dimensional targets.
In this paper, we study a natural generalisation of the Orbit Problem, which we call the

Polyhedron-Hitting Problem, in which the target V is allowed to be an arbitrary (bounded
or unbounded) polyhedron.1 We present what amounts to a complete characterisation of the decid-
ability landscape for this problem, expressed as a function of the dimension m of the ambient space
Qm, together with the dimension k of the polyhedral target V ; more precisely, for each pair of di-
mensions, we either establish decidability, or show hardness for longstanding number-theoretic open
problems. Our results are summarised in Fig. 1. As our algorithms rely on symbolic manipulation
of algebraic numbers of unbounded degree and height, all decidable instances lie in PSPACE.

A key motivation for studying the Polyhedron-Hitting Problem comes from the area of program
veri�cation, and in particular the problem of determining whether a simple while loop with linear
(or a�ne) assignments and guard will terminate or not. Very similar reachability questions were
considered and left open by Lee and Yannakakis in [15] for what they termed �real a�ne transition
systems�. Similarly, decidability for the special case of the Polyhedron-Hitting Problem in which the
polyhedral target consists of a single halfspace (rather than an intersection of several halfspaces)
was mentioned as an open problem by Braverman in Sec. 6 of [4].

1This problem was also considered in [24] under the appellation of Chamber-Hitting Problem. However that paper
focussed on connections with formal language theory rather than on establishing decidability.
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It should be noted, however, that the problem considered in the present paper di�ers in one
fundamental respect from what is traditionally termed the `Termination Problem' in the program
veri�cation literature (see, e.g., [3]). The latter studies termination of while loops for all possible
initial starting points (valuations of the variables), rather than for a �xed starting point as we
consider in this paper. This distinction drastically transforms the nature of the problem at hand.

In [18], the traditional Termination Problem is solved over the integers for while loops under
certain restrictions (chie�y, diagonalisability of the associated linear transformation). That paper
relies on markedly di�erent techniques from the present one, eschewing Baker's Theorem and relying
instead on non-constructive lower bounds on sums of S-units (which in turn follow from deep results
in Diophantine approximation), as well as real algebraic geometry.

The present paper vastly extends our earlier results from [6], in which only vector-space targets
were considered. Polyhedra, de�ned as intersections of (a�ne) halfspaces, pose substantial new
challenges, as evidenced among others by the Diophantine-approximation lower bounds that arise for
polyhedral targets of dimension 4 or greater. In addition to classical tools from algebraic and analytic
number theory such as p-adic analysis and Baker's Theorem, the present paper relies crucially
on several sophisticated tools not invoked in [6] or [18], including techniques from Diophantine
approximation, convex geometry, as well as decision procedures for the existential fragment of the
�rst-order theory of the reals.

In terms of future work, either establishing complexity lower bounds, or improving thePSPACE
membership of the decidable problem instances, stand out as challenging open questions.

2 Polyhedron-Hitting Problem

The focus of this paper is the Polyhedron-Hitting Problem: given a square matrix A ∈ Qm×m,
a vector x ∈ Qm and polyhedron P , determine whether there exists a natural number n such that
Anx ∈ P . For m ≥ k, we will denote by PHP(m, k) the version of the problem in which the ambient
space is Qm and the target polyhedron has dimension k.

We begin this section with our decidability results for low-dimensional versions of the problem.
We de�ne two related problems to which we reduce the Polyhedron-Hitting Problem in order to
obtain our complexity upper bounds: the Extended Orbit Problem and the Simultaneous Positivity
Problem. Then we proceed to give hardness results for higher-dimensional cases by reducing from
Skolem's Problem and from Diophantine approximation.

2.1 Decidability results

Our e�ectiveness result on the Polyhedron-Hitting Problem is the following:

Theorem 1 If k ≤ 2 or m = k = 3, then PHP(m, k) is in PSPACE.

The strategy for PHP(m, k) when k ≤ 2 is to reduce to the related Extended Orbit Problem:
given a linear transformation A ∈ Qm×m, a vector x ∈ Qm, a target Q-vector space V de�ned by a
basis {y1, . . . , yd} ⊆ Qm and a constraint matrix B ∈ (R ∩ A)k×d, determine whether there exists
some exponent n ∈ N such that Anx ∈ V and the coordinates u = (u1, . . . , ud)

T of Anx with respect
to the basis {y1, . . . , yd} satisfy Bu ≥ 0.

We focus �rst on PHP(m, 1). By Lemma 11 in Appendix A.1, a one-dimensional polyhedron is
of the form

P = {v1 + αv2 : α ∈ I}
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where I is one of R, [0, 1] and [0,∞). Moreover, this parametric representation is computable in
polynomial time from the halfspace description of P . Now suppose we wish to �nd n ∈ N and
u1, u2 ∈ Q such that [

A 0
0 1

]n [
x
1

]
= u1

[
v1
1

]
+ u2

[
v2
0

]
The (m+ 1)-th component forces any witness to this problem instance to have u1 = 1. Therefore,
requiring u2 ≥ 0 and u1 − u2 ≥ 0 gives an Extended Orbit instance with a two-dimensional target
space which is positive if and only if the segment {v1 + u2v2 : u2 ∈ [0, 1]} intersects the orbit
{Anx : n ∈ N}. Requiring instead only u2 ≥ 0 gives the half-line {v1 + u2v2 : u2 ∈ [0,∞)}, whereas
setting no restriction gives the whole line {v1 + u2v2 : u2 ∈ R}. In all cases, the resulting Extended
Orbit instance has target space of dimension two, so by Theorem 4 in Section 3, PHP(m, 1) is in
PSPACE.

Now we move to PHP(m, 2). By Lemma 10 in Appendix A.1, any two-dimensional polyhedron
can be decomposed into a �nite union of simple shapes: P =

⋃s
i=1 Si where

Si = {vi1 + αvi2 + βvi3 : α ≥ 0 and β ≥ 0 and T (α, β)}

where the predicate T is either α + β ≤ 1, or β ≤ 1 or true. In fact, it is easy to see from the
proof of Lemma 10 that s ∈ 2‖P‖

O(1)
. For each i, the problem of whether there exists n such that

Anx ∈ Si reduces to the Extended Orbit Problem with a three-dimensional target. For instance,
if the predicate Ti is α + β ≤ 1, that is, Si is a triangle, then Anx ∈ Si if and only if there exist
u1, u2, u3 ∈ Q such that u2 ≥ 0, u3 ≥ 0, u1 − u2 − u3 ≥ 0 and[

A 0
0 1

]n [
x
1

]
= u1

[
vi1
1

]
+ u2

[
vi2
0

]
+ u3

[
vi3
0

]
As in the reduction from PHP(m, 1), the (m + 1)-th component forces u1 = 1 and allows us to
express the constraint u2 + u3 ≤ 1 with a homogeneous inequality. The remaining possible choices
of predicate T reduce similarly. By Theorem 4 in Section 3, the Extended Orbit Problem with
target space of dimension three is in PSPACE. Therefore, to solve PHP(m, 2) in PSPACE, it
su�ces to choose nondeterministically a simple two-dimensional target Si and proceed to solve an
Extended Orbit instance.

Finally, consider the Polyhedron-Hitting Problem in the case when the target polyhedron P has
dimension m, matching the dimension of the ambient space Qm. Consider the halfspace description
of P :

P =
s⋂
i=1

Hi =
s⋂
i=1

{p ∈ Qm : vTi p ≥ ci}

De�ne the linear recurrence sequences Si(n) = vTi A
nx. By the Cayley-Hamilton Theorem, the

sequences Si satisfy a common recurrence equation with characteristic polynomial the minimal
polynomial fA(x) of A. De�ne also the sequences S ′i(n) = Si(n)− ci. It is not di�cult to show that
the latter also satisfy a common recurrence equation, with characteristic polynomial (x− 1)fA(x).
Since fA has degree at most m, the order of the recurrence equation shared by the sequences S ′i(n)
is at most m+ 1. Moreover Anx ∈ P i� S ′i(n) ≥ 0 for i = 1, . . . , s.

Thus, PHP(m,m) reduces to the Simultaneous Positivity Problem: given a family of linear
recurrence sequences S ′i(n), i = 1, . . . , s, which satisfy a common recurrence relation of order m+ 1,
does there exist an index n such that S ′i(n) ≥ 0 for all i? This problem is the focus of Section 4,
where we place it in PSPACE in the case of LRS over R ∩ A whose shared recurrence relation is
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of order at most three, or of order four but with 1 as a characteristic root. This immediately shows
that PHP(3, 3) is in PSPACE, completing the proof of Theorem 1.2

2.2 Hardness results

Now we proceed to give hardness results for the Polyhedron-Hitting Problem. First, observe that
lower-dimensional versions of PHP reduce to higher-dimensional ones:

Lemma 2 For all m, k such that m ≥ k, PHP(m, k) reduces to PHP(m+ 1, k) and to PHP(m+
1, k + 1).

Proof. Given A ∈ Qm×m, x ∈ Qm and a polyhedron P ⊆ Qm with dim(P ) = k, we de�ne the
polyhedra P ′ = {(t, 0) ∈ Qm+1 : t ∈ P} and P ′′ = {(t, 1) ∈ Qm+1 : t ∈ P}. Note that dim(P ′) = k
and dim(P ′′) = k + 1. Then

Anx ∈ P ⇐⇒
[
A 0
0 1

]n [
x
0

]
∈ P ′ ⇐⇒

[
A 0
0 1

]n [
x
1

]
∈ P ′′

which shows both reductions. �
Next, recall that Skolem's Problem is the problem of determining, given a linear recurrence

sequence S(n) over Q, whether it has a zero, that is, an index n ∈ N such that S(n) = 0. The
decidability of Skolem's Problem for sequences of order 5 or greater has been open for decades.

It is easy to show that Skolem's Problem for LRS of order m reduces to PHP(m,m − 1). For
a linear recurrence sequence S(n) = yTAnx, we have S(n) = 0 if and only if Anx ∈ P , where P is
the polyhedron {t ∈ Qm : yT t ≥ 0 and yT t ≤ 0}. In fact, P = (span{y})⊥, so dim(P ) = m− 1 and
this is an instance of PHP(m,m − 1). By Lemma 2, it follows that whenever m > k, decidability
of PHP(m, k) would imply decidability of Skolem's Problem for LRS of order k + 1.

In fact, we can show that even PHP(4, 3) is hard for Skolem's Problem for linear recurrence
sequences of order 5.

Lemma 3 Skolem's Problem for LRS of order 5 reduces to PHP(4, 3).

Proof. As discussed in reference [19], the only outstanding case of Skolem's Problem of order 5
is when the LRS has �ve characteristic roots: two pairs of complex conjugates λ1, λ1, λ2, λ2 and a
real root ρ, such that |λ1| = |λ2| > |ρ| > 0. Therefore, let S1(n) be such a sequence, given by

S1(n) = aλn1 + aλn1 + bλn2 + bλn2 + cρn

De�ne the order-4 sequence S2(n) by

S2(n) =
aλn1 + aλn1 + bλn2 + bλn2

ρn

Let A be the 4× 4 companion matrix of S2, and let x be the vector of initial terms of S2, so that

Anx =


S2(n)
S2(n+ 1)
S2(n+ 2)
S2(n+ 3)


2In fact we can solve the problem in greater generality. One can show a PSPACE bound in the case of a simple

shared recurrence with at most four dominant complex roots. This in turn entails membership in PSPACE for
PHP(4, 4) and PHP(5, 5) in the case of a diagonalisable matrix. We omit this from the present paper for lack of
space.
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Then S1(n) = 0 if and only if S2(n) = −c, or equivalently, if there exist u1, u2, u3 such that

Anx =


−c
0
0
0

+ u1


0
1
0
0

+ u2


0
0
1
0

+ u3


0
0
0
1


which is an instance of PHP(4, 3). �

Finally, in Section 4 we show that solving PHP(m, k) for m ≥ k ≥ 4 is highly unlikely without
major breakthroughs in analytic number theory. For any real number x, the homogeneous Diophan-
tine approximation type L(x) is a measure of the extent to which x can be well-approximated by
rationals. It is de�ned by:

L(x) = inf
{
c ∈ R :

∣∣∣x− n

m

∣∣∣ < c

m2
for some n,m ∈ Z

}
Much e�ort has been devoted to the study of the possible values of the approximation type, see for
instance [8]. Nonetheless, very little is known about the approximation type of the vast majority
of transcendental numbers. In Section 4 we prove that a decision procedure for the Simultane-
ous Positivity Problem for rational recurrences order at most 4 would entail the computability of
L(arg λ/2π) for any complex number λ ∈ Q(i) of absolute value 1.3 Therefore, a decision procedure
for PHP(4, 4) is extremely unlikely without signi�cant advances in Diophantine approximation. By
Lemma 2, the same hardness result holds for PHP(m, k) with m ≥ k ≥ 4. A similar result has been
shown in [20] concerning the Positivity Problem for single linear recurrence sequences of order at
most 6.

Our results are summarised in tabular form in the �gure presented in the Introduction.

3 Extended Orbit Problem

The focus of this section is the Extended Orbit Problem. In this problem we are given a matrix
A ∈ Qm×m, an initial point x ∈ Qm, and a target cone speci�ed by a set of vectors {y1, . . . , yd} ⊆ Qm

and a constraint matrix B ∈ (R ∩ A)k×d. The question is whether there exists an exponent n ∈ N
and coordinates u = (u1, . . . , ud)

T such that Anx =
∑d

i=1 uiyi and Bu ≥ 0. We refer to the space
V spanned by y1, . . . , yd, which contains the target cone, as the target space.

The main decidability result of this section is the following:

Theorem 4 The Extended Orbit Problem is in PTIME in the case of a one-dimensional target
space, and in PSPACE in the case of a two- or three-dimensional target space.

Notice that these complexity bounds depend only on the dimension of the target space V , not on
the dimension of the ambient space Qm.

We now give an overview of the strategy for proving Theorem 4. Due to space constraints,
we have consigned the proof to Appendix C. The decision method constructs a `Master System'
consisting of equations in n and u = (u1, . . . , ud) together with the inequalities Bu ≥ 0 given as part
of the input. When the Master System contains `su�ciently many' equations, a bound N is derived
such that if n > N , then Anx 6∈ V . Writing ||I|| for the size of the input, we have N ∈ ||I||O(1) when

dim(V ) = 1 and N ∈ 2||I||
O(1)

when dim(V ) ≤ 3. With a one-dimensional target, it is su�cient to

3Recall that a real number x is computable if there exists an algorithm which, given any rational ε > 0 as input,
computes a rational q such that |q − x| < ε.
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try all exponents n ≤ N to get a polynomial-time algorithm. In the two- and three-dimensional
case, the algorithm is a guess-and-check procedure. An exponent n ≤ N is nondeterministically
chosen as a possible witness. Then Anx ∈ V is veri�ed by checking whether the determinant of the
matrix with columns Anx, y1, . . . , yd equals 0. If it does, then Anx ∈ V , and we proceed to calculate
the coe�cients u1, . . . , ud witnessing this membership and to verify the inequalities Bu ≥ 0 which
they must satisfy. In the veri�cation procedure, all numbers are expressed as arithmetic circuits and
exponentiation is performed using repeated squaring. Recall that PosSLP is the class of problems
which reduce in polynomial time to checking whether an arithmetic circuit evaluates to a positive
number. The described operations may all be carried out using an oracle for PosSLP, so the
algorithm gives a complexity upper bound of NPPosSLP for the case of a large Master System. The
work of Allender et al. [1] places PosSLP in the counting hierarchy, which shows the algorithm runs
in polynomial space, as Theorem 4 claims. On the other hand, when the Master System contains
`few' equations, the problem reduces to the Simultaneous Positivity Problem, which is discussed in
Section 4 and is shown to be in PSPACE for all orders which arise in the reduction.

4 Simultaneous Positivity

In this section, we consider the Simultaneous Positivity problem: given linear recurrence se-
quences S1, . . . ,Sk over R ∩ A which satisfy a common recurrence equation, are they ever simulta-
neously positive, that is, does there exist n such that Si(n) ≥ 0 for all i ∈ {1, . . . , k}?

The asymptotic behaviour of a linear recurrence sequence S is closely linked to its dominant
characteristic roots, that is, the characteristic roots of greatest magnitude. If λ1, . . . , λs are the
dominant roots, we can write

S(n)

|λ1|n
= P1(n)

(
λ1
|λ1|

)n
+ · · ·+ Ps(n)

(
λs
|λ1|

)n
+ r(n)

where r(n) tends to 0 exponentially quickly. We can use the polynomial root-separation bound
(5) in Appendix A.2 to bound the absolute value of the quotient λ/λ1, where λ is a non-dominant
characteristic root. Thus we can show:

Lemma 5 Suppose we are given an LRS S as above. Then there exist constants ε ∈ (0, 1) and

N ∈ N such that N ∈ 2||S||
O(1)

, ε−1 ∈ 2||S||
O(1)

, and |r(n)| < (1− ε)n for all n > N .

4.1 Decidability results

In this section we prove the following result:

Theorem 6 The Simultaneous Positivity Problem is in PSPACE for sequences over R∩A whose
common recurrence equation has order at most 3, or order 4 but with at least one real root.

We will restrict our attention to non-degenerate LRS. As outlined in Appendix A.3, a degenerate
sequence can be partitioned into non-degenerate subsequences. Then the Simultaneous Positivity
instance is equivalent to the disjunction of all Simultaneous Positivity instances where each degener-
ate sequence has been replaced by one of its non-degenerate subsequences. In general, this leads to
exponentially many non-degenerate problem instances. However, this leaves Theorem 6 una�ected,
as a non-degenerate problem instance may simply be guessed nondeterministically by a PSPACE
algorithm.
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The assumption of non-degeneracy guarantees that there can be at most one real root among
the dominant roots of the sequences. We can assume without loss of generality that any real root
of the sequence is positive (otherwise we separately consider the cases of even and odd n).

The algorithm for Simultaneous Positivity is similar to the one for Extended Orbit. We search
for witnesses up to some computable bound N ∈ 2‖I‖

O(1)
. To this end, we will choose a witness

n nondeterministically and then verify Sj(n) = vTj M
n
j wj ≥ 0 for all j. Recalling that the entries

of Mj are algebraic numbers, we can verify this family of inequalities by constructing a sentence τ
in the existential �rst-order theory of the reals which is true if and only if vTj M

n
j wj ≥ 0 for all j.

We specify each real algebraic number with description (fα, x0, y0, R) using the �rst-order formula
∃z.fα(z) = 0 ∧ (z − x0)2 + y20 ≤ R2. To ensure that ‖τ‖ ∈ ‖I‖O(1), we use repeated squaring to
calculate Mn

j . Finally, we check the validity of τ in PSPACE, as per Theorem 13 in Appendix
A.4.

We now consider two cases, according to the number of dominant complex roots of the shared
recurrence equation.

No dominant complex roots. Suppose the dominant characteristic roots do not include a
pair of complex conjugates. Then by the assumption of non-degeneracy, there is one real dominant
root ρ > 0. Then the j-th sequence is given by

Sj(n)

ρn
= Pj(n) + rj(n)

where rj is itself a linear recurrence of lower order which converges to 0 exponentially quickly,
and Pj ∈ (R ∩ A)[x]. Each polynomial Pj(n) is either identically zero or is ultimately positive or
ultimately negative as n tends to in�nity. In the latter two cases, there is an e�ective threshold
Nj ∈ 2||Sj(n)||

O(1)
beyond which the sign of Sj does not change. If some Sj is ultimately negative,

then any witness to the problem instance must be bounded above by Nj . Since Nj is at most
exponentially large in the size of the input, we use a guess-and-check procedure and are done.
Similarly, for each sequence Sj for which Pj is ultimately positive we can search for witnesses up
to the threshold Nj and if none are found, we discard Sj as if it were uniformly positive. Finally,
we are left only with sequences Sj for which Pj is identically zero. Then the problem instance
is equivalent to Simultaneous Positivity on the sequences rj . These sequences satisfy a common
recurrence equation of lower order, so we proceed inductively.

Two simple dominant complex roots. Suppose now that the dominant roots of the shared
recurrence equation include exactly two complex roots λ, λ and possibly a real dominant root ρ1 > 0.
Moreover, assume that the roots are all simple, so the j-th sequence is given by

Sj(n) = ajλ
n + ajλ

n
+ bjρ

n
1 + cjρ

n
2

that is,
Sj(n)

|λ|n
= 2|aj | cos(αj + nϕ) + bj + rj(n)

where αj = arg(aj) and ϕ = arg(λ). Moreover, rj is a linear recurrence sequence of order at most
2 with real characteristic roots. Observe that for all j, bj + rj(n) is either ultimately positive or
ultimately negative as n tends to in�nity. Furthermore, a threshold beyond which the sign does not
change is e�ectively computable and at most exponential in ||Sj ||. Following the reasoning of the
previous case, we see that we can dismiss sequences Sj which have aj = 0.

Assume therefore that aj 6= 0 for all j. By Lemma 16 in Appendix B, for each sequence Sj there
exists an e�ective threshold Nj ∈ 2||Sj ||

O(1)
such that for n > Nj , rj(n) is too small to in�uence the
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sign of Sj(n). That is, for all n > Nj , we have

Sj(n) ≥ 0 ⇐⇒ bj + cos(αj + nϕ) ≥ 0

Therefore, for n > N = maxj{Nj}, the problem instance is equivalent to a conjunction of inequali-
ties in n:

∀j. cos(αj + nϕ) ≥ −bj
We use guess-and-check to look for witnesses n ≤ N . If none are found, the problem instance is
then decidable in PSPACE by Lemma 17 in Appendix B.

4.2 Hardness

We now proceed to show our main hardness result for Simultaneous Positivity and hence for
PHP(m,m). Recall that the homogeneous Diophantine approximation type L(x), de�ned in Sec-
tion 2.2, is a measure of how well x can be approximated by rationals. Very little progress has been
made on calculating the approximation type for the vast majority of transcendental numbers. In
this section, we show that a decision procedure for Simultaneous Positivity for LRS with shared
recurrence equation of order 4 would entail the computability of the approximation type of all
Gaussian rationals:

Theorem 7 Suppose that Simultaneous Positivity is decidable for rational linear recurrence se-
quences. Then for any λ ∈ Q(i) on the unit circle, L(arg λ/2π) is a computable number.

Suppose we wish to calculate L(ϕ/2π), where ϕ = arg λ for some λ of magnitude 1. Consider
the following two sequences for some �xed rational number A:

S1(n) =
1

2
((A− in)λn + (A+ in)λ

n
)

S2(n) =
1

2
((A+ in)λn + (A− in)λ

n
)

It is straightforward to verify that S1(n) and S2(n) are both rational sequences satisfying a
common order-4 recurrence with characteristic polynomial (x− λ)2(x− λ)2. Moreover we have

S1(n) = n cos(nϕ− π/2) +A cos(nϕ) = A cos(nϕ) + n sin(nϕ)

S2(n) = n cos(nϕ+ π/2) +A cos(nϕ) = A cos(nϕ)− n sin(nϕ)

Let wn = n| sin(nϕ)|−A cos(nϕ). It is clear that S1(n) ≥ 0 and S2(n) ≥ 0 if and only if wn ≤ 0. We
will show that a Simultaneous Positivity oracle may be used on these sequences for di�erent choices
of A to compute arbitrarily good approximations of L(ϕ/2π). Throughout this section, write [x] to
denote the distance from x to the closest integer multiple of 2π, that is, [x] = min{|x−2πj| : j ∈ Z}.

Given ε ∈ (0, 1), there exists δ > 0 such that for all x ∈ [−δ, δ], the following hold:

(1− ε)|x| ≤ | sinx| ≤ |x| (1)

1− ε ≤ cosx (2)

Moreover, there exists N ∈ N such that A/N ≤ δ and also,

if | sinx| ≤ A/N , then |x| ≤ δ. (3)

Lemma 8 Suppose that n ≥ N is such that wn ≤ 0. Then n[nϕ] < A/(1− ε).
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Proof.

| sin(nϕ)| ≤ A

n
cos(nϕ) ≤ A

N
[as wn ≤ 0 and n ≥ N ]

⇒[nϕ] ≤ δ [by (3)]

But

wn =n| sin(nϕ)| −A cos(nϕ) [de�nition of wn]

≥ n(1− ε)[nϕ]−A [by (1) and cosx ≤ 1]

Therefore, n[nϕ] ≤ A/(1− ε). �

Lemma 9 Let n ≥ N be such that n[nϕ] ≤ A(1− ε). Then wn ≤ 0.

Proof. Notice that

[nϕ] ≤ A(1− ε)
n

≤ A

N
≤ δ

so for wn we have

wn =n| sin(nϕ)| −A cos(nϕ) [de�nition of wn]

≤n[nϕ]−A(1− ε) [by (1)(2)]

≤A(1− ε)−A(1− ε) = 0 [by premise]

�
Letting t = ϕ/2π, we see that

2πL(t) = inf
m∈N

m[mϕ]

Thus to show computability of L(t) it is enough to show that infm∈Nm[mϕ] is computable. For
this in turn it su�ces to provide a procedure that, given a, b ∈ Q with a < b, computes a threshold
N ∈ N and either outputs that infm≥N m[mϕ] < b or infm≥N m[mϕ] > a. (Clearly infm<N m[mϕ]
can be computed to any desired precision.)

Given a < b as above, compute ε and A such that

a < A(1− ε) < A

1− ε
< b .

Calculate also the constant N in the statement of Lemmas 8 and 9 for this choice of ε and A. Then
run a Simultaneous Positivity oracle on the N -th tails of the two sequences S1(n) and S2(n) to
determine whether wn ≤ 0 for some n ≥ N . If the oracle accepts, then infm∈Nm[mϕ] ≤ A

1−ε < b by
Lemma 8. If the oracle rejects, then infm∈Nm[mϕ] ≥ A(1− ε) > a by Lemma 9.
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A Preliminaries

A.1 Polyhedra and their representations

Here we state some basic properties of polyhedra. For more details we refer the reader to, for
example, references [10, 16, 26]. A halfspace in Rd is the set of points x ∈ Rd satisfying vTx ≥ c for
some �xed vector v ∈ Rd and real number c. A polyhedron in Rd is the intersection of �nitely many
halfspaces:

P =

x ∈ Rd :

vT1 x ≥ c1
...

vTmx ≥ cm

 (4)

We call the set {(v1, c1), . . . , (vm, cm)} a halfspace description of a polyhedron, or simply an H-
polyhedron. The problem of determining a minimal subset of the inequalities (4) that de�ne the
same polyhedron is called the H-redundancy removal problem and is solvable in polynomial time
by reduction to linear programming. Thus, we may freely assume that there are no redundant
constraints in the descriptions of H-polyhedra.

The dimension of a polyhedron P , denoted dim(P ), is the dimension of the subspace of Rd
spanned by P . The task of calculating the dimension of an H-polyhedron, called the H-dimension
problem, can be done in polynomial time by solving polynomially many linear programs. If dim(P ) =
d, we call P full-dimensional. The minimal halfspace representation of a full-dimensional polyhedron
is unique, up to scaling of the inequalities in (4).

The convex cone of a �nite set of vectors v1, . . . , vm is de�ned as

cone({v1, . . . , vm}) = {λ1v1 + · · ·+ λmvm : λ1, . . . , λm ≥ 0}

If the vectors v1, . . . , vm are linearly independent, the cone is called simplicial. A classical result, due
to Carathéodory, states that each �nitely generated cone can be written as a �nite union of simplicial
cones. In Appendix B, we use this to prove that any two-dimensional polyhedron decomposes into
a �nite union of simple two-dimensional shapes:

Lemma 10 Suppose P ⊆ Rd is a two-dimensional polyhedron. Then P =
⋃m
i=1Ai, where m is

�nite and each of Ai is of the form

Ai = {ui + αvi + βwi : Ti(α, β)}

for vectors ui, vi, wi ∈ Rd and predicates Ti(α, β) chosen from the following:

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 (Ai is an in�nite cone)

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ α+ β ≤ 1 (Ai is a triangle)

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ β ≤ 1 (Ai is an in�nite strip)

Furthermore, if we are given a halfspace description of P with length ‖P‖, the size of the represen-
tation of each vector ui, vi, wi is at most ‖P‖O(1).

A simpler version of the above result gives a similar parametric form in the case dim(P ) = 1:

Lemma 11 Suppose P ⊆ Rd is a one-dimensional polyhedron. Then

P = {v1 + αv2 : T (α)}

where the predicate T (α) is one of α ∈ R, α ≥ 0 and α ∈ [0, 1]. Furthermore, if we are given a
halfspace description of P with length ‖P‖, the size of the representation of v1, v2 is at most ‖P‖O(1).
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A.2 Algebraic numbers

In this section we brie�y review relevant notions in algebraic number theory. See, e.g., [7] for more
details.

A complex number α is algebraic if there exists a polynomial p ∈ Q[x] such that p(α) = 0. The
set of algebraic numbers, denoted by A, is a sub�eld of C. The minimal polynomial of α, denoted
fα(x), is the unique monic polynomial with rational coe�cients of least degree which vanishes at α.
The degree of α ∈ A is de�ned as the degree of its minimal polynomial and is denoted by nα. The
height of α is de�ned as the maximum absolute value of a numerator or denominator of a coe�cient
of the minimal polynomial of α, and is denoted by Hα. The roots of fα(x) (including α) are called
the Galois conjugates of α. An algebraic integer is an algebraic number α such that fα ∈ Z[x]. The
set of algebraic integers, denoted OA, is a ring under the usual addition and multiplication.

The canonical representation of an algebraic number α is its minimal polynomial fα(x), along
with a numerical approximation of Re(α) and Im(α) of su�cient precision to distinguish α from its
Galois conjugates. More precisely, we represent α by the tuple

(fα, x, y, R) ∈ (Q[x]×Q×Q×Q)

meaning that α is the unique root of fα inside the circle centred at (x, y) in the complex plane with
radius R. A bound due to Mignotte [17] states that for roots αi 6= αj of a polynomial p(x),

|αi − αj | >
√

6

n(n+1)/2Hn−1 (5)

where n and H are the degree and height of p, respectively. Thus, if R is restricted to be less than
a quarter of the root separation bound, the representation is well-de�ned and allows for equality
checking. Observe that given fα, the remaining data necessary to describe α is polynomial in the
length of the input. It is known how to obtain polynomially many bits of the roots of any p ∈ Q[x]
in polynomial time [21].

When we say an algebraic number α is given, we assume we have a canonical description of α.
We will denote by ‖α‖ the length of this description, assuming that integers are expressed in binary
and rationals are expressed as pairs of integers. Observe that |α| is an exponentially large quantity
in ‖α‖ whereas ln |α| is polynomially large. Notice also that 1/ ln |α| is at most exponentially large
in ‖α‖. For a rational a, ‖a‖ is just the sum of the lengths of its numerator and denominator
written in binary. For a polynomial p ∈ Q[x], ‖p‖ will denote

∑n
i=0 ‖pi‖ where n is the degree of the

polynomial and pi are its coe�cients. Using the resultant method, operations may be performed
e�ciently on algebraic numbers. Speci�cally, techniques from algebraic number theory [7] yield the
following lemma:

Lemma 12 Given canonical representations of α, β ∈ A and a polynomial p ∈ Q[x], it is possible
to compute canonical descriptions of α±β, αβ±1,

√
α and p(α), to check the equality α = β and α's

membership in N,Z,Q, and �nally to determine whether α is a root of unity, and if so, to calculate
its order and argument. All of these procedures have polynomial running time.

A.3 Linear recurrence sequences

We now recall some basic properties of linear recurrence sequences. For more details, we re-
fer the reader to [9, 11]. A real linear recurrence sequence (LRS) is an in�nite sequence S =
〈S(0),S(1),S(2), . . . 〉 over R such that there exists a natural number k and real numbers a1, . . . , ak
such that ak 6= 0 and S satis�es the linear recurrence equation

S(n+ k) = a1S(n+ k − 1) + a2S(n+ k − 2) + · · ·+ akS(n) (6)
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The recurrence (6) is said to have order k. Note that the same sequence can satisfy di�erent
recurrence relations, but it satis�es a unique recurrence of minimum order.

The characteristic polynomial of S is

p(x) = xk − a1xk−1 − a2xk−2 − · · · − ak

and its roots are called the characteristic roots of the sequence. For real LRS, the set of charac-
teristic roots is closed under complex conjugation. If ρ1, . . . , ρl ∈ R are the real roots of p(x) and
γ1, γ1, . . . , γm, γm ∈ C are the complex ones, the sequence is given by

S(n) =

l∑
i=1

Ai(n)ρni +

m∑
j=1

(
Cj(n)γnj + Cj(n)γj

n
)
for all n ≥ 0

where Ai ∈ R[x] and Cj ∈ C[x] are univariate polynomials whose degrees are at most the multiplicity
of the corresponding roots of p(x). The coe�cients of Ai, Ci are e�ectively computable algebraic
numbers.

If M ∈ Rk×k is a real square matrix and v, w ∈ Rk are real column vectors, then it can be
shown using the Cayley-Hamilton Theorem that the sequence S(n) = vTMnw satis�es a linear
recurrence of order k. Conversely, any LRS may be expressed in this way: it is su�cient to take
M to be the transposed companion matrix of the characteristic polynomial of S, v to be the vector
(S(k−1), . . . ,S(0))T of initial terms of S in reverse order, and w to be the unit vector (0, . . . , 0, 1)T .
The characteristic roots of the LRS are precisely the eigenvalues of M .

A linear recurrence sequence is called degenerate if for some pair of distinct characteristic roots
λ1, λ2 of its minimum-order recurrence, the ratio λ1/λ2 is a root of unity, otherwise the sequence
is non-degenerate. As pointed out in [9], the study of arbitrary LRS can e�ectively be reduced
to that of non-degenerate LRS by partitioning the original LRS into �nitely many non-degenerate
subsequences. Speci�cally, for a given degenerate linear recurrence sequence S with characteristic
roots λi, let L be the least common multiple of the orders of all ratios λi/λj which are roots of
unity. Then consider the sequences

S(j)(n) = uTAnL+jv = uT (AL)n(Ajv)

where j ∈ {0, . . . , L− 1}. Each of these sequences has characteristic roots λLi and is therefore non-
degenerate, because (λ1/λ2)

Lk = 1 implies λL1 = λL2 . From the crude lower bound ϕ(r) ≥
√
r/2 on

Euler's totient function, it follows that if α has degree d and is a primitive r-th root of unity, then
r ≤ 2d2. Thus, L ∈ 2||A||

O(1)
, so non-degeneracy can be ensured by considering at most exponentially

many subsequences of the original LRS.

A.4 First-order theory of the reals

Let x1, . . . , xm be �rst-order variables ranging over R, and suppose σ(x1, . . . , xm) is a Boolean
combination of predicates of the form g(x1, . . . , xm) ∼ 0, where g ∈ Z[x1, . . . , xm] is a polynomial
and ∼ is > or =. A sentence of the �rst-order theory of the reals is a formula τ of the form

Q1x1 . . . Qmxmσ(x1, . . . , xm)

where each Qi is one of the quanti�ers ∃ and ∀. If all the quanti�ers are ∃, then τ is said to be a
sentence of the existential �rst-order theory of the reals.

The decidability of the �rst-order theory of the reals was originally established by Tarski [25].
Many re�nements followed over the years, culminating in the analysis of Renegar [22]. We make
use of the following result:
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Theorem 13 Suppose we are given a sentence τ of the form above using only existential quanti�ers.
The problem of deciding whether τ holds over the reals is in PSPACE. Furthermore, if M ∈ N is
a �xed constant and we restrict the problem to formulae τ where the number of variables is bounded
above by M , then the problem is in PTIME.

B Technical lemmas

Theorem 14 (Baker and Wüstholz [2]) Let α1, . . . , αm be algebraic numbers other than 0 or 1, and
let b1, . . . , bm be rational integers. Write

Λ = b1 logα1 + · · ·+ bm logαm

Let A1, . . . , Am, B ≥ e be real numbers such that, for each j ∈ {1, . . . ,m}, Aj is an upper bound
for the height of αj, and B is an upper bound for |bj |. Let d be the degree of the extension �eld
Q(α1, . . . , αm) over Q. If Λ 6= 0, then

log |Λ| > −(16md)2(m+2) log(A1) . . . log(Am) log(B)

Theorem 15 Suppose α, β, γ,A,B,C ∈ A and the ratios of α, β, γ (where they exist) are not roots
of unity. Let ‖I‖ = ‖α‖ + ‖β‖ + ‖γ‖ + ‖A‖ + ‖B‖ + ‖C‖. Then there exist e�ective bounds

N1 ∈ ‖I‖O(1) and N2 ∈ 2‖I‖
O(1)

such that

if Aαn +Bβn = 0, then n ≤ N1

and
if Aαn +Bβn + Cγn = 0 or Aαn +Bnβn−1 + Cβn = 0, then n ≤ N2

Lemma 16 Let a, λ ∈ A and C,χ ∈ A∩R be given where λ is not a root of unity and |χ| < |λ| = 1.
Let α = arg(a) and ϕ = arg(λ). Then there exists an e�ectively computable N ∈ N such that for all

n > N , |C + cos(α+ nϕ)| > |χ|n. Moreover, N ∈ 2||I||
O(1)

where ||I|| = ||λ||+ ||χ||+ ||a||+ ||C||.

Proof. Suppose that |C| ≤ 1 and let b = C + i
√

1− C2 = eiβ , so that C = cos(β). Then b is

algebraic with deg(b) ∈ ||I||O(1), Hb ∈ 2||I||
O(1)

. It is clear that

C + cos(α+ nϕ) = 2 cos
α+ β + nϕ

2
cos

α− β + nϕ

2

Since λ is not a root of unity, by Lemma 15, there exists an e�ective constant N1 ∈ ||I||O(1) such
that if ab±1λn = −1 then n ≤ N1. Therefore, for n > N1, we have cos(α± β + nϕ) 6= 0. Let kn be
the unique integer such that knπ+ (α+ β + nϕ+ π)/2 ∈ [−π/2, π/2). Notice that |kn| < 2n. Then∣∣∣∣cos

α+ β + nϕ

2

∣∣∣∣ =

∣∣∣∣sin(α+ β + nϕ+ π

2
+ knπ

)∣∣∣∣ ≥ |α+ β + nϕ+ (2kn + 1)π|
2π

by the inequality | sin(x)| ≥ |x|/π for x ∈ [−π/2, π/2]. Note that α, β, ϕ and π are logarithms
of algebraic numbers with degree polynomial in ||I|| and height exponential in ||I||. Then by from
Baker's Theorem, there exist e�ective positive constants p1, p2 ∈ ||I||O(1) such that

n > N1 ⇒
∣∣∣∣cos

α+ β + nϕ

2

∣∣∣∣ > (p1n)−p2
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By the same argument with β replaced by −β, there exist e�ective positive constants N2, p3, p4 ∈
||I||O(1) such that

n > N2 ⇒
∣∣∣∣cos

α− β + nϕ

2

∣∣∣∣ > (p2n)−p4

However, since χn shrinks exponentially with n and |χ−1| ∈ 2||I||
O(1)

, it follows that there exists an

e�ective constant N3 ∈ 2||I||
O(1)

such that for all n > N3,

(p1n)−p2(p3n)−p4 > |χn|

Then for all n > max{N1, N2, N3}, we have

|C + cos(α+ nϕ)| > p1p3n
−(p2+p4) > |χn|

as desired.
The remaining case |C| > 1 is easy. If C > 1, we have

C + cos(α+ nϕ) > 1 + cos(α+ nϕ) = cos(0) + cos(α+ nϕ)

and the lemma follows by the above argument with β = 0. Similarly when C < −1. �

Lemma 17 Suppose a1, . . . , am and λ are all algebraic numbers on the unit circle and λ is not a
root of unity. Suppose also c1, . . . , cm ∈ R ∩ A. Let αj = arg(aj) and ϕ = arg(λ). Then it is
decidable whether there exists an integer n such that

cos(αj + nϕ) ≥ cj for all j = 1, . . . ,m

Moreover, the decision procedure's running time is ||I||O(1) where

||I|| =
m∑
j=1

(||aj ||+ ||cj ||) + ||λ||

Proof. Inequalities where cj ≤ −1 may be discarded, as they are satis�ed for all n, whereas
the presence of inequalities with cj > 1 immediately makes the problem instance negative. Now
assuming cj ∈ (−1, 1], each inequality

cos(αj + nϕ1) ≥ cj (7)

de�nes an arc on the unit circle which λn must lie within. Speci�cally, (7) holds if and only if λn

lies on the arc Aj de�ned by

Aj = {z ∈ C : |z| = 1 and h(w1, w2, z) ≤ 0}

where w1 = aj

(
cj − i

√
1− c2j

)
and w2 = aj

(
cj + i

√
1− c2j

)
are the endpoints of the arc, and

h(x, y, z) =

∣∣∣∣∣∣
Re(x) Im(x) 1
Re(y) Im(y) 1
Re(z) Im(z) 1

∣∣∣∣∣∣
is the orientation function.4

4Recall that h(x, y, z) is positive if the points x, y, z (in that order) are arranged counter-clockwise on the complex
plane, negative if they are arranged clockwise, and zero if they are collinear.
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The endpoints of Aj are clearly algebraic and may be computed explicitly in polynomial time in
||I||. Then the intersection A =

⋂
j Aj is also computable in polynomial time. Since λ is not a root

of unity, the set {λn : n ∈ N} is dense on the unit circle. If A is empty, then the problem instance is
negative. If A is a nontrivial arc on the unit circle, then by density, the problem instance is positive.
Finally, A could be a set of at most two points z1, z2 on the unit circle. Then the problem instance
is positive if and only if there exists an exponent n ∈ N such that λn = zi for some i. A polynomial
bound on n then follows from Theorem 15. �

Theorem 18 (Carathéodory) Let v1, . . . , vm ∈ Rd. If v ∈ cone(v1, . . . , vm), then v belongs to the
cone generated by a linearly independent subset of {v1, . . . , vm}.

Lemma 10 Suppose P ⊆ Rd is a two-dimensional polyhedron. Then P =
⋃m
i=1Ai, where m is

�nite and each of Ai is of the form

Ai = {ui + αvi + βwi : Ti(α, β)}

for vectors ui, vi, wi ∈ Rd and predicates Ti(α, β) chosen from the following:

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 (Ai is an in�nite cone)

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ α+ β ≤ 1 (Ai is a triangle)

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ β ≤ 1 (Ai is an in�nite strip)

Furthermore, if we are given a halfspace description of P with length ‖P‖, the size of the represen-
tation of each vector ui, vi, wi is at most ‖P‖O(1).

Proof. Let
P = {x ∈ Rd : Ax ≥ b}

for some A ∈ Rm×d, b ∈ Rd and de�ne the polygon

P ′ = {y ∈ Rd+1 : [ A −b ] y ≥ 0}

so that dim(P ′) = 3 and
P = {x ∈ Rd : ( x 1 )T ∈ P ′}

Notice that P ′ is speci�ed using only homogeneous inequalities, so there exist vectors V = {v1, . . . , vs}
such that P ′ = cone(V ). By scaling if necessary, we can assume the (d + 1)-th component of each
vi is either 0 or 1. Let H denote the hyperplane in Rd+1 where the (d + 1)-th coordinate is 1. By
Carathéodory's Theorem, P ′ may be written as the union of �nitely many cones generated from
linearly independent subsets of V . Let ui be the projection of vi to the �rst d coordinates. Since
dim(P ′) = 3, no more than three elements of V can be linearly independent, so

P ′ =
⋃

(i1,i2,i3)∈I

cone(vi1 , vi2 , vi3)

The intersection H ∩ cone(vi1 , vi2 , vi3) is non-empty if and only if at least one of vi1 , vi2 , vi3 has 1
in the (d+ 1)-th coordinate. Therefore, P is the �nite union of shapes Ai with only two degrees of
freedom:

Ai = {αui1 + βui2 + γui3 : α, β, γ ≥ 0 ∧ Ti(α, β, γ)}
where each predicate Ti is α = 1, or α + β = 1, or α + β + γ = 1. These are precisely the desired
three types of parametric shapes. The descriptions of the vectors involved is polynomially large
because each vector vi is the intersection of d of the halfspaces in Rd+1 which de�ne P ′. �
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C Extended Orbit Problem

We now give the details of our decision procedure for the Extended Orbit Problem, as promised in
Section 3.

C.1 A Master System

In reference [5], we show how to reduce the Orbit Problem (determining whether there exists n ∈ N
such that Anx lies in a vector space V ) to the matrix power problem: determining whether there
exists n ∈ N such that An lies in the span of p1(A), . . . , pd(A) for given polynomials p1, . . . , pd ∈ Q[x].
The reduction takes polynomial time, relies on standard linear algebra and is straightforward to
extend, mutatis mutandis, in order to include linear inequalities on the coe�cients which witness
membership of Anx in the target vector space. Thus, we shall assume that a problem instance of
the Extended Orbit Problem is speci�ed by matrices A ∈ Qm×m, B ∈ (R ∩ A)k×d and polynomials
p1, . . . , pd ∈ Q[x] such that p1(A), . . . , pd(A) are linearly independent, and we have to determine
whether there exist n ∈ N and u = (u1, . . . , ud) ∈ Qd such that

An = u1p1(A) + · · ·+ udpd(A) and Bu ≥ 0 (8)

We now proceed to show a Master System of equations, which is equisatis�able with (8). Let
fA(x) be the minimal polynomial of A over Q and let α1, . . . , αt be its roots, that is, the eigenvalues
of A. These can be calculated in polynomial time. Throughout this paper, for an eigenvalue αi we
will denote by mul(αi) the multiplicity of αi as a root of the minimal polynomial of the matrix.

Fix an exponent n and coe�cients u1, . . . , ud and de�ne the polynomials P (x) =
∑d

i=1 uipi(x)
and Q(x) = xn. It is easy to see that (8) is satis�ed if and only if

Bu ≥ 0 ∧ ∀i ∈ {1, . . . , t}.∀j ∈ {0, . . . ,mul(αi)− 1}.P (j)(αi) = Q(j)(αi) (9)

Indeed, P −Q is zero at A if and only if fA(x) divides P −Q, that is, each αi is a root of P −Q
with multiplicity at least mul(αi). This is equivalent to saying that each αi is a root of P −Q and
its �rst mul(αi)− 1 derivatives.

Thus, in order to decide whether the problem instance is positive, it is su�cient to solve the
system of equations and inequalities (9) in the unknowns n and u1, . . . , ud. Each eigenvalue αi
contributes mul(αi) equations which specify that P (x)−Q(x) and its �rst mul(αi)− 1 derivatives
all vanish at αi.

For example, if fA(x) has roots α1, α2, α3 with multiplicities mul(αi) = i and the target space is
span {p1(A), p2(A)} then the system contains six equations, in addition to the inequalities Bu ≥ 0:

αn1 = u1p1(α1) + u2p2(α1)

αn2 = u1p1(α2) + u2p2(α2)

nαn−12 = u1p
′
1(α2) + u2p

′
2(α2)

αn3 = u1p1(α3) + u2p2(α3)

nαn−13 = u1p
′
1(α3) + u2p

′
2(α3)

n(n− 1)αn−23 = u1p
′′
1(α3) + u2p

′′
2(α3)

Notice also that we may assume without loss of generality that 0 is not an eigenvalue. Otherwise,

its equations in the Master System 0 = u1p
(j)
1 (0)+ · · ·+udp

(j)
d (0) either yield a linear dependence on

u1, . . . , ud, allowing us to eliminate some ui and proceed inductively by solving a lower-dimensional
Master System, or are trivially satis�ed by all u1, . . . , ud and may be dismissed.
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C.2 Equivalence classes of ∼

Next, we focus on the equivalence relation ∼ on the eigenvalues of the input matrix de�ned by

α ∼ β ⇐⇒ α/β is a root of unity

The image of an equivalence class of ∼ under complex conjugation is also an equivalence class of ∼.
If a class is its own image under complex conjugation, then it is called self-conjugate. Classes which
are not self-conjugate are grouped into pairs of conjugate classes which are each other's image under
complex conjugation.

If a class C is self-conjugate, then we can write it as

C = {αω1, αω2, . . . , αωs}

where α is real algebraic and ω1, . . . , ωs are roots of unity. This representation is easily computable
in polynomial time. Similarly, if two classes C1, C2 are each other's image under complex conjugation,
they can be written as

C1 = {αω1, αω2, . . . , αωs}

C2 = {αω1, αω2, . . . , αωs}

where α is algebraic and arg(α) is not a rational multiple of 2π. For an equivalence class C of ∼, write
Eq(C, j) for the set of j-th derivative equations contributed to the Master System by eigenvalues in
C. De�ne also the multiplicity of C to be the maximum multiplicity of an eigenvalue in C.

In our work on the Orbit Problem [5], we analysed the equivalence classes of ∼ in order to derive
a bound on the exponent n. We were able to show that if A has `su�ciently many' eigenvalues
unrelated by ∼ then just the condition An ∈ span{p1(A), . . . , pd(A)} on its own is strong enough
to bound the exponent, regardless of the linear inequalities Bu ≥ 0 which the Extended Problem
imposes on the coe�cients u1, . . . , ud. The following theorem will allow us to focus only on the
cases in which ∼ has `few' equivalence classes, which, whilst trivial in the Orbit Problem, now pose
signi�cantly greater di�culty in the Extended Problem.

Theorem 19 Suppose we are given a problem instance (A,B, p1, . . . , pd) with d ≤ 3 and let ∼ be
the relation on the eigenvalues of A de�ned as above. Write ‖I‖ = ‖A‖+‖p1‖+ · · ·+‖pd‖. Let R be
the sum of the multiplicities of the equivalence classes of ∼. Then if R ≥ d+ 1, then there exists an
e�ectively computable bound N ∈ 2‖I‖

O(1)
such that if An ∈ span({p1(A), . . . , pd(A)}), then n ≤ N .

Moreover, if d = 1, then N ∈ ‖I‖O(1).

C.3 Case analysis on the residue of n

Let L be the least common multiple of all the orders of the ratios of eigenvalues of A which are roots
of unity. Notice that L ∈ 2‖I‖

O(1)
. In the two- and three-dimensional Extended Orbit Problem, we

will perform a case analysis on the residue of n modulo L. We will show that for each �xed residue
of n, we can either solve the problem instance directly or derive an e�ective bound N such that any
witness n to the problem instance must be bounded above by N . Since L is at most exponentially
large, it may be expressed using at most polynomially many bits. Thus, when the relation ∼ has
too few equivalence classes for Theorem 19 to apply, our PSPACE algorithm can guess the residue
of n modulo L. This greatly simpli�es the Master System and either allows us to solve it outright
or to reduce it to an instance of the Simultaneous Positivity Problem.
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We now consider what happens to the equations in Eq(C, j) for a �xed residue of n modulo L.
Let C = {αω1, . . . , αωs} and for simplicity consider Eq(C, 0):

(αω1)
n =

d∑
i=1

uipi(αω1)

. . .

(αωs)
n =

d∑
i=1

uipi(αωs)

This set of equations is equivalent to

αn =
d∑
i=1

ui
pi(αω1)

ωn1
=

d∑
i=1

ui
pi(αω2)

ωn2
= · · · =

d∑
i=1

ui
pi(αωs)

ωns
(10)

For a �xed residue of n modulo L, we see ωn1 , . . . , ω
n
s are also �xed, so each pi(αωj)/ω

n
j is easily

computable. Observe that (10) is equivalent to the conjunction of an equation with a linear system:

αn =
d∑
i=1

ui
pi(αωs)

ωns
and B′u = 0 (11)

where B′ is an (s− 1)× k matrix over A de�ned by

B′j,i =
pi(αωj)

ωnj
− pi(αωj+1)

ωnj+1

Writing ϕi for pi(αωs)/ω
n
s and considering separately the real and imaginary parts of B′u = 0, we

see that (11) is equivalent to

αn = ϕ1u1 + · · ·+ ϕdud and B
′′u = 0

where

B′′ =

[
Re(B′)
Im(B′)

]
is a 2(s−1)×k matrix over R∩A. However, u lies in the nullspace of B′′ if and only if u is orthogonal
to the column space of B′′. Thus, if B′′ has non-zero column rank, then u1, . . . , ud must have a
non-trivial linear dependence ψ1u1 + · · ·+ ψdud = 0 for e�ectively computable ψ1, . . . , ψd ∈ R ∩ A.
Therefore, we can eliminate some coe�cient ui, replacing all of its occurrences in the Master System
(9), and proceed inductively to solve a Master System with dimension d − 1. Therefore, we can
assume that the column rank of B′′ is zero, so the constraint B′′u = 0 is satis�ed by all vectors u.

Thus, for this particular residue of n modulo L, the equations Eq(C, 0) are equivalent to the
single equation αn = ϕ1u1 + · · · + ϕdud. Further, if the equivalence class C is self-conjugate, then
α ∈ R∩A, so we may replace each ϕi with its real part and assume ϕi ∈ R∩A. Similarly, for j > 0
and a �xed residue of n modulo L, the equations Eq(C, j) reduce to the equivalent single equation

n(n− 1) . . . (n− j + 1)αn−j =

d∑
i=1

ui
p
(j)
i (αωs)

ωn−js
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C.4 One-dimensional case of Extended Orbit

In the one-dimensional Extended Orbit Problem, we have to decide whether there exists some n ∈ N
such that An is a non-negative multiple of p1(A). We show this problem is in PTIME.

Begin by observing that if 0 is an eigenvalue of A, then its equations in the Master System are
either satis�ed for all values of n, or for no values of n. In the former case, they can be discarded,
whereas in the latter case, the problem instance is immediately negative. We will now perform a
case analysis on the number of equivalence classes of ∼.

Two or more equivalence classes. When the relation ∼ has at least two equivalence classes,
by Theorem 19, there exists a computable bound N ∈ ||I||O(1) on the exponent n. It su�ces to try
all n ≤ N , which can be done in polynomial time.

One equivalence class, all roots simple. The second case is when ∼ has only one equivalence
class and the eigenvalues α1, . . . , αs of A are all simple in the minimal polynomial of A. The Master
System is then equivalent to

u1 =
αn1

p1(α1)
≥ 0(

αi
αj

)n
=
p1(αi)

p1(αj)
for all i, j

Since all ratios αi/αj are roots of unity, each equation (αi/αj)
n = p1(αi)/p1(αj) is either unsatis�-

able, making the problem instance immediately negative, or equivalent to some congruence in n. If
all equations are satis�able, then An ∈ span{p1(A)} holds if and only if n ≡ t1 mod t2, where t1, t2
are e�ectively computable natural numbers. Moreover, since ∼ has only one equivalence class, it
must necessarily be self-conjugate, so α1 = |α1|ω for some root of unity ω which can be calculated
easily. Since u1 = Re(αn1 )/Re(p1(α1)), we can compute what the sign of Re(αn1 ) should be to ensure
u1 ≥ 0, that is, whether ωn must be 1 or −1 for n to be a witness. This leads to another congruence
in n which we put in conjunction with n ≡ t1 mod t2. The problem instance is positive i� the two
congruences have a common solution.

One equivalence class, some repeated roots. As in the previous case, we take the ratios
of all pairs of equations αni = u1p1(αi) and α

n
j = u1p1(αj), giving(

αi
αj

)n
=
p1(αi)

p1(αj)
for all i, j (12)

Additionally, for each repeated root αi, we take the ratios of its �rst and second equation, of its
second and third equation, and so on, obtaining

αi
n− j

=
p
(j)
1 (αi)

p
(j+1)
1 (αi)

for all j ∈ {0, . . . ,mul(αi)− 1} (13)

If the equations (13) point to di�erent values of n, then the problem instance is negative. If
they point to the same value of n, but n does not satisfy the congruence resulting from (12),
then the problem instance is negative. Otherwise, the problem instance is positive if and only if
u1 = αn1/p1(α1) is positive. The relation ∼ has only one equivalence class, so it must be self-
conjugate, so α1 = |α1|ω for some computable root of unity ω. It is easy to check the sign of ωn, so
the decision method is complete.
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C.5 Two-dimensional case of Extended Orbit

Now suppose we have a problem instance (A,B, p1, p2) and we have to determine whether there
exist an exponent n ∈ N and coe�cients u = (u1, u2) ∈ Q2 such that

An = u1p1(A) + u2p2(A) and Bu ≥ 0

We will perform a case analysis on the equivalence classes of ∼. By Theorem 19, if the sum
of the multiplicities of the equivalence classes of ∼ is at least 3, then there exists an e�ective
bound N ∈ 2‖I‖

O(1)
on n such that for n > N , mere membership of An in span({p1(A), p2(A)} is

impossible, regardless of the constraints on the coe�cients u1, u2. Then an exponent n ≤ N can be
chosen nondeterministically and veri�ed using a PosSLP oracle. We consider the remaining cases.

One simple equivalence class. Suppose ∼ has only one equivalence class and its eigenvalues
are all simple in the minimal polynomial of the matrix. We proceed by case analysis on the residue
of n, as in Section C.3. For a �xed residue, the Master System reduces to

αn = u1ϕ1 + u2ϕ2 and Bu ≥ 0 (14)

where ϕ1, ϕ2 ∈ R ∩ A. Fix the parity of n and therefore assume α > 0 by including its sign into
ϕ1, ϕ2. Now observe that either all values of n satisfy (14), or no value of n does. Indeed, if n is a
witness with coe�cients (u1, u2), then n+1 and n−1 are also witnesses, with coe�cients (u1α, u2α)
and (u1/α, u2/α), respectively. Therefore, it su�ces to try n = 0. This leads to a conjunction of
the equation 1 = u1ϕ1 + u2ϕ2 with inequalities in u1, u2, which is easy to solve.

Two simple equivalence classes. Suppose that ∼ has two equivalence classes and all eigen-
values are simple in the minimal polynomial of the matrix. Proceed by case analysis on the residue
of n as before and reduce the Master System to[

αn

βn

]
=

[
ϕ1 ϕ2

ϕ3 ϕ4

] [
u1
u2

]
and Bu ≥ 0 (15)

If the equivalence classes are both self-conjugate, then ϕ1, . . . , ϕ4, α, β are all real algebraic, other-
wise ϕ3 = ϕ1, ϕ4 = ϕ2 and α = β. If the 2× 2 matrix in (15) is invertible, then premultiplying by
its inverse yields [

u1
u2

]
=

[
ψ1 ψ2

ψ3 ψ4

] [
αn

βn

]
and Bu ≥ 0

where either ψ1, . . . , ψ4 are real, or ψ2 = ψ1 and ψ4 = ψ3. Now observe that u1, u2 satisfy a linear
recurrence formula with characteristic equation (x − α)(x − β) = 0. Then Bu is a vector of linear
recurrence sequences over R ∩ A. Each sequence Si(n) has order at most 2 and is given by

Si(n) = aiα
n + biβ

n

so they all satisfy the same shared recurrence formula. Further, observe that these sequences are
non-degenerate, since α/β is not a root of unity. Therefore, for this particular residue of n, the
problem instance reduces to Simultaneous Positivity for sequences of order at most 2. Finally, if
the 2× 2 matrix in (15) is singular, then there is a non-trivial linear combination of the rows which
equates to zero. Then the same nontrivial combination of αn, βn equals zero. A bound on n follows
from Theorem 15.

One repeated equivalence class. The last remaining case is when there is only one equiv-
alence class of ∼ and it contains at least one eigenvalue repeated in the minimal polynomial of
A. This reduces to Simultaneous Positivity in the same way as the previous case, but the resulting
recurrence sequences have characteristic equation (x−α)2 = 0 and are given by Si(n) = (ai+bin)αn.
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C.6 Three-dimensional case of Extended Orbit

Now we consider an instance of the Extended Orbit Problem with a three-dimensional target space.
For given (A,B, p1, p2, p3), we need to determine whether there exist n ∈ N and u = (u1, u2, u3) ∈ Q3

such that
An = u1p1(A) + u2p2(A) + u3p3(A) and Bu ≥ 0

The strategy is again to show an e�ective bound N such that if there is a witness (n, u1, u2, u3) to
the problem instance, then n < N . By Theorem 19, we need only bound n in the cases when the
multiplicities of the equivalence classes sum to at most 3.

Three simple equivalence classes. If there are exactly three classes, each of multiplicity 1,
one must necessarily be self-conjugate whereas the other two can be either self-conjugate or each
other's conjugates. Either way, this case is analogous to the case of two simple equivalence classes
in the two-dimensional version. After performing a case analysis on the residue of n, we obtain αn

βn

γn

 = Tu and Bu ≥ 0 (16)

where T is a 3× 3 matrix over R∩A. If T is invertible, then we multiply both sides of (16) by T−1
and see that u1, u2, u3 are linear recurrence sequences over R ∩ A with characteristic roots α, β, γ.
Then the left-hand side of each linear inequality Bu ≥ 0 is also an LRS over R∩A and has order 3.
Thus the problem instance reduces to Simultaneous Positivity for order-3 sequences. On the other
hand, if T is singular, then a linear combination of its rows is zero, so the same linear combination
of αn, βn, γn is also zero. Noting that no two of α, β, γ are related by ∼, we obtain a bound on n
from Theorem 15.

Two classes, one simple and one repeated. Next, suppose ∼ has two equivalence classes,
one of multiplicity 1 and the other of multiplicity 2. This is analogous to the previous case. For a
�xed residue of n modulo L, the Master System is equivalent to αn

nαn−1

βn

 = Tu and Bu ≥ 0 (17)

where T is a 3 × 3 matrix over R ∩ A. Now if T is invertible, then we multiply both sides of (17)
by T−1 and see that each of u1, u2, u3 is a linear recurrence sequence over R∩A with characteristic
equation (x − α)2(x − β) = 0. Substituting into the homogeneous linear inequalities Bu ≥ 0, we
now have an instance of the Simultaneous Positivity Problem for LRS of order 3 with a repeated
characteristic root. If T is singular, then a linear combination of αn, nαn−1 and βn must equal zero,
so a bound on n follows from Theorem 15, because the ratio of α and β is not a root of unity.

One simple equivalence class. Suppose now that ∼ has only one equivalence class and it
has multiplicity 1. The situation is analogous to the same case in the two-dimensional version. We
have to �nd n, u1, u2, u3 such that

αn = u1ϕ1 + u2ϕ2 + u3ϕ3 and Bu ≥ 0 (18)

Since everything is real, we observe that either all n are witnesses to the problem instance, or none
are, so it su�ces to consider n = 0, reducing the problem to a conjunction of the linear inequalities
Bu ≥ 0 with the equation 1 = u1ϕ1 + u2ϕ2 + u3ϕ3.
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Two equivalence classes, both simple. Let ∼ have two equivalence classes, both of multi-
plicity 1. For a �xed residue of n modulo L, the Master System is equivalent to[

αn

βn

]
= Tu and Bu ≥ 0

where T is a 2 × 3 matrix. All the numbers involved are algebraic. There are two possibilities:
either α, β and T are in R ∩ A, or α = β and the second row of T is the complex conjugate of the
�rst row.

The dimension of the column space of T is 0, 1 or 2. If the dimension of the column space is 0,
then the Master System is unsatis�able, since T maps everything to zero, whereas αn and βn cannot
be zero. If the dimension of the column space of T is 1, then it is spanned by a single vector (t1, t2).
If at least one of t1, t2 is zero, then the System is unsatis�able, because α, β 6= 0. Otherwise, we can
conclude that (α/β)n = t1/t2. Since α/β is not a root of unity, a bound on n which is polynomial
in ‖I‖ follows by Theorem 15.

Assume therefore that the dimension of the column space of T is 2. We consider the real and
the complex cases separately. First, suppose T, α, β are real. Each of the inequalities Bu ≥ 0
speci�es that (u1, u2, u3) lies in a halfspace Hi of R3. The image of each Hi under T can be the
entire plane R2, a half-plane, a line, or a half-line. Each of these images is easy to calculate in
polynomial time. If for some i, the image THi is a line or a half-line, with de�ning vector (t1, t2),
then by the same reasoning as above, we see (α/β)n = t1/t2 and hence obtain a bound on n from
Theorem 15. Otherwise, we can assume that for all i, THi is a halfplane {(x, y) : Aix + Biy ≥ 0}
with e�ectively computable Ai, Bi ∈ R∩A. We have to determine whether there exists n ∈ N such
that (αn, βn) lies in the intersection of these halfplanes. Noting that Aiα

n +Biβ
n as a function of

n is a linear recurrence sequence over R ∩ A which has order 2, we see that this is now an instance
of the Simultaneous Positivity Problem, so we are done by Theorem 6.

Suppose now that α and β are complex conjugates, and the second row of T is the complex
conjugate of the �rst. We may freely assume that |α| = |β| = 1, since if the inequalities are satis�ed
by (u1, u2, u3), then they are also satis�ed by (u1/|α|n, u2/|α|n, u3/|α|n). The image under T of
each halfspace Hi is a homogeneous cone in the complex plane. The same is true of the intersection
G = ∩iTHi of these cones, which may in fact be computed explicitly. We need to determine whether
there exists n ∈ N such that αn ∈ G. Notice that {αn : n ∈ N} is dense on the unit circle. The
intersection of the unit circle with G could be a single point, or an arc.

Representing real and imaginary parts with variables over R, we construct a sentence τ in the
�rst-order theory of the reals which states that the intersection of G with the unit circle is a single
point. We check the validity of τ , this can be done in polynomial time by Theorem 13. If τ is false,
then G intersects the unit circle in an arc, so by the density of αn on the unit circle, the Master
System is satis�able. Otherwise, the intersection is a single point z ∈ C. Moreover, this point
is e�ectively computable � Renegar's algorithm hinges on quanti�er elimination, and will produce
a quanti�er free formula containing exactly the minimal polynomials of Re(z) and Im(z). The
procedure is polynomial-time, so ‖z‖ ∈ ‖I‖O(1). Now the Master System is satis�able if and only if
there exists n ∈ N such that αn = z. As α and z both have descriptions polynomial in the input
size and α is not a root of unity, we see there exists a polynomial bound on n from Theorem 15.

One repeated equivalence class. Finally, suppose ∼ has a single equivalence class and its
multiplicity is 2. Then for a �xed residue of n modulo L, the Master System is equivalent to[

αn

nαn−1

]
= Tu and Bu ≥ 0
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where α and T are both real algebraic. This is now handled analogously to the previous case for a
real T and reduces to Simultaneous Positivity for LRS with characteristic equation (x− α)2 = 0.
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