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Abstract. We study the Continuous Infinite Zeros Problem, which asks whether a real-valued
function f satisfying a given ordinary linear differential equation has infinitely many zeros on Rx¢.
We consider also the closely related Unbounded Continuous Skolem Problem, which asks whether
f has a zero in a given unbounded subinterval of R>¢. These are fundamental reachability problems
arising in the analysis of continuous linear dynamical systems, including linear hybrid automata
and continuous-time Markov chains.

Our main decidability result is that if the ordinary differential equation satisfied by f is of order at
most 7 or if the imaginary parts of its characteristic roots are all rational multiples of one another,
then the Infinite Zeros Problem is decidable, and moreover, if f has only finitely many zeros, then
an upper bound 7" may be found such that f(¢) = 0 entails ¢ < T'. On the other hand, our main
hardness results is that if the Infinite Zeros Problem is decidable for ordinary differential equations
of order at least 9, then this would entail a major breakthrough in Diophantine Approximation,
specifically, the computability of the Lagrange constant Lo (z) for all real algebraic x.
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1 Introduction

The Continuous Skolem Problem is a fundamental decision problem concerning reachability in continuous-
time linear dynamical systems. The problem asks whether a real-valued function satisfying an ordinary
linear differential equation has a zero in a given interval of real numbers. More precisely, an instance of
the problem comprises an interval I C R>( with rational endpoints and an ordinary differential equation
(ODE)

fN tanaf"V 4 tagf =0 (1)

with the coefficients ao, . . ., a,_1 and initial conditions f(0),..., f(*~1(0) being real algebraic numbers.
Writing f : R>9 — R for the unique solution of the differential equation that satisfies the initial condi-
tions, the question is whether there exists ¢ € I such that f(¢) = 0. It is natural to partition this problem
into two sub-problems based on the boundedness of I: the Bounded Continuous Skolem Problem and the
Unbounded Continuous Skolem Problem, respectively. The nomenclature Continuous Skolem Problem is
based on viewing the problem as a continuous analog of the Skolem Problem for linear recurrence se-
quences, which asks whether a given linear recurrence sequence has a zero term [I0]. Whether the latter
problem is decidable is an outstanding question in number theory and theoretical computer science; see,
e.g., the exposition of Tao |20, Section 3.9].

The characteristic polynomial of the linear differential equation () is
x(z) =a2" +ap_12" + ... +ao.

Let A1,..., Ay be the distinct roots of y. Any solution of () has the form f(t) = Y., P;(t)e?, where
the P; are polynomials with algebraic coefficients that are determined by (and computable from) the
initial conditions of the differential equation, see [2]. We call a function f in this form an exponential
polynomial. The Continuous Skolem Problem can equivalently be formulated in terms of whether an
exponential polynomial has a zero in a given interval of non-negative reals.

Another natural question is whether a given exponential polynomial has infinitely many zeros on an
interval I C R>q. Since the analyticity of exponential polynomials prohibits them from having infinitely
many zeros on any bounded interval, we may always take the interval of interest to be [0, 00). We call this
the Continuous Infinite Zeros Problem: given an ODE () with real algebraic coefficients ag, . . . , an—1 and
real algebraic initial conditions f(0),..., f(*~1)(0), determine whether its unique solution has infinitely
many zeros on Rx>q. This, too, can be seen as a continuous analog of a problem on linear recurrence
sequences, which we call the Discrete Infinite Zeros Problem: given a linear recurrence sequence, determine
whether it has infinitely many zero terms. The decidability of the Discrete Infinite Zeros Problem was
established in [3].

In reference [4], we showed decidability of the Bounded Continuous Skolem Problem subject to
Schanuel’s Conjecture, a unifying conjecture in transcendental number theory, generalising both the
Lindemann-Weierstrass Theorem and Baker’s Theorem on linear independence of logarithms of alge-
braic numbers. In the unbounded case, by way of hardness, we showed that decidability of the Contin-
uous Skolem Problem for ODEs of order 9 would entail major new effectiveness results in Diophantine
approximation.

In the present paper, we study the Continuous Infinite Zeros Problem and establish both decidability
and hardness results. On the decidability front, we will restrict our attention to exponential polynomials
f such that the order of f is at most 7 or the span of {&();) : j = 1,...,m} is a one-dimensional
Q-vector space. We show that for f satisfying this assumption, the Continuous Infinite Zeros Problem is
decidable, and moreover, if f has only finitely many zeros, then there exists an effective upper bound T’
such that all zeros of f are contained in [0,7]. In the context of the Continuous Skolem Problem, this
unconditional reduction from the unbounded case to the bounded case, together with our conditional
decidability result in [4], immediately yields decidability for the Unbounded Continuous Skolem Problem
of order at most 7, subject to Schanuel’s Conjecture. Finally, with regards to hardness, we exhibit a
reduction to show that decidability of the Continuous Infinite Zeros Problem for instances of order at
least 9 would entail major advancements in the field of Diophantine Approximation, analogously to our
hardness result for the Unbounded Continuous Skolem Problem in [4].



2 Mathematical Background

2.1 General Form of a Solution

We recall some facts about the general form of solutions of ordinary linear differential equations. Consider
a homogeneous linear differential equation

FD 4 en fY 4t ef =0 (2)

of order n with characteristic polynomial x. If A is a root of x of multiplicity m, then the function
f(t) = t/e satisfies @) for j = 0,1,...,m — 1. There are n distinct linearly independent solutions of
@) having this form, and these span the space of all solutions.

Let the distinct roots of x be Ay, ..., A;, with respective multiplicities my, ..., my. Write A\; = r; +ia;
for real algebraic numbers r;,a;, j = 1,...,k. It follows from the discussion above that, given real
algebraic initial values of £(0), f'(0), ..., f*=1Y(0), the uniquely defined solution f of (@) can be written
in one of the following three equivalent forms.

1. As an exponential polynomial

where each P; is a polynomial with (complex) algebraic coefficients and degree at most m; — 1.
2. As a function of the form

Ft) =" e (Py(t) cos(azt) + Q;(t) sin(ast))

Jj=1

where the polynomials P;, Q; have real algebraic coefficients and degrees at most m; — 1.

3. As a function of the form
my—

1
f@) = Ze’“jt Z bjat! cos(ajt + ¢j1)
1=0

j=1

where b;; is real algebraic and e*%it algebraic for each j, 1.

We refer the reader to |2, Theorem 7] for details.

2.2 Number-theoretic tools

Recall that a standard way to represent an algebraic number « is by its minimal polynomial M and a
numerical approximation of sufficient accuracy to distinguish « from the other roots of M [5 Section
4.2.1]. Given two algebraic numbers « and 8 under this representation, the Field Membership Problem is
to determine whether 8 € Q(a) and, if so, to return a polynomial P with rational coefficients such that
B = P(«). This problem can be decided using the LLL algorithm, see [5, Section 4.5.4].

Given the characteristic polynomial y of a linear differential equation we can compute approximations
to each of its roots Ay, ..., A, to within an arbitrarily small additive error [I6]. Moreover, by repeatedly
using an algorithm for the Field Membership Problem we can compute a primitive element 6 for the
splitting field of y and representations of Ai,...,\, as polynomials in . Thereby we can determine
maximal Q-linearly independent subsets of {R(};) : 1 < j <n} and {3(};):1<j <n}.

We now move to some techniques from Transcendental Number Theory on which our results depend in
a critical way. The following theorem was originally proven in 1934 by A. Gelfond [6/7] and independently
by T. Schneider [I8/19], settling Hilbert’s seventh problem in the affirmative.

Theorem 1. (Gelfond-Schneider) If a and b are algebraic numbers with a # 0,1 and b & Q, then a® is
transcendental.

Next we state a powerful result due to Baker on linear forms of logarithms of algebraic numbers.



Theorem 2. (Baker [1, Theorem 3.1]) Let aq,...,am be non-zero algebraic numbers with degrees at
most d and heights at most H. Further, let By, ..., Bm be algebraic numbers with degrees at most d and
heights at most B > 2. Write

A= Lo+ Brloglan) + ...+ Bmloglam) .

Then either A =0 or |A| > B~C, where C is an effectively computable number depending only on m,d, H
and the chosen branch of the complex logarithm.

The following lemma, proven in [2], is a useful consequence of Baker’s Theorem:

Lemma 3. ([2, Lemma 13]) Let a,b € RNA be linearly independent over Q and let 1, 2 be logarithms
of algebraic numbers, that is, €1, e*2 € A. There exist effective constants C, N, T > 0 such that for all
t > T, at least one of 1 — cos(at + p1) > C/tN and 1 — cos(bt + @) > C/tN holds.

Another necessary tool is a version of Kronecker’s well-known Theorem in Diophantine Approxima-
tion.

Theorem 4. (Kronecker, appears in [11]) Let A1, ..., A and x1, ..., Ty be real numbers. Suppose that
for all integers uy, ..., Um Such that ui A1 + -+ + UmAm € Z, we also have uix1 + - - + Um A € Z, that
is, all integer relations among the A; also hold among the z; (modulo Z). Then for all € > 0, there exist
p € Z™ and n € N such that [n\j — x; — p;j| < € for all 1 < j < m. In particular, if 1,\1,..., Ay, are
linearly independent over Z, then there exist such n € N and p € Z™ for all xt € R™ and € > 0.

A direct consequence is the following:

Lemma 5. Let ay,...,a, € RN A be linearly independent over Q and let ¢1,...,0m € R. Write
x mod 27 to denote mingez |x+2kw| for any x € R. Then the image of the mapping h(t) : R>o — [0,2m)™
given by

h(t) = ((a1t + ¢1) mod 27, ..., (amt + ©m) mod 27)

is dense in [0,2m)™. Moreover, the set

{h(t)| (a1t + 1) mod 27 = 0}
is dense in {0} x [0, 2m)™~ 1.
Proof. For the first part of the claim, note that the linear independence of 1,a1/2m7, ..., am /27 follows
from the linear independence of aq,...,a, and the transcendence of 7. Then by Kronecker’s Theorem,
the restriction {h(t)|t € N} is dense in [0,27)™, so certainly the whole image of h(¢) must also be

dense in [0,27)™. For the second part, the trajectory h(t) has zero first coordinate precisely when
t = —¢1/a1 + 2n7 for some n € Z, at which times the trajectory is

g(n) e <% + 27171’) = {0} x (n T 28 A od 277)
1

a1 a1 2<j<m

As before, we have that {1,2mas/a1,...,2wa,/a1} are linearly independent over Q from the linear
independence of aq,...,a,, and the transcendence of m, so applying Kronecker’s Theorem to the last
m — 1 components of this discrete trajectory yields the second part of the claim. a

2.3 First-Order Theory of the Reals

We denote by £ the first-order language R(+, x,0, 1, <,=). Atomic formulas in this language are of
the form P(zy,...,2,) = 0 and P(x1,...,2,) > 0 for P € Z[x1,...,2,] a polynomial with integer
coefficients. A set X C R"™ is definable in L if there exists some L-formula ¢(Z) with free variables T
which holds precisely for valuations in X. Analogously, a function is definable if its graph is a definable
set.

We denote by Th(R) the first-order theory of the reals, that is, the set of all valid sentences in the
language L. It is worth remarking that any real algebraic number is readily definable within £ using its



minimal polynomial and a rational approximation to distinguish it from the other roots. Thus, we can
treat real algebraic numbers constants as built into the language and use them freely in the construction
of formulas. A celebrated result due to Tarski [2I] is that the first-order theory of the reals admits
quantifier elimination: that each formula ¢ (Z) in £ is equivalent to some effectively computable formula
¢2(Z) which uses no quantifiers. This immediately entails the decidability of Th(R). It also follows
that sets definable in £ are precisely the semialgebraic sets. Tarski’s original result had non-elementary
complexity, but improvements followed, culminating in the detailed analysis of Renegar [I7].

Decidability and geometrical properties of definable sets in the first-order theory of the structure
Lezp = R(+, x,0, 1, <, =, exp), the reals with exponentiation, have been explored by a number of authors.
Most notably, Wilkie [22] showed that the theory is o-minimal and Macintyre and Wilkie [I3] showed
that if Schanuel’s conjecture is true then the theory is decidable. We will not need the above two results
in this paper, however we use the following, which is very straightforward to establish directly.

Proposition 6. There is a procedure that, given a semi-algebraic set S C R¥ and real algebraic numbers
ai,...,ax, returns an integer T such that {t > 0 : (e®? ... e%t) € S} either contains the interval (T, 00)
or is disjoint from (T,00). The procedure also decides which of these two eventualities is the case.

Proof. Consider a polynomial P € Z[uj,...,u]. For suitably large ¢t the sign of P(e®t,... a%?) is
identical to the sign of the coefficient of the dominant term in the expansion of P(e®?, ... a%?) as an
exponential polynomial. Tt follows that the sign of P(e®?, ... a%?) is eventually constant. It is moreover
clear that one can effectively compute a threshold beyond which the sign P(e®?, ... a®") remains the
same. Since the set S is a defined by a Boolean combination of inequalities P(uq,...,ux) ~ 0, for
~ € {<, =}, the proposition immediately follows.

2.4 Useful Results About Exponential Polynomials
We restate two useful theorems due to Bell et al. [2].

Theorem 7. ([2, Theorem 12]) Exponential polynomials f(t) with no real dominant characteristic roots
have infinitely many zeros.

Theorem 8. ([2, Theorem 15]) Suppose we are given an exponential polynomial whose dominant char-
acteristic roots are simple, at least four in number and have imaginary parts linearly independent over
Q. Then the existence of infinitely many zeros is decidable. Moreover, if there are finitely many zeros,
there exists an effective threshold T' such that all zeros are in [0,T).

3 One Linearly Independent Oscillation

In this section we consider exponential polynomials f(t) = Zle Pj(t)e*it under the assumption that the
span of {(A;) : j =1,...,k} is a one-dimensional Q-vector space. In this case we can use fundamental
geometric properties of semi-algebraic sets to decide whether or not f has finitely many zeros and, if so,

to compute an interval [0, 7] that contains all zeros of f.

Theorem 9. Consider an exponential polynomial f(t) = 2?21 Pj(t)erit, where the span of {S();) :
j=1,...,k} is a one-dimensional Q-vector space. Then the existence of infinitely many zeros of f is
decidable and, if there are only finitely many zeros, then there exists a computable bound T such that all
zeros of f lie in the interval [0,T].

Proof. Write A\; = a; +1ib;, where a;, b; are real algebraic numbers for j =1, ..., k. By assumption there
is a single real algebraic number b such that each b; is an integer multiple of b. Recall that for each
integer n, both cos(nbt) and sin(nbt) can be written as polynomials in sin(bt) and cos(bt) with integer
coefficients. Using this fact we can write f in the form

f(t) = Q(t,e™ ... e cos(bt),sin(bt)),



for some multivariate polynomial ) with algebraic coefficients.

Now consider the semi-algebraic set

2
E = {(u,s) GR’“”:Q(UO,...,uk,%,%) :0} .

Recall that {(%;fz, %) 1S € R} comprises all points in the unit circle in R? except (—1,0). Indeed,

given 6 € (—m, ), setting s := tan(6/2) we have cos(f) = il—ii and sin(f) = % It follows that f(t) =0
and cos(bt) # —1 imply that (¢, et ... e** tan(bt/2)) € E.

By the Cell Decomposition Theorem for semi-algebraic sets [14], there are semi-algebraic sets C1, ..., Cyp, C
RF¥2 Dy,...,D,, € R¥*1 and continuous semi-algebraic functions &;, 5](-1),«5;2) : D; — R such that F
can be written as a disjoint union £ = C1 U...U C,,, where either

C; = {(u,s) €R*?:uc Dj As=E(u)} (3)
or
Cj = {(u,s) e R*? twe D; A€ (w) < s < €7 ()} (4)

Moreover such a decomposition is computable from E. Clearly then
{teR:ft)=0}C |J{teR: (t,e™,...,e™) e D;}UZ,
j=1

where Z := {t € R: cos(bt) = —1}.

The restriction of f to Z is given by f(t) = Q(¢, e™?t, ..., e**t —1,0). Since this expression is a linear
combination of terms of the form t/e"* for real algebraic r, for sufficiently large ¢ the sign of f(t) is
determined by the sign of the coefficient of the dominant term. Thus f is either identically zero on Z (in
which case f has infinitely many zeros) or we can compute a threshold T such that all zeros of f in Z
lie in the interval [0, T].

We now consider zeros of f that do not lie in Z. There are two cases. First suppose that each set
{t € R: (t,emt ... %) € D;} is bounded for j = 1,...,m. In this situation, using Proposition [
we can compute an upper bound T such that if f(¢) = 0 then ¢ < T. On the other hand, if some set
{t € R>q : (t,e™t, ..., e™") € D;} is unbounded then, by Proposition [f, it contains an infinite interval
(T, 00). We claim that in this case f must have infinitely many zeros ¢t > 0. We give the argument in the
case C; satisfies (B]). The argument in case C; satisifes () is similar.

Define n;(t) = &;(t,e™?, ..., e*") for t € (T, o0). Then for t & (T, 00) \ Z,

t) =0 < (t,e™" ... ™" tan(bt/2)) € C;
f() (7 ) ) ) 7
= (t,e™ ... e"") € D; and n;(t) = tan(bt/2).

In other words, f has a zero at each point ¢ € (T, 00) \ Z at which the graph of n; intersects the graph of
tan(bt/2). Since n; is continuous there are clearly infinitely many such intersection points, see Figure [l
This completes the proof. O

4 Decidability Results up to Order 7

We now shift our attention to instances of the Infinite Zeros Problem of low order. Given an exponential
polynomial f(t), we will once again be interested in two questions: does f have infinitely many zeros,
and if not, can we derive a bound T such that all zeros of f lie in the interval [0,7]? In particular,
for exponential polynomials corresponding to differential equations of order at most 7, we settle both
questions, establishing decidability of the Infinite Zeros Problem and a reduction from the Unbounded
Skolem Problem to the Bounded Skolem Problem. Both of these results are independent of Schanuel’s
Conjecture. The latter result, combined with our results on the Bounded Skolem Problem in [4], imme-
diately yields decidability, conditional on Schanuel’s Conjecture, for the Unbounded Skolem Problem of
order up to 7.



Fig. 1. Intersection points of n;(t) and tan(bt/2).

Theorem 10. For differential equations of order at most 7, the Unbounded Skolem Problem reduces to
the Bounded Skolem Problem, and the Infinite Zeros Problem is decidable.

Proof. Sort the characteristic roots of the input matrix according to their real parts, and let r; denote
throughout the j-th largest real part of a characteristic root. We will refer to the characteristic roots of
maximum real part as the dominant characteristic roots. Let also mul()\) denote the multiplicity of A as
a root of the characteristic polynomial of the given ODE.

We will now perform a case analysis on the number of dominant characteristic roots. By Theorem [
it is sufficient to confine our attention to exponential polynomials with an odd number of dominant char-
acteristic roots. Throughout, we rely on known general forms of solutions to ordinary linear differential
equations, outlined in Section 211

Case I. Suppose first that there is only one dominant, necessarily real, root r. Then if we divide f(t)
by e, we have:
f(t)

ert

= Pi(t)+ O (e(”_T)t) ,

as the contribution of the non-dominant roots shrinks exponentially, relative to that of the dominant
root. Thus, for large ¢ > 0, the sign of f(¢) matches the sign of the leading coefficient of P;(¢), so f(t)
cannot have infinitely many zeros. Further, a bound 7' on the zeros of f(¢) can be found easily from the
description of f(¢).

Case II. We now move to the case of three dominant characteristic roots: » and r &+ ia, so that

f t . ro—1
e(rt) = Py (t) + Pa(t) cos(at) + P3(t) sin(at) + O (e( )t) ,
where Py, P2, P3 € (RN A)[x] have degrees d; def deg(Py) < mul(r) — 1 and ds def deg(Py) = deg(Ps3) <
mul(r £ ai).

Case Ila. Suppose d; > do. Now, it is easy to see that for large ¢ the sign of f(¢) matches the sign of
the leading coefficient p; of Py (t):

)

e’r‘ttdl

=p1+O(1/t) + O (e(rz—r)t) ,

so a bound T follows such that f(¢t) = 0 = ¢ < T'. Similarly, if d; > dy, then f(¢t) clearly has infinitely
many zeros. Indeed, if po, p3 are the leading coefficients of P,, Ps, respectively, then we have:

f t : To—T
e”(tgz = po cos(at) + pssin(at) + O(1/t) + O (e( )t)
_ COS(Zt + ()2) + O(l/f) + O (e(rg—r)t)
Pyt 13

where ¢ € [0, 27) with tan(p) = —ps/p2, so f(t) is infinitely often positive and infinitely often negative.

Thus, we can now assume d; = dz. Notice that since the order of our exponential polynomial is no
greater than 7, we must have d; = do < 2.



Case IIb. Suppose that dy = da = 2. Then our function is of the form
f(®)

ert

= t(Acos(at + 1) + B) + (Ccos(at + ¢3) + D) + e~ E,
for constants A, B,C,D,F,a € RN A with ¢ > 0 and €', e € A. In this case, Theorem [I{ follows
from Lemma 2] in Appendix

Case Ilc. Suppose that dy = da = 1, so that

ft)

ot = A1 cos(at + @1) + A2 + €(T27T)tF1 (t),

where A1, As,a € RN A, a > 0, e* € A and Fj(t) is an exponential polynomial with dominant
characteristic root whose real part is 0. Consider first the magnitudes of A; and Aj. If |A;] > |As],
then the term A; cos(at 4+ 1) makes f(t) change sign infinitely often, so f(¢) must have infinitely many
zeros. On the other hand, if |4;| < |As|, then f(¢) is clearly ultimately positive or ultimately negative,
depending on the sign of As, with an effective threshold beyond which f(¢) # 0. The remaining case is
that |A1| = |Az|. Dividing f(t) by As, replacing ¢1 by 1 + 7 if needed and scaling constants by As as
necessary, we can assume the function has the form:

f(t)

ert

=1 —cos(at + 1) + 2R (1),

We now enumerate the possibilities for the dominant characteristic roots of the exponential polynomial
F1(t), that is, the characteristic roots of f(t) with second-largest real part. Since f(¢) has order at most
7, there are the following cases to consider:

— Fi(t) has four simple, necessarily complex, dominant roots, so that

ft)

ert

=1 — cos(at 4 1) + "2 (B cos(bt + @2) + C cos(ct + ¢3)),

where B,C,b,c € RN A with b,c > 0 and e??2,¢** ¢ A. In this case, Theorem follows from
Lemma [I7 in Appendix [Al
— Fi(t) has some subset of one real and two complex numbers as dominant roots, all simple, so that

ft)

i = 1—cos(at +¢1) + e (B cos(bt + pg) + C) + eI R (1),

where B,C,b € RN A, b > 0, ¢2 € A and Fy(t) is an exponential polynomial with dominant
characteristic root whose real part is 0. In this case, Theorem [I0 follows from Lemma [I6lin Appendix

[Al

— Fi(t) has a repeated real and possibly two simple complex dominant roots, so that

ft)

ert

=1 — cos(at 4 1) + "2 (Bcos(bt + @a) + P(t)) 4 " Ey(t),

where B,b € RNA, b > 0, ¢%2 € A, and P(t) € (RN A)[x] is non-constant. Now, if the leading
coefficient of P(t) is negative, then f(¢) will be infinitely often negative (counsider large times ¢ such
that cos(at+ 1) = 1) and infinitely often positive (consider large times ¢ such that cos(at+¢1) = 0),
so f(t) must have infinitely many zeros. On the other hand, if the leading coefficient of P(t) is positive,
then it is easy to see that f(t) is ultimately positive, with an effective threshold.

— Fi(t) has a repeated pair of complex roots, so that

f®)

- =1—cos(at +¢1) + ("2~ (Bt cos(bt 4 ) + C cos(bt + ¢3)),
eT

where B,C,b € RN A, b > 0 and €2, e?3 ¢ A. In this case, Theorem [ follows from Lemma [I8in
Appendix [Al

Case III. We now consider the case of five dominant characteristic roots. Let these be r, r + a7 and
r £ bi. If r + ai are repeated, i.e., mul(r £ ai) > 2, then we must have mul(r) = mul(r + bi) = 1,



since otherwise the order of our exponential polynomial exceeds 7. Then by an argument analogous to
Case Ila above, f(t) must have infinitely many zeros. The situation is symmetric when mul(r 4 bi) > 2.
Similarly, if mul(r) > 2, then mul(r £ ai) = mul(r £ bi) = 1, since otherwise the instance exceeds order
7. Then by the same argument as in Case IIa, f(t) is ultimately positive or ultimately negative, with an
effectively computable threshold T'. Thus, we may assume that all the dominant roots are simple, so the
exponential polynomial is of the form:

ft)

ert

= Acos(at + ¢1) + Bcos(bt 4 ) + C + eI R(t),

where A, B,C,a,b € RN A, a,b > 0, ¥1,e%2 € A and F(t) is an exponential polynomial of order at
most 2 whose dominant characteristic roots have real part equal to 0. In this case, Theorem [I0 follows
from Lemma [[J in Appendix [Bl

Case IV. Finally, suppose there are seven dominant characteristic roots: r, r 4+ ai, r & bi and r + ci.
Since we are limiting ourselves to instances of order 7, these roots must all be simple, and there can be
no other characteristic roots. Thus, the exponential polynomial has the form

ft)

ert

= Acos(at + ¢1) + B cos(bt + ¢2) + C cos(ct + ¢3) + D,

with A, B,C, D,a,b,c € RN A with a,b,c > 0 and €1,...,e*3 € A. In this case, Theorem [I0] follows
from Lemma 20 in Appendix a

Corollary 11. For differential equations of order at most 7, the Continuous Skolem Problem is decidable
subject to Schanuel’s conjecture and the Infinite Zeros Problem is decidable unconditionally.

5 Hardness at Order 9

Diophantine approximation is a branch of number theory concerned with approximating real numbers
by rationals. A central role is played in this theory by the notion of continued fraction expansion, which
allows to compute a sequence of rational approximations to a given real number that is optimal in a
certain well-defined sense. For our purposes it suffices to note that the behaviour of the continued fraction
expansion of a real number a is closely related to the following two constants associated with a. The
Lagrange constant (or homogeneous Diophantine approximation constant) of a is defined by

Loo(a) = inf {c : ’a — E’ < % for infinitely many m,n € Z} .
ml ~m

Following the terminology of Lagarias and Shallit [12], the (homogeneous Diophantine approzimation)
type of a is defined by

L(a):inf{c: ‘a—ﬂ‘ < % for some m,nEZ} .
ml ~m

A real number « is called badly approximable if Lo(a) > 0 (or equivalently, L(a) > 0). The badly
approximable numbers are precisely those whose continued fraction expansions have bounded partial
quotients.

Khinchin showed in 1926 that almost all real numbers (in the measure-theoretic sense) have Lagrange
constant and type equal to zero. However, information on the Lagrange constants and types of specific
numbers or classes of numbers has proven to be elusive. In particular, concerning algebraic numbers,
Guy [8] asks

Is there an algebraic number of degree greater than two whose simple continued fraction expansion
has unbounded partial quotients? Does every such number have unbounded partial quotients?

The above question can equivalently be formulated in terms of whether any algebraic number of degree
greater than two has stricly positive type or whether all such numbers have type 0.

Recall that a real number a is computable if there is an algorithm which, given any rational € > 0 as
input, returns a rational ¢ such that |¢ — x| < e. We can now state the main result of the section.



In this section, we will show that a decision procedure for the Infinite Zeros Problem would yield the
computability of L (a) for alla € RNA.

Fix positive a € RN A, ¢ € Q and define the functions:

f1(t) = et(1 —cos(t)) + t(1 — cos(at)) — csin(at),
Fo(t) X et(1 — cos(t)) + (1 — cos(at)) + csin(at),
def t

It is easy to see that f1(¢) and fa(t) are exponential polynomials of order 9, with six characteristic roots:
three simple (1 and 1 £ ¢) and three repeated (0 and 4ai). Thus, the problem of determining whether
£;(¢) has infinitely many zeros is an instance of the Infinite Zeros Problem. Moreover, it is easy to check
that f(t) has infinitely many zeros if and only if at least one of f1(¢) and f2(¢) has infinitely many zeros.

We will first state two lemmas which show a connection between the existence of infinitely many zeros
of f(t) and the Lagrange constant of a. We defer the proofs to Appendix [El

Lemma 12. Fiz a € RNA and g,¢c € Q with a,c > 0 and ¢ € (0,1). If f(t) = 0 for infinitely many
t >0, then Loo(a) < ¢/272%(1 —¢).

Lemma 13. Fiza € RNA and e,¢ € Q with a,c > 0 and € € (0,1). If Loo(a) < ¢(1 — €)/2n2%, then
f(t) =0 for infinitely many t > 0.

We now use the above lemmas to derive an algorithm to compute Lo (a) using an oracle for the
Infinite Zeros Problem, establishing our central hardness result:

Theorem 14. Fiz a positive real algebraic number a. If the Infinite Zeros Problem is decidable for
instances of order 9, then Loo(a) may be computed to within arbitrary precision.

Proof. Suppose we know Lo (a) € [p, q] for non-negative p,q € Q. Choose ¢ € Q with ¢ > 0 and ¢ € Q
with e € (0,1) such that
c(l—¢) c
<
272 212(1 —¢)

p < <q.

Write A %' ¢(1—¢)/272 and B %' ¢/272(1—¢). Use the oracle for the Infinite Zeros Problem to determine
whether at least one of f1(t), f2(¢) has infinitely many zeros. If this is the case, then f(t) also has infinitely
many zeros, so by Lemma[l2 L. (a) < B and we continue the approximation recursively on the interval
[p, B]. If not, then L(a) > A by Lemma [[3] so we continue on the interval [A, ¢]. Notice that in this
procedure, one can choose ¢, € at each stage in such a way that the confidence interval shrinks by at least
a fixed factor, whatever the outcome of the oracle invocations. It follows therefore that L., (a) can be
approximated to within arbitrary precision. a

A One dominant oscillation

Lemma 15. Let A, B,a,b,7 € RN A where a,b,7 > 0. Let ©1,02 € R be such that e’1,e*?? € A.
Suppose also that a,b are linearly dependent over Q and that whenever 1 — cos(at + 1) = 0, it holds that
Acos(bt + ¢2) + B > 0. Define the function

f(t) =1 —cos(at + 1) + e "(Acos(bt + @2) + B).
Then f(t) = 2(e™"), that is, there exist effective constants T > 0 and ¢ > 0 such that for t > T, we
have f(t) > ce™".

Proof. The case of A = 0 is easy: by the premise of the Lemma, we have B > 0 and then f(t) > Be™"" for
all t. Thus, assume A # 0 throughout. Let the linear dependence between a, b be given by any —bngy =0
for n1,n9 € N coprime and let C be the equivalence class of —¢1/a modulo 27 /a, that is,

e - 2
Cd:f{u kEZ}.

a




We will refer to C as the set of critical points throughout.

It is clear that at critical points, we have 1 — cos(at + ¢1) = 0. Moreover, the linear dependence of
a, b entails that for each fixed value of (cos(at),sin(at)), there are only finitely many possible values for
(cos(bt), sin(bt)). Indeed, we have

et € {we'™ | w an no-th root of unity},

so in particular, for ¢ € C, we have

et € {we ™% |w an ny-th root of unity}.

Thus, the possible values of (cos(bt),sin(bt)) for ¢ critical are algebraic and effectively computable. Let

MY min{A cos(bt + p2) + B|t € C}. By the premise of the Lemma, we have M > 0.

Let t1,t2,...,t;,... be the non-negative critical points. Note that by construction we have |t;—t;_1| =
27 /a. For each t;, define the critical region to be the interval [t; — §,t; + 6], where

def M
- 2A|b°

Let g(t) def Acos(bt + ¢2) + B and notice that ¢'(t) < |AJb everywhere. We first prove the claim for
t inside critical regions: suppose ¢ lies in a critical region and let j minimise [t — ¢;| < . Then by the
Mean Value Theorem, we have

M
l9(8) = 9(t;)] < [t — t;]|Alb < 6] Ab = —,
SO

M
2

M
> 3
-2

g(t) = g(t;) —
whence f(t) > e "tg(t) > Me™"t/2 = 2(e™ ).
Now suppose ¢ is outside all critical regions and let j minimise |t — ¢;|. Since the distance between
critical points is 27/a by construction, we have a|t —t;| < 7. Therefore,
la(t —t;)> _ (ad)®  a*M?

2 Z Ty T 8| A|2b2 >0

1 —cos(at + ¢1) = 1 — cos(at — at;) >

Thus, there exists a computable constant D > 0 such that f(t) =1 — cos(at + ¢1) + e "g(t) > D for all
large enough t outside critical regions.

Combining the two results, we have f(t) = £2(e”"") everywhere. O

Lemma 16. Let C,D,a,b,r1,r2 be real algebraic numbers such that a,b,r1,72 > 0 and C,D are not
both 0. Let also ¢1,p2 € R be such that €°1,e??2 € A. Define the exponential polynomial f(t) by

f(t) =1 —cos(at + 1) + e " (C cos(bt + @3) + D) + e~ M1+ p(3),

Here F(t) is an exponential polynomial whose dominant characteristic roots are purely imaginary. Sup-
pose also that f(t) has order at most 7. Then it is decidable whether f(t) has infinitely many zeros.
Moreover, if f(t) has only finitely many zeros, then there exists an effectively computable threshold T
such that all zeros of f(t) are contained in [0,T)].

Proof. Notice that the dominant term of f(¢) is always non-negative, so the function is positive for
arbitrarily large ¢. Thus, f(¢) = 0 for some ¢ if and only if f(¢) < 0 for some ¢, and analogously, f(t) has
infinitely many zeros if and only if f(¢) < 0 infinitely often. We can eliminate the case |D| > |C|, since
then f(t) is clearly ultimately positive or oscillating, depending on the sign of D. Thus, we can assume
|D| < [C].

We now consider two cases, depending on whether a/b € Q.

Case I. Suppose first that a,b are linearly independent over Q. By Lemma B the trajectory (at 4+
1 mod 27, bt + o mod 27) is dense in [0,27)2, and moreover the restriction of this trajectory to at +
1 mod 27 = 0 is dense in {0} x [0, 27).



If |D| < |C|, then we argue that f(¢) is infinitely often negative, and hence has infinitely many zeros.
Indeed, |D| < |C| entails the existence of a non-trivial interval I C [0, 27) such that

t mod 27 € I = Ccos(bt + ¢2) + D < 0.
What is more, we can in fact find € > 0 and a subinterval I’ C I such that
t mod 27 € I' = Ccos(bt + p2) + D < —e.

Thus, by density, 1 —cos(at+¢1) = 0 and C cos(bt+p2)+D < —e will infinitely often hold simultaneously.
Then just take ¢t large enough to ensure, say, |e" ™! F(¢)| < €/2 at these infinitely many points, and the
claim follows.

Thus, suppose now |C| = |D|. Replacing 2 by 2 + 7 if necessary, we can write the function as:
f(t) =1 —cos(at + ¢1) + De (1 — cos(bt + ¢2)) 4+ e~ THTDR (),

As a,b are linearly independent, for all ¢ large enough, 1 — cos(at + ¢1) and 1 — cos(bt + ¢2) cannot
simultaneously be ‘too small’. More precisely, by Lemma [B] there exist effective constants E,T, N > 0
such that for all ¢ > T', we have

1 —cos(at + ¢1) > E/t" or 1 — cos(bt + @) > E/tV.

Now, if D < 0, it is easy to show that f(¢) has infinitely many zeros. Indeed, consider the times ¢ where
the dominant term 1 — cos(at + ¢1) vanishes. For all large enough such ¢, since =¥ shrinks more slowly
than e~"2*, we will have

f(t) = e ™t D(1 — cos(bt + ¢2)) + e~ THTER (1)
<e Y EDtN £ e (1))
< e*“t%EDfN

<0,

so f(t) has infinitely many zeros. Similarly, if D > 0, we can show that f(¢) is ultimately positive. Indeed,
for all ¢ large enough, we have
f(t) > e ™ D(1 — cos(bt 4 p3)) + e~ 2R ()
> e MDELN 4 e (MR
> 0,

or

f(t) >1-— Cos(at + 901) + e—(T1+r2)tF(t)
> Et N + 67(T1+T2)tF(t)
> 0.

Therefore, f(t) has only finitely many zeros, all occurring up to some effective bound 7.

Case II. Now suppose a,b are linearly dependent. By the premise of the Lemma, the order of F'(t)
is at most 2 (in fact, at most 1 if D # 0). However, by Theorem [ the claim follows immediately for
all cases in which the characteristic roots of F'(t) are all real or complex but with frequencies linearly
dependent on a. Thus, the only remaining case to consider is the function

f(t) =1 —cos(at + 1) + e "t C cos(bt + ) + e~ THDH cos(ct + 3),

where H,c e RN A, ¢>0and a/c € Q.



As explained at the beginning of the proof of Lemma [T due to the linear dependence of a,b over
Q, when 1 — cos(at 4+ ¢1) = 0, there are only finitely many possibilities for the value of C cos(bt + ¢2),
each algebraic, effectively computable and occurring periodically. If at least one of these values is non-
positive, then by the linear independence of a, ¢ over Q, we will simultaneously have 1 —cos(at+ 1) = 0,
C cos(bt+¢2) < 0 and H cos(ct+¢3) < 0 infinitely often, which yields f(¢) < 0 infinitely often and entails
the existence of infinitely many zeros. On the other hand, if at the critical points 1 — cos(at + p1) = 0
we always have C cos(bt + p2) > 0, then by Lemma [[5 we have

1 — cos(at + ¢1) + e " C cos(bt + p2) = 2(e™ ™),

whereas obviously
e~ (AT cos(ct + p3)| = O(e” M),

An effective threshold T follows such that for ¢ > T, f(t) is ultimately positive. O

Lemma 17. Let A, B,a,b,c,r be real algebraic numbers such that a,b,c,r > 0, A,B # 0. Let also
©1, 92,3 € R be such that €1, e??2 "3 € A. Define the exponential polynomial f(t) by

f(t) =1 —cos(ct + @3) + e " (Acos(at + 1) + B cos(bt + ©3)).

Then it is decidable whether f(t) has infinitely many zeros. Moreover, if f(t) has only finitely many
zeros, then there exists an effective threshold T such that all zeros of f(t) are contained in [0,T].

Proof. We argue the function is infinitely often positive and infinitely often negative by looking at the
values of ¢ for which the dominant term 1 — cos(ct + p3) vanishes. This happens precisely at the times
t = —(p3 + 2km)/c for k € Z, giving rise to a discrete restriction of f:

5 27b b
g(k) def orees (&”)k (Acos (k;ﬂ I 501> + Bcos < L 502)>
c c ¢ ¢

This is a linear recurrence sequence over R of order 4, with characteristic roots e2™("+i@/¢) and e
In particular, it has no real dominant characteristic root. It is well-known that real-valued linear recur-
rence sequences with no dominant real characteristic root are infinitely often positive and infinitely often
negative: see for example [9, Theorem 7.1.1]. Therefore, by continuity, f(¢) must have infinitely many
Zeros. O

27 (r+ib/c) .

Lemma 18. Let A, B, a,b,r be real algebraic numbers such that a,b,r > 0, A # 0. Let also p1, p2, 3 € R
be such that €'#1,e'2 "3 € A. Define the exponential polynomial f(t) by

f(t) =1 —cos(at + ¢1) + e " (At cos(bt + p2) + B cos(bt + 3)).

Then it is decidable whether f(t) has infinitely many zeros. Moreover, if f(t) has only finitely many
zeros, then there exists an effective threshold T such that all zeros of f(t) are contained in [0,T].

Proof. If a/b € Q, then the claim follows immediately from Theorem [l If a/b ¢ Q, then by Lemma [5]
it will happen infinitely often that 1 — cos(at + 1) = 0 and At cos(bt + ¢2) < —|A|t/2. Then clearly
f(t) < 0 infinitely often. Since f(¢) > 0 infinitely often as well, due to the non-negative dominant term
1 — cos(at + 1), it follows that f(t) has infinitely many zeros. O

B Two dominant oscillations

Lemma 19. Let A, B,C,a,b,r be real algebraic numbers such that a,b,r > 0, a # b and A, B,C # 0.
Let also @1, 92 € R be such that €91, e**2 € A. Define the exponential polynomial f(t) by

f(t) = Acos(at + ¢1) + Beos(bt + p3) + C + e " F(t).

where F(t) is an exponential polynomial whose dominant characteristic roots are purely imaginary. Sup-
pose also f(t) has order at most 8. It is decidable whether f(t) has infinitely many zeros, and moreover,
if f(t) has only finitely many zeros, then there exists an effective threshold T such that all zeros of f(t)
are contained in [0,T].



Proof. If the frequencies a, b of the dominant term’s oscillations are linearly independent over Q, then
the claim follows immediately by Theorem[8l Therefore, assume na —mb = 0 for some n, m € NT. Notice
that a # b guarantees n # m. We perform the change of variable t — tm/a, so that:

f(t) = Acos(mt + ¢1) + Bcos(nt + ) + C + e "™ F(tm/a).
Using the standard trigonometric identities, we express the dominant term as a polynomial in sin(¢), cos(t):
f(t) = P(sin(t), cos(t)) + e "™/ F(tm/a),

where P € (RN A)[z,y] has effectively computable coefficients. It is clear that the dominant term is
periodic. It is immediate from the definition of exponential polynomials and the premise of the Lemma
that F(tm/a) def F5(t) is an exponential polynomial in ¢, of the same order as F(t), also with purely

imaginary dominant characteristic roots. Let «(t) def P(sin(t), cos(t)), r2 def rm/a > 0 and S(t) def

e TR (tm/a) = e T2 Fy(t).

We are now interested in the extrema of P(sin(t), cos(t)). Let

M min P(z,y) = min a(t),

z24y2=1 t20
def
M, = A P(z,y) = r?zaga(t).

We can construct defining formulas ¢1(u), ¢2(u) in the first-order language £ of real closed fields for
M, Ms, so that each ¢;(u) holds precisely for the valuation u = M;. Then performing quantifier elimi-
nation on these formulas using Renegar’s algorithm [I7], we convert ¢, ¢2 into the form

¢j(u) = \/ \ Pir(u) ~i 0,
l k

where P ) are polynomials with integer coefficients and each ~jj is either < or =. Now ¢;(u) must
have a satisfiable disjunct. Using the decidability of the theory Th(R), we can readily identify this
disjunct. Moreover, since ¢;(u) has a unique satisfying valuation, namely v = M, this disjunct must
contain at least one equality predicate. It follows immediately that My, Mo are algebraic. Moreover,
we can effectively compute from ¢;(u) a representation for M, consisting of its minimal polynomial
and a sufficiently accurate rational approximation to distinguish M; from its Galois conjugates. By an
analogous argument, the pairs (sin(t), cos(t)) at which P(sin(¢), cos(t)) achieves the extrema My, My are
also algebraic and effectively computable.

We now perform a case analysis on the signs of M; and Mo.

— First, if 0 < M7 < My, then f(t) cannot have infinitely many zeros: if ¢ is large enough to ensure
|B(t)] < My, we have f(t) > 0.

— Second, if M7 < Ms> < 0, then by the same reasoning, the function will ultimately be strictly negative.

— Third, if M; < 0 < Ma, then f(¢) oscillates around 0: for all ¢ such that a(t) = M; < 0 and large
enough to ensure |B(t)| < |Mi]|, we will have f(t) < 0, and similarly, for large enough ¢ such that
a(t) = Ms > 0, we will have f(t) > 0, so the function must have infinitely many zeros.

— Next, we argue that the case M; = My = 0 is impossible. Indeed, if M; = My = 0, then «(t)
P(sin(t), cos(t)) is identically zero, and the same holds for all derivatives of a(t). Thus, from «’(t)
/" (t) = 0, we have

= —Amsin(mt + p1) — Bnsin(nt 4 ¢2),
0 = Am?sin(mt + ¢1) + Bn®sin(nt + @2).

Multiplying the first identity through by m? and summing, we have

Bnsin(nt 4 ¢9)(n* —m?) = 0.
By the premise of the Lemma, B # 0, so n(n —m)(n +m) = 0, which is a contradiction.
— Finally, only the symmetric cases M1 < Ms = 0 and 0 = M; < Ms remain. Without loss of generality,
by replacing f(t) by —f(¢) if necessary, we need only consider the case 0 = My < Ma.



Thus, assume 0 = M; < M;. We now move our attention to the possible forms of Fy(t). Since f(t)
has order at most 8, it follows that F(t) has order at most 3. Thus, there are three possibilities for the
set of dominant characteristic roots of Fy(t): {0}, {zic}, or {0, +ic}, for some positive ¢ € RN A. We
consider each of these cases in turn.

First, if F5(t) only has the real dominant eigenvalue 0, then F5(¢) is ultimately positive or ultimately
negative, depending on the sign of the most significant term of F3(t), with an effectively computable
threshold. Ultimate positivity of Fz(t) entails ultimate positivity of f(t) as well, since P(sin(¢), cos(t)) > 0
everywhere, whereas an ultimately negative F5(t) makes f(¢) change sign infinitely often.

Second, assume the dominant characteristic roots of Fy(t) are {+ic}, so that
f(t) = P(sin(t), cos(t)) + e~ "' (D cos(ct + ¢3) + Ee~"?")

for some 73 > 0 and ¢3 € R such that e?** € A. Without loss of generality, we can assume ¢ ¢
Q, since otherwise, we are done by Theorem [@ But by Lemma [Bl it will happen infinitely often that
P(sin(t),cos(t)) = 0 and D cos(ct + @3) < —|D|/2, say. For large enough such t, |[Ee~("2*73)t| < |D| /4,
so we conclude that f(t) is infinitely often negative, and hence has infinitely many zeros.

Third, assume the dominant characteristic roots of Fy(t) are {0, £ic}, so that

f(t) = P(sin(t),cos(t)) + e~ "' (D cos(ct + ¢3) + E).

We again assume ¢ ¢ Q, since otherwise the claim follows from Theorem [ Let Mj f g |D| =

ming>o F(t). If M3 > 0, then f(¢) clearly has no zeros. If M3 < 0, then there exists a non-trivial interval
I C [0,27) such that if ¢t + @3 mod 27 € I, then Fz(t) < 0. Since ¢ ¢ Q, Lemma [l guarantees that
F5(t) < 0 = P(sin(t), cos(t)) happens infinitely often, so f(¢) must have infinitely many zeros. Finally,
if M3 = 0, we argue that f(¢) is ultimately positive. Indeed, since P(sin(¢),cos(t)) and F5(¢) are both
non-negative everywhere, f(¢) = 0 can only happen if P(sin(t),cos(t)) = D cos(ct + ¢3) + E = 0. This,
however, would entail e®* € A and e’ € A, which contradicts the Gelfond-Schneider Theorem, since
¢ ¢ Q. Thus, we conclude f(t) has no zeros. O

C Three dominant oscillations

Lemma 20. Let A, B,C,a,b,c be real algebraic numbers such that a,b,c > 0 and A, B,C # 0. Let also
©1, P2, 03 € R be such that €1, €2 3 € A. Define the exponential polynomial f(t) by

f(t) = Acos(at + ¢1) + Bcos(bt + ¢2) + C cos(ct + ¢3) + D.

It is decidable whether f(t) has infinitely many zeros, and moreover, if f(t) has only finitely many zeros,
then there exists an effective threshold T such that all zeros of f(t) are contained in [0,T].

Proof. The argument consists of three cases, depending on the linear dependencies over QQ satisfied by
a,b and c.

Case I. First, if a, b, c are linearly independent over Q, then the claim follows directly from Theorem

Bl

Case II. Second, suppose that a, b, ¢ are all rational multiples of one another:

k
b= ﬁa, ¢ = —a where n,m, k,l € NT.
m l

We make the change of variable ¢ — tml to obtain:

f(&) = Acos((at)ml + ¢1) + Bcos((at)nl + ¢2) + C cos((at)km + ¢3) + D = P(sin(at), cos(at)),
where P € Alx,y] is a polynomial obtained using the standard trigonometric identities. It is now clear
that f(t) is periodic, so it has either no zeros or infinitely many zeros. Let

def . .
M, = p = t
1= Jmin Plz,y) = min f(2),

def
Moy = P = t).
2 = max (z,v) max f(t)



Using the same reasoning as in Lemma [T9] we see that My, My are algebraic and effectively computable:
simply construct defining formulas in the first-order language £ of real closed fields, and then perform
quantifier elimination using Renegar’s algorithm [I7]. Then f(¢) clearly has infinitely many zeros if and
only if M7 <0< Mos.

Case III. Finally, suppose that a,b, c span a Q-vector space of dimension 2, so that a, b, ¢ satisfy a
single linear dependence am + bn + ¢p = 0 where m, n, p € Z are coprime. At most one of the ratios a/b,
a/c and b/c is rational (otherwise we have dim span{a,b,c} = 1), so assume without loss of generality

that a/c ¢ Q and b/c & Q.
Define the set

T &f {ze(0,2m) |Vu e Z® u-(a,bc) €2nZ = u-x € 2nZ}
= {(z1,22,23) € [0,27)® | may + nas + prs = 0 € 27Z}

Notice that if may + nxs + prs = 2k7 for x1, 29, 23, then k < |m| + |n| + |p|, so T partitions naturally
into finitely many subsets: T = Uivzl T}, where

T}, def {(.’L‘l,.TQ,ZEg) € [0,27r)3 ’ mry + nry — pr3 = 2k:7r} .

Consider the trajectory h(t) def {(at, bt, ct) mod 27 |t > 0}. Define also the sets R def {h(2km) |k € N}

and H % {h(t)|t > 0}. Because of the linear dependence satisfied by a,b,c, it is easy to see that

R C H CT. By Kronecker’s Theorem, R is a dense subset of T, so clearly H must be a dense subset of
T as well.

Now define the function
F(SCl,SCQ,SCg) d:ef ACOS(ZL'l + 901) + BCOS(ZL'Q + (PQ) + CCOS(ZL'Q, + (pg) + D,

so that the image of f(t) is exactly {F(z1,x2,23)| (21,22, 23) € H}. Let also the extrema of F over T
be:

def .
M1 = InTln F(xl, $2,.T3),

def
My = max F(x1,x2, x3).
T

Both of these values are algebraic and can be computed using quantifier elimination in the first-order
language £ of the real numbers: just use separate variables for cos(z;),sin(x;) and apply the standard
trigonometric identities to convert the linear dependence on x1,x2, s into a polynomial dependence
between cos(z;), sin(z;).

Now, by the density of H in T, if My < 0 < Ma, then f(¢t) must clearly be infinitely often positive
and infinitely often negative, so it must have infinitely many zeros. The case M; < 0 = M5 is symmetric
to 0 = My < My (just replace f and F' by —f and —F, respectively), so without loss generality, we can
assume 0 = M; < Ms. In this case, we argue that f(¢) has no zeros, that is, even though F' vanishes on
some points in T, none of these points appear in the dense subset H. Indeed, consider the set

Z % {(cos(z1),sin(z1), .. ., cos(xs), sin(zs)) | (21,22, 23) € T, F(z1, 22, 23) = 0} .

Note that Z is clearly semi-algebraic, as one can directly write a defining formula in £ from F(z1, 22, z3) =
0 and mx1 +nxe+pxs € 27Z. Moreover, by the Zero-Dimensionality Lemma [I5, Lemma 10], the function
F(x1,x9,x3) achieves its minimum M; = 0 at only finitely many points in Ty, for each k. Since T is
the union of finitely many Ty, we immediately have that Z is finite. By the Tarski-Seidenberg Theorem,
projecting Z to any fixed component will also give a finite, semi-algebraic subset of R, that is, a finite
subset of A. Thus, we have shown that if F(xq,72,23) = 0, then ¢ € A for all j = 1,2,3. Now if
f(t) = 0 for some t > 0, then we must have e e°® € A, which by the Gelfond-Schneider Theorem
entails a/c € Q, a contradiction. O



D One repeated oscillation

Lemma 21. Let A, B,C, D, a,r be real algebraic numbers such that a,r > 0 and A #£ 0. Let also p1, @2 €
R be such that e e**2 € A. Define the exponential polynomial f(t) by

f(t) =t(Acos(at + ¢1) + B) + (C cos(at + ¢2) + D) + e " F(t)

where F(t) is an exponential polynomial with purely imaginary dominant characteristic roots. Suppose
also that f(t) has order at most 8. It is decidable whether f(t) has infinitely many zeros, and moreover,
if f(t) has only finitely many zeros, then there exists an effective threshold T' such that all zeros of f(t)
are contained in [0,T].

Proof. Since f(t) has order no greater than 8, it follows that F'(¢) has order at most 2. Therefore, F(t)
must be of the form E cos(bt 4 3) for some E,;b € RN A, b > 0, such that a/b € Q, and some @3 such
that e%¥s € A, since otherwise the imaginary parts of the characteristic roots of f(t) are pairwise linearly
dependent over QQ, so our claim is proven immediately by Theorem

Consider first the magnitudes of A and B. If |A| > |B|, then the term tA cos(at + ¢1) makes f(¢)
change sign infinitely often, whereas if |B| > |A|, then for ¢ large enough, the term ¢tB makes f(t)
ultimately positive or ultimately negative, depending on the sign of B. Thus, we can assume |A| = |B).
Dividing f(t) by B, and replacing @1 by @1 + 7 if necessary, we can assume the function has the form:

f(t) =t(1 — cos(at + ¢1)) + (C cos(at + 2) + D) + e " E cos(bt + ©3).

Considering the dominant term, it is clear that f(¢) is infinitely often positive. Let «(t) def t(1— cos(at +
01)), BE) Y Ccos(at + pa) + D and y(t) & et E cos(bt + ¢3).

We now focus on the sign of the term 3(¢) at the positive critical times t; def —p1/a+2jm/a (j € Z)

when 1 — cos(at + 1) vanishes. Notice that 5(t;) = C cos(p2 — 1)+ D LG U independent of j. First,
if M < 0, then for all ¢; large enough, f(¢;) < 0, so the function must have infinitely many zeros. Second,
if M = 0, then by the linear independence of a,b and Lemma [ we have a(t;) = (t;) = 0 > ~(¢;) for
infinitely many ¢;, so we can conclude f(t) has infinitely many zeros.

Finally, suppose M > 0. We will prove that f(¢) is ultimately positive. For each t;, define the critical
region [t; — &;,t; + J;], given by

5. def 2/|C| + | D]
7 a\/tj,1 '

From here onwards, we only consider t large enough for any two adjacent critical regions to be disjoint.
The argument consists of two parts: first we show f(¢) > 0 for all large enough t outside all critical
regions, and then we show f(t) > 0 for large enough ¢ in a critical region.

Suppose ¢ is outside all critical regions and let j minimise |t — ¢;|. Since the distance between critical
points is 27 /a by construction, we have alt — ¢;| < w. Therefore,

t—t;)?
u <1 —cos(at — at;) =1 — cos(at + ¢1).



On the other hand, we have the following chain of inequalities:

la(t —t;)]?
2
>{|t—tj|>d;}
(ad;)?

2
= { definition of ¢; }
2(IC1+ D))
t]‘,1
> { by t> tj_l }
2(|C1 + D))
t
> { triangle inequality and |cos(z)| <1 }
|C|+|D| |Ccos(at + p2) + D|
T ¢ '

Combining, we have
a(t) + B(t) > a(t) — |B(t)| = t(1 — cos(at + 1)) — |C cos(at + @2) + D| > |C| + | D).

Thus, if ¢ is large enough to ensure |y(t)| < |C| 4 |D|, we have f(t) > 0 outside critical regions.

For the second part of the argument, we consider ¢ in critical regions. Notice that the values of 5(¥)
on [t; —d;,t; + ;] are independent of the choice of ¢;. Moreover, we have §(t;) = M > 0, so there exists
some € > 0 such that for all ¢t € [t; — €,t; + €], we have §(t) > M/2, say. Now for any critical point ¢;
chosen large enough, we will have [t; — d;,t; + 6;] C [t; — €,t; + €], so 5(t) > M/2 on the entire critical
region. Let also ¢; be large enough so that for any ¢ in the critical region, we have |y(t)| < M/2. Then
we have f(t) = a(t) + B(t) + v(t) > B(t) — |y(t)| > 0, completing the claim. O

E Proofs of Hardness Lemmas

Throughout this section, let
F(t) € et(1 — cos(t)) + (1 — cos(at)) — ¢| sin(at)].

Lemma 12. Fixa € RNA and ¢,¢c € Q with a,¢c > 0 and € € (0,1). If f(t) = 0 for infinitely many
t >0, then Loo(a) < ¢/272(1 —&).

Proof. Suppose f(t) = 0 for infinitely many ¢. Clearly, this also entails f(¢) = 0 for infinitely many ¢ > T,
for any particular threshold 7' > 0. (Indeed, f(¢) = min{ f1(¢), f2(¢)} for exponential polynomials f; and
f2 given at the beginning of Section Bl Thus, on any bounded interval, f has no more zeros than f; and
f2 combined, i.e., only finitely many, by the analiticity of fi and f5.) We will show that T can be chosen
in such a way that every zero of f(t) on [T, 00) yields a pair (n,m) € N? which satisfies the inequality

c
‘a m‘ 2m2m2(1 — ¢€)
This is sufficient, since infinitely many zeros of f yield infinitely many solutions, and therefore witness
Loo(a) < c/2m2(1 —e).

Thus, consider some ¢ such that f(t) = 0 and ¢ > T for some threshold T to be specified later. Let
t = 2mm + 61 and at = 27n + J2, where m,n € N and 01,02 € [—7, 7). Then we have

}a_z}:M,

m 2mm



We will show that for T large enough, f(t) = 0 for ¢ > T allows us to bound |d3| and |ad;| separately
from above and then apply the triangle inequality to bound |62 — ady].

First, choose ¢1,p2 € (0,1) such that 1 —¢y > 1—; > 1—e. Let T be large enough for the following
property to hold:

t+m < 1— 9

t—2m — 11—

In particular, since m = (¢t — 61)/2m and |d1] < 7, we have

forallt >1T.

2m < t+m < 1—@2.

2m—-1"t-27r — 1— ¢

Let also T' be large enough to make the following property valid:
if 1 — cos(z) < c|z|/T and |z| <, then (1 — ¢2)x?/2 <1 — cos(z). (6)

Now we have the following chain of inequalities:
1 — cos(d2)
< { f(t) = 0, noting e’(1 — cos(t)) >0 }
c| sin(d2)]
t
< { by |sin(z)| < |z| }
c|da|

t

Then by (@), we have
(1 — ¢2)83
5 .
Thus, combining the upper and lower bounds on 1 — cos(d2) and using (&) on the last step, we have

1 —cos(d2) >

2¢c 2c c
=1

02| <

T (1 — ¢2) 2m — 1)w(1 — p2) = ma(l— 1)

Second, let o %' (1—¢)™' — (1 —¢1)7! > 0. Let the threshold T be large enough so that

g e (N
=S e i) fortz @

and
if 1 —cos(x) < c/el and |z| < 7, then 22/4 < 1 — cos(x). (8)
The following chain of inequalities holds:
1 —cos(d1)
— {by f()) =0}
c|sin(d2)] — t(1 — cos(d2))
ot
< { by [sin(d2)l,|cos(d2)| < 1}

Cc

et

<{by @ }
a? 2T 2
Ar%a?2 \t+ 7

<{byld] <7}

a? or \?2
47202 \ t — 4
={t=2rm+0d }
c2a?

Ar2a2m?2’



Moreover, as 1 — cos(61) < ce™t < ce™ T, by (&), we have
52
1 —cos(d1) > Il’

so combining the lower and upper bound on 1 — cos(d1), we can conclude
ca

lad1| < —
m™m

Finally, by the triangle inequality and the bounds on |ad1| and |d2|, we have

n ‘ _ |02 — ady | - |02 + |ad] c_¢ < 1 ) c

‘a m 2mrm 2rm T 2m2m? 1—¢1) 2mm?(l—¢)

Now, by the premise of the Lemma, there are infinitely many ¢ > T such that f(¢) = 0, each yielding
a pair (n,m) € N? which satisfies the above inequality. These infinitely many pairs (n,m) witness
Loo(a) < ¢/272(1 — ), as required. 0

Lemma 13. Fiza € RNA and e,¢ € Q with a,c > 0 and € € (0,1). If Loo(a) < (1 — g)/2n?%, then
f(t) =0 for infinitely many t.

Proof. We will show that there exists an effective threshold M, dependent on a,c, e, such that if

c(l—¢)
2m2m?2

(9)

for natural numbers n, m with m > M, then f(27m) < 0. Note that this is sufficient to prove the Lemma:
the premise guarantees infinitely many solutions (n,m) € N2 of (@), so there must be infinitely many
solutions with m > M, each yielding f(27m) < 0. Since f(t) is continuous and moreover is positive for
arbitrarily large times, it must have infinitely many zeros on [27 M, c0).

n
a——| <
m

Now let M be large enough, so that ¢(1 —¢)/mM < 7 and
if |z| < ¢(1 —e)/mM, then (1 — ¢)|z| < |sin(z)|. (10)

Suppose that ([@) holds for n,m € N with m > M and write ¢ 4 9rm. We will show that f(t) <0. By
@), we have |am — n| < ¢(1 — €)/27?m. Therefore, at = 2ram = 2wn + § where 6] < ¢(1 —¢)/mm < .
We have

7(0)

={ascos(t) =1}
t(1 — cos(d)) — ¢| sin(9)|

< { by [0 and 1 — cos(z) < 2%/2 }
mmd? — c(1 — )0

< { by 8] < (1 — &) /mm }
0.
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