

[image: Oxford University]

Contents

	News
	Proofs
	Tool manual
	Case study: a PostgreSQL bug
	Summary of systematic testing for CBMC
	Experiments
	People

Software Verification for Weak Memory via Program Transformation

Abstract

Multiprocessors implement weak memory models, but program verifiers often
assume Sequential Consistency (SC), and thus may miss bugs due to
weak memory. We propose a sound transformation of the program to verify,
enabling SC tools to perform verification w.r.t. weak memory. We present
experiments for a broad variety of models (from x86-TSO to Power) and a vast
range of verification tools, quantify the additional cost of the
transformation and highlight the cases when we can drastically reduce it.
Our benchmarks include work-queue management code from PostgreSQL.

News

	 1st of December 2012: Corrected machine definition on Coq proofs.
	 5th of October 2012: New sound, optimised strategy for instrumenting
 critical cycles implemented in Goto-instrument
	 4th of July 2012: We now analyse Apache's fdqueue module
	 24th of June 2012: Concurrent CBMC added to the set of model-checkers used for the experiments
	 22nd of February 2012: We will report distinct results for Poirot with
 integer vs. bitvector arithmetic
	 8th of February 2012: SatAbs is now able to handle RCU!
	 23rd of January 2012: Release of the tool

Proofs

Proofs of the paper, formalised in Coq.

Tool manual

Here is the manual of the tool, and how to plug
in a model-checker (we have tried CheckFence, ESBMC, MMChecker, Poirot, SatAbs, Threader and
our new CBMC-MT).

[image:]

Case Study: Fixing a WMM bug in PostgreSQL

 We show here how we can detect this
bug for Power reported by PostgreSQL developers.

[image:]

 We then test their
fix (the reader should search for the comment "XXX there really ought to be
a memory barrier operation right here" in the diff). We show that this fix
might not be sufficient, we provide a counter-example generated by our tool,
and we propose an additional fix, which provably fixes the problem.

Summary of systematic testing for CBMC

Here are the average runtime and overhead for
CBMC, on all litmus tests. We provide the same data for all model-checkers,
on all litmus tests but also on C examples below.

The following scatter plot (click for more
details and an enlarged version) depicts the execution time of running CBMC
on a program whose all accesses are instrumented, as proposed by Atig et al.,
 vs. execution times for the optimised
instrumentation using weighted selection under TSO.
Any dot below the diagonal line marks a case where full
instrumentation is slower than the optimised one.

[image:]

Experiments

Here are all our experimental data, for all
model-checkers, on all litmus tests and C examples, including standard ones, borrowed ones, the PostgreSQL bug, and RCU.

As we can independently compute the expected verification result for all litmus
tests, we are able to assess the soundness of each of the verification
tool. The following graphics provide an executive summary of this assessment.
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

People

	
Jade Alglave

	
Daniel Kroening

	
Vincent Nimal

	
Michael Tautschnig

