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Gaussian processes (GPs) are a powerful tool for probabilistic
inference over functions.

» GP regression captures non-linear
functions

» Can be seen as an infinite limit of 5
single layer neural networks

» GP latent variable models are an
unsupervised version of regression,
used for manifold learning

» Can be seen as a non-linear
generalisation of PCA
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GPs offer:
» uncertainty estimates,

» robustness to over-fitting,

» and principled ways for tuning hyper-parameters
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GP latent variable models are used for tasks such as...

» Dimensionality reduction
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GP latent variable models are used for tasks such as...
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Dimensionality reduction
Face reconstruction

Human pose estimation and tracking

Matching silhouettes

Animation deformation and
segmentation

WiFi localisation

State-of-the-art results for face
recognition
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Regression setting:
» Training dataset with N inputs X € RV*@ (Q dimensional)
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Regression setting:
» Training dataset with N inputs X € RV*@ (Q dimensional)

» Corresponding D dimensional outputs F, = f(Xj)

» We place a Gaussian process prior over the space of functions
f ~ GP(mean u(x), covariance k(x,x’))

» This implies a joint Gaussian distribution over function values:
PFIX) = N (F; u(X), K), K = k(x;,%,)

» Y consists of noisy observations, making the functions F latent:

p(Y|F)=N(Y;F,57 1)
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Latent variable models setting:

» Infer both the inputs, which are now latent, and the latent
function mappings at the same time
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Latent variable models setting:

» Infer both the inputs, which are now latent, and the latent
function mappings at the same time

» Model identical to regression, with a prior over now latents X
Xp ~ N(Xp;0,1), F(Xp) ~GP(0,k(X, X)), Yn~N(Fn,B")
» In approximate inference we look for variational lower bound to:
V)= [ R(YIF)R(FIXOR(X)(F. X)
» This leads to Gaussian approximation to the posterior over X

q(X) = p(X|Y)
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» Naive models are often used with big data (linear regression,
ridge regression, random forests, etc.)

» These don’t offer many of the desirable properties of GPs
(non-linearity, robustness, uncertainty, etc.)

» Scaling GP regression and latent variable models allows for
non-linear regression, density estimation, data imputation,
dimensionality reduction, etc. on big datasets
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Problem — time and space complexity

» Evaluating p(Y|X) directly is an expensive operation
» Involves the inversion of the n by n matrix K

» requiring O(n®) time complexity
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Solution — sparse approximation!

» A collection of M “inducing inputs” — a set of points in the same
input space with corresponding values in the output space.

[Quinionero-Candela and Rasmussen, 2005]
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Solution — sparse approximation!

» A collection of M “inducing inputs” — a set of points in the same
input space with corresponding values in the output space.

» These summarise the characteristics of the function using less
points than the training data.

» Given the dataset, we want to learn an optimal subset of
inducing inputs.

» Requires O(nm? + m®) time complexity.

[Quinionero-Candela and Rasmussen, 2005]
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Sparse approximation in pictures:

Regression on 5000 points dataset
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Sparse approximation in pictures:
» We can summarise the data using a small number of points
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Regression on 500 points subset (in red)
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Sparse approximation in pictures:
» We can summarise the data using a small number of points

4

Regression on 50 points subset (in red)
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Distributed Inference in
GPs
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Usual datasets used with full GPs [O(n®)]
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Usual datasets used with Sparse GPs [O(nm? + m®), m << n]
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Big data
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Distributed Sparse GPs — O("% + m?) = O(n + m3),

for T = m? nodes, m << n
13 of 24
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» The data points become independent of one another given the
inducing inputs
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» The data points become independent of one another given the
inducing inputs

» We can write the evidence lower bound as:
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with inducing inputs u and approximating distributions q(-)
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» The data points become independent of one another given the
inducing inputs

» We can write the evidence lower bound as:

logp(Y) =" / q(u)q(X)p(Fi|X;. u) log p( ;| Fi)d(Fi. X;. u)
i=1

—KL(g(u)]|p(u)) — KL(q(X)[|p(X))
with inducing inputs u and approximating distributions q(-)

» We can analytically integrate out q(u) and still keep a
factorised form

» We can compute each term in the factorised form
independently of the others with the Map-Reduce framework.
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[http://mohamednabeel .blogspot.co.uk/]
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The inference procedure should:

» distribute the computational load evenly across nodes,
» scale favourably with the number of nodes,

» and have low overhead in the global steps.
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Load balancing - 30 cores
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Distribution of computational load
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available cores
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Time scaling with cores
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Negligible overhead in the global steps (constant time — O(m®))
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» We want to predict flight delays from various flight-record
characteristics (flight date and time, flight distance, etc.)

» Can we improve on GP prediction using increasing amounts of
data?

» We use different subset sizes of data: 7K, 70K, and 700K
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Utility in scaling-up GPs

| Size | 7K | 70K | 700K |
| Dist GP || 33.56 | 33.11 | 32.95 |

Root mean square error (RMSE) on flight dataset 7K-700K

» With more data we can learn better inducing inputs!

4.5

4.0f
3.51
3.0p
2.5¢
2.0r

Month  DayofMonth DayOfWeek DepTime ArrTime AirTime Distance plane_age

ARD parameters for flight 700K
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GP latent variable model on the full MNIST dataset (60K, 784 dim.):

» Used a density model for each digit
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GP latent variable model on the full MNIST dataset (60K, 784 dim.):

» Used a density model for each digit

v

No pre-processing (the model is non-specialised)

v

Trained the models on 10K and all 60K points

| Size [ 10K | 60K |
[Dist GP || 8.98% | 5.95% |

Classification error on a subset and full MNIST

» Improvement of 3.03 percentage points

v

Training on the full MNIST dataset took 20 minutes for the
longest running model
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But these models give us much more...

» The MNIST trained models are density estimation models
» They allow us to perform image imputation,

» Generate new digits by sampling from the posterior, etc.
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Furthermore, real big data is complex and non-linear — and naive
models may under-perform on it

» Back to flight regression —

22 of 24



. ] . UNIVERSITY OF
New horizons in big data " CAMBRIDGE

Furthermore, real big data is complex and non-linear — and naive
models may under-perform on it

» Back to flight regression —

» Flight 2M dataset compared to common approaches in big
data:

| Dataset || Mean | Linear | Ridge | RF | Dist GP |
[ Flight 2M || 38.92 | 37.65 | 37.65 | 37.33 | 35.31 |

RMSE of regression over flight data with 2M points

22 of 24



. . . UNIVERSITY OF
New horizons in big data " CAMBRIDGE

Furthermore, real big data is complex and non-linear — and naive
models may under-perform on it

» Back to flight regression —

» Flight 2M dataset compared to common approaches in big
data:

| Dataset || Mean | Linear | Ridge | RF | Dist GP |
[ Flight 2M || 38.92 | 37.65 | 37.65 | 37.33 | 35.31 |

RMSE of regression over flight data with 2M points

» These are just error rates — we can do much more with GPs
» robust, offer uncertainty bounds, etc.
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» We showed that the inference scales well with data and
computational resources

» We demonstrated the utility in scaling GPs to big data

» The results show that GPs perform better than many common
models often used for big data
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» Developing the inference we wrote an introductory tutorial [Gal
and van der Wilk, 2014] with detailed derivations

» The code developed is open source’
» 300 lines of Python with detailed and documented examples

» Pointers between equations in the tutorial and in code

B.2.2  Partial derivatives with respect to o}

i i 3 L Py
The partial derivative 2

I k(& Zo) (B.54
357 ) e a3 -54) def dKmm_dsf2( ):
i) self.Kmm / self.hyp.sf
The partial derivative ': LIEH]
¢ def dexp_K_ii_dsf2( ):

X

0<K" >«<X.J self.local N

R ! (B.55)
ey

'See https://github.com/markvdw/GParML
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