Latent Gaussian Processes for Distribution
Estimation of Multivariate Categorical Data

Yarin Gal Yutian Chen Zoubin Ghahramani

University of Cambridge
{ yg279, yc373, zoubin }@cam.ac.uk

Abstract

Multivariate categorical data occur in many applications of machine learning, such
as data analysis and language processing. Here we develop a flexible class of
models for distribution estimation in such multivariate (i.e. vectors of) categorical
data. Multivariate categorical data is challenging because the number of possible
discrete observation vectors grows exponentially with the number of categorical
variables in the vector. In particular, we address the problem of estimating the
distribution when the data is sparsely sampled—i.e. in the typical case when the
diversity of the data points is poor compared to the exponentially many possible
observations. We make use of a continuous latent Gaussian space, but unlike pre-
vious linear approaches, we learn a non-linear transformation between this latent
space and the multivariate categorical observation space. Non-linearity is essen-
tial for capturing multi-modality in the distribution. Our model ties together many
existing models, linking the categorical linear latent Gaussian model, the Gaus-
sian process latent variable model, and Gaussian process classification. We derive
effective inference for our model based on recent developments in sampling-based
variational inference and stochastic optimisation.

1 Introduction

Categorical distribution estimation (CDE) forms one of the core problems in machine learning,
and can be used to perform tasks ranging from survey analysis (Inoguchi, 2008) to cancer prediction
(Zwitter and Soklic, 1988). One of the major challenges in CDE is sparsity. Sparsity can occur either
when there is a single categorical variable with many possible values, some appearing scarcely, or
when the data consists of vectors of categorical variables, with most configurations of categorical
values not in the dataset. We focus on Bayesian approaches to the latter, multivariate, case. Existing
approaches to Bayesian-CDE concentrate on either discrete or continuous latent representations
(Agresti and Hitchcock, 2005). Discrete representations are based on frequencies of observations
but cannot handle sparse samples well. Existing continuous representations linearly transform a
latent space before discretisation, but cannot capture multi-modality in the data.

We would like to capture sparse multi-modal categorical distributions. A possible approach is to
model the continuous representation with a non-linear transformation. In this approach we place
a standard normal distribution prior on a latent space, and feed the output of a non-linear trans-
formation of the latent space into a Softmax (instead of using a linear transformation). However,
the Softmax likelihood is not conjugate to the Gaussian prior. A similar problem exists developing
linear Gaussian models (LGMs) in a variational setting. Marlin et al. (2011) used various approx-
imations for the likelihood in the binary case, or alternative likelihoods to the Softmax in the cate-
gorical case (Khan et al., 2012). Many bounds have been studied in the literature for the binary case:
Jaakkola and Jordan’s bound (Jaakkola and Jordan, 1997), the tilted bound (Knowles and Minka,
2011), piecewise linear and quadratic bounds (Marlin et al., 2011), and others. For categorical data
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Figure 1: Relations between existing models and the model proposed in this paper (Categorical
Latent Gaussian Process); the model can be seen as a non-linear version of the latent Gaussian
model (left to right, Khan et al. (2012)), it can be seen as a latent counterpart to the Gaussian
process classification model (back to front, Williams and Rasmussen (2006)), or alternatively as a
discrete extension of the Gaussian process latent variable model (top to bottom, Lawrence (2005)).

fewer bounds exist, since the multivariate Softmax is hard to approximate in high-dimensions. The
Bohning bound (Bohning, 1992) and Blei and Lafferty’s bound (Blei and Lafferty, 2006) give poor
approximation (Khan et al., 2012).

In this paper we propose to use recent developments in stochastic variational inference (SVI, Hoff-
man et al., 2013) to avoid computing the Softmax bound explicitly, while using sparse Gaussian
processes (GPs) to transform the latent space non-linearly. Sparse GPs form a distribution over func-
tions supported on a small number of points with linear time complexity (Quifionero-Candela and
Rasmussen, 2005; Titsias, 2009). Our approach takes advantage of these tools to obtain simple yet
powerful model and inference. We use Monte Carlo integration to approximate the non-conjugate
likelihood obtaining noisy gradients (Blei et al., 2012; Kingma and Welling, 2013; Rezende et al.,
2014; Titsias and Lazaro-Gredilla, 2014). We then use learning-rate free stochastic optimisation
(Tieleman and Hinton, 2012) to optimise the noisy objective. We leverage symbolic differentiation
(Theano, Bergstra et al., 2010) to obtain simple and modular code'. We develop the inference for
the linear case (using a Gaussian process with a linear covariance function) resulting in trivial imple-
mentation of the LGM with performance identical to (Khan et al., 2012). We then extend the model
to non-linear covariance functions that are able to transform the latent space non-linearly. We name
this model Categorical Latent Gaussian Process (CLGP).

We experimentally show the advantages of using non-linear transformations for the latent space.
We follow the ideas brought in Paccanaro and Hinton (2001) and study the models with the task of
relational learning. We use the simple (and forgotten) XOR dataset for this, capturing the non-linear
XOR relation based on observations of triplets such as (1,1,0). We further evaluate our model
and inference in the semi-supervised setting, training the model with partially observed relations
for imputation. We then demonstrate the utility of the model in the real-world small data domain
when data is scarce, comparing our model to discrete frequency based models. For this we use the
ubiquitous Wisconsin breast cancer dataset, where the number of observations is small and costly to
obtain. However we replace the simple supervised classification task of predicting the development
of breast cancer in patients. Instead we use the estimated distribution for the much more difficult
task of deciding which tests are needed or can be deduced from the others. Lastly, we evaluate the
robustness of our inference, inspecting the Monte Carlo estimate variance over time for different
number of samples. These experiments are given in the appendix.

2 Related Work
Our model (CLGP) relates to some key probabilistic models in the field (fig. 1). It can be seen as a

non-linear version of the latent Gaussian model (LGM, Khan et al. (2012)) as discussed above. In

'The entire code, consisting of 80 lines of Python, is available at github.com/yaringal/CLGP



the LGM we have a standard normal prior placed on a latent space, which is transformed linearly
and fed into a Softmax likelihood function. The probability vector output is then used to sample a
single categorical value for each categorical variable (e.g. question) in a list of categorical variables
(e.g. survey). These categorical variables correspond to elements in a multivariate categorical vector.
The parameters of the linear transformation are optimised directly within an EM framework. Khan
et al. (2012) avoid the hard task of approximating the Softmax likelihood by using an alternative
function (product of sigmoids) which is approximated using numerical techniques. Our approach
avoids this cumbersome inference.

Our proposed model can also be seen as a latent counterpart to the Gaussian process classification
model (Williams and Rasmussen, 2006), in which a Softmax function is again used to discretise
the continuous values. The continuous valued outputs are obtained from a Gaussian process, which
non-linearly transforms the inputs to the classification problem. Compared to GP classification
where the inputs are fully observed, in our case the inputs are latent. Lastly, our model can be seen
as a discrete extension of the Gaussian process latent variable model (GPLVM, Lawrence, 2005).
This model has been proposed recently as means of performing non-linear dimensionality reduction
(counterpart to the linear principal component analysis (Tipping and Bishop, 1999)) and density
estimation in continuous space.

3 A Latent Gaussian Process Model for Multivariate Categorical Data

We consider a generative model for a dataset Y with NV observations (people taking part in a survey
for example) and D categorical variables (different questions in the survey). The d-th categorical
variable in the n-th observation, y,4, is a categorical variable that can take an integer value from 0
to K4. For ease of notation, we assume all the categorical variables have the same cardinality, i.e.
Kyg=K, Vvd=1,...,D.

In our generative model, each categorical variable y,,4 follows a categorical distribution with prob-
ability given by a Softmax with weights (0, fnq41, - - -, fnax ). Each weight f, 4 is the output of a
nonlinear function of a () dimensional latent variable x,, € R@: Far(x,). To complete the genera-
tive model, we assign an isotropic Gaussian distribution prior for the latent variables, and a Gaussian
process prior for each of the nonlinear functions. We also consider a set of M auxiliary variables
which are often called inducing inputs. These inputs Z € R *® lie in the latent space with their
corresponding outputs U € RM*DPxK Jying in the weight space (together with f,,4%). The inducing
points are used as “support” for the function. Evaluating the covariance function of the GP on these
instead of the entire dataset allows us to perform approximate inference in O(M?2N) time complex-
ity instead of O(N?) (where M is the number of inducing points and NV is the number of data points
(Quifnionero-Candela and Rasmussen, 2005)).

The model is expressed as:

Tni S N (0, 02) n=1,....,N,i=1,...,Q (1)
Fae S GP(Ky) d=1,....,.D,k=1,....K
frdk = Far(Xn),  Umdr = Far(Zm) n=1,....Nnm=1,....M
Ynd ~ Softmax(f,q), n=1,...,N,d=1,...,D

where the Softmax function is computed as (we define fy := 0)

exp(fr)

K
m7k:0,...,}(, Ise(f) = log(1 + ZeXp(fk'))' )

k'=1

Softmax(y = k; f) =

We tie the covariance matrices of the GPs, K, to be the same for all categorical values in a given
categorical variable and allow them to be different across categorical variables. The joint distri-
bution of (fj, ugx) with the latent nonlinear function, F4y, marginalized under the GP assump-
tion is a multi-variate Gaussian distribution N (0, K4([X, Z], [X, Z])). It is easy to verify that
when we further marginalize the inducing outputs, we end up with a joint distribution of the form
fu. ~ N(0,K4(X, X)), Vd, k. Therefore, the introduction of inducing outputs does not change the
marginal likelihood of the data Y. These are used in the variational inference method in the next
section and the inducing inputs Z are considered as variational parameters.



We use the automatic relevance determination (ARD) RBF covariance function for our model. ARD
RBF is able to select the dimensionality of the latent space automatically and transform it non-
linearly.

4 Inference

The marginal log-likelihood, aka log evidence, is intractable for our model due to the non-linearity
of the covariance function of the GP and the Softmax likelihood function. We first describe a lower
bound of the log evidence (ELBO) by applying Jensen’s inequality with a variational distribution of
the latent variables following Titsias and Lawrence (2010).

Consider a variational approximation to the posterior distribution of X, F and U factorized as
follows:

¢(X, F,U) = ¢(X)q(U)p(F[X, U). 3)
We can obtain the ELBO by applying Jensen’s inequality

logp(Y) = log | p(X)p(U)p(F[X, U)p(Y[F)dXdFdU

(X)p(U)p(FX,U)p(Y|F)
q(X)q(U)p(F|X, U)

> / 4(X)q(U)p(F|X, U) log 2 dXdFdU

= —KL(¢(X)|[p(X)) — KL(¢(U)||p(U))
N D
+303 [ a0 a(Ua)p(Eaaln Ui 108 p(3nalfaa) 26,00
n=1d=1
=L “4)
where
K
p(£nalxn, Ua) = | | N(frarlaluar, bua) (5)
k=1
with
And = K;}\/[AjKd,Mna bnd = Kd,nn - Kd,nMK;}\/[]\/[Kd,Mn- 6)

Notice however that the integration of log p(y,4|f.4) in eq. 4 involves a nonlinear function (Ise(f)
from eq. 2) and is still intractable. Consequently, we do not have an analytical form for the optimal
variational distribution of ¢(U) unlike in Titsias and Lawrence (2010). Instead of applying a further
approximation/lower bound on £, we want to obtain better accuracy by following a sampling-based
approach (Blei et al., 2012; Kingma and Welling, 2013; Rezende et al., 2014; Titsias and Lazaro-
Gredilla, 2014) to compute the the lower bound £ and its derivatives with the Monte Carlo method.

Specifically, we draw samples of x,,, Uy and f,,4 from ¢(x,,), ¢(Ug), and p(f,.4|x,, Ug) respec-
tively and estimate £ with the sample average. Another advantage of using the Monte Carlo method
is that we are not constrained to a limited choice of covariance functions for the GP that is otherwise
required for an analytical solution in standard approaches to GPLVM for continuous data (Titsias
and Lawrence, 2010; Hensman et al., 2013).

We consider a mean field approximation for the latent points ¢(X) as in Titsias and Lawrence (2010)
and a joint Gaussian distribution with the following factorisation for ¢(U):

D K N Q
q(U) = [T TN aklpar, Ea),  a(X) = [ [TN @nilmni. s2:) (7

d=1k=1 n=1:=1

where the covariance matrix 3, is shared for the same categorical variable d (remember that K is
the number of values this categorical variable can take). The KL divergence in £ can be computed
analytically with the given variational distributions. The parameters we need to optimise over in-
clude the hyper-parameters for the GP 6, variational parameters for the inducing points Z, iz,
3.4, and the mean and standard deviation of the latent points m,,;, Sp;.



4.1 Transforming the Random Variables

In order to obtain a Monte Carlo estimate to the gradients of £ with low variance, a useful trick
introduced in Kingma and Welling (2013) is to transform the random variables to be sampled so that
the randomness does not depend on the parameters with which the gradients will be computed. We
present the transformation of each variable to be sampled as follows:

Transforming X. For the mean field approximation, the transformation for X is straightforward
as
Tpi = Mp; + 87”6(30-) Eg{i) ~ N(O, 1) (8)

ny ?

Transforming u,,. The variational distribution of ugyy is a joint Gaussian distribution. Denote the
Cholesky decomposition of 3; as LdLg = X,4. We can rewrite ugy as

Ugr = Mgk + Ldef;,?, Edk ~ N(O IM) (9)
We will optimize the lower triangular matrix L instead of 3.

Transforming f,,;. Since the conditional distribution p(f,4|x,,, Ug) in Eq. 5 is factorized over k
we can define a new random variable for every f,qx:

frdk = apgUa, + / bndaiﬂk, ndk ~N(0,1) (10)

Notice that the transformation of the variables does not change the distribution of the original vari-
ables and therefore does not change the value of the KL divergence in Eq. 5.

4.2 Lower Bound with Transformed Variables

Given the transformation we just defined, we can represent the lower bound as

Z ZKL Tng ||p I'IL’L ZZKL udk ||p(udk))

n=1 i=1 d=1k=1
N D

+ Z Z Esgﬁ>,€gu)7€(nj;) log Softmax (ynd

n=1d=1

f,4 (e;’;), Ud(efi"))7xn(s£f)))) (11)

where the expectation in the second line is with respect to the fixed distribution defined in Egs. 8,
9 and 10. The expectation that involves the Softmax likelihood, denoted as E?d, can be estimated
using Monte Carlo integration as

T
1
L~ T Z log Softmax (ynd
i=1

HCTRACDENCN) (12)

with egf), sfi“), s(fd) drawn from their corresponding distributions. Since these distributions do not

depend on the parameters to be optimized, the derivatives of the objective function £ are now
straight-forward to compute with the same set of samples using the chain rule.

4.3 Stochastic Gradient Descent

We use gradient descent to find an optimal variational distribution. Gradient descent with noisy
gradients is guaranteed to converge to a local optimum given decreasing learning rate with some
conditions, but is hard to work with in practice. Initial values set for the learning rate influence
the rate at which the algorithm converges, and misspecified values can cause it to diverge. For
this reason new techniques have been proposed that handle noisy gradients well. Optimisers such
as AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), and RMSPROP (Tieleman and Hinton,
2012) have been proposed, each handling the gradients slightly differently, all averaging over past
gradients. Schaul et al. (2013) have studied empirically the different techniques, comparing them to
one another on a variety of unit tests. They found that RMSPROP works better on many test sets
compared to other optimisers evaluated. We thus chose to use RMSPROP for our experiments.



A major advantage of our inference is that it is extremely easy to implement and adapt. The straight-
forward computation of derivatives through the expectation makes it possible to use symbolic dif-
ferentiation. We use Theano (Bergstra et al., 2010) for the inference implementation, where the
generative model is implemented as in Egs. 8, 9 and 10, and the optimisation objective, evaluated
on samples from the generative model, is given by Eq. 11.

5 Discussion and Conclusions

We have presented the first Bayesian model capable of capturing sparse multi-modal categorical
distributions based on a continuous representation. This model ties together many existing models
in the field, linking the linear and discrete latent Gaussian models to the non-linear continuous
space Gaussian process latent variable model and to the fully observed discrete Gaussian process
classification.

In future work we aim to answer short-comings in the current model such as scalability and ro-
bustness. We will scale the model following research on GP scalability done in (Hensman et al.,
2013; Gal et al., 2014). Robustness of the model depends critically on the sample variance in the
Monte Carlo integration. As discussed in Blei et al. (2012), variance reduction techniques can help
in the estimation of the integral, and methods such as the one developed in Wang et al. (2013) can
effectively increase inference robustness.
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A Experimental Results

We show the advantages of using a non-linear CDE compared to a linear one. For this we evaluate
our model (CLGP) against the linear LGM (Khan et al., 2012). We implement the latent Gaussian
model using a linear covariance function in our model; we remove the KL divergence term in u
following the model specification in (Khan et al., 2012), and use our inference scheme described
above. Empirically, the Monte Carlo inference scheme with the linear model results in the same test
error on (Inoguchi, 2008) as the piece-wise bound based inference scheme developed in (Khan et al.,
2012).

We demonstrate that linear models have difficulty with multi-modal distributions. We compare the
linear and non-linear models on the simple task of relational learning (Paccanaro and Hinton, 2001),
capturing the non-linear XOR relation based on observations of triplets such as (1, 1,0). The models
are evaluated on their performance predicting missing values within partially observed relations.

We then assess the model in the real-world domain of sparse data, using the Wisconsin Breast
Cancer dataset for which obtaining samples is a long and expensive process (Zwitter and Soklic,
1988). We compare the CLGP model to a histogram based approach, demonstrating the difficulty
with frequency based approaches for sparse data. We further compare our model to the linear LGM
on this dataset, demonstrating over-fitting problems with the model proposed in (Khan et al., 2012).
Finally, we inspect the robustness of our inference, evaluating the Monte Carlo estimate variance.

For the following experiments, both the linear and non-linear models were initialise with a 2D latent
space. The mean values of the latent points, m,,, were initialised at random following a standard
normal distribution, as well as the mean values of the inducing outputs (ft4,). We initialise the
standard deviation of each latent point (s,,) to 0.1, and initialise the length-scales of the ARD RBF
covariance function to 0.2. We then optimise the variational distribution for 500 iterations. At every
iteration, we optimise the various quantities while holding uy;’s variational parameters fixed, and
then optimise ugy’s variational parameters holding the other quantities fixed. We hold the covariance
function hyper-parameters and s fixed for the first 10 iterations, as optimising these before the latent
means move and an initial function is estimated results in divergence of the optimisation algorithm.
Furthermore, we use RMSPROP for all quantities apart from s, for which we use gradient descent for
optimisation as RMSPROP seems to change these quantities too fast. For the non-linear experiment
we used 4 inducing points, and for all experiments we use the same kernel across all categorical
variables. Lastly, our optimisation for the latents is harder than that of the linear model (in the linear
model this optimisation is done over a convex surface whereas in the non-linear model it is not).
We thus find all data points with predicted probability less than a predefined value for at least one
of the categorical variables, and randomly sample a new latent mean value for each of these data
points, assigning them to one of the inducing inputs. We do this every 20 iterations starting after
the 100’th iteration, and use the predicted probability of the training set alone, ignoring the test
variables. Our setting supports semi-supervised learning were the latents of partially observed data
points are optimised with the training set, and then used to predict the missing values.

We assess the performance of the models using the same metric brought in (Khan et al., 2012). For
each data point and each categorical variable, we take the probability the model assigns to the true
categorical value for that variable. These are then passed through — log,(p) and averaged. Thus,
for the binary case, a random guess of each one of the binary values for each one of the data points
(assigning probability 0.5) results in an error of 1. Correct assignment of all values results in error
0, and assignment of probability zero to at least one correct categorical values results in error co.

A.1 Linear Models Have Difficulty with Multi-modal Distributions

A simple example of relational learning (following Paccanaro and Hinton (2001)) can be used to
demonstrate when linear latent space models fail. In this task we are given a dataset with example
relations and the model is to capture the distribution that generated them. A non-linear dataset is
constructed using the XOR (exclusive or) relation. We collect 25 positive examples of each assign-
ment of the binary relation (triplets of the form (0, 0,0), (0,1,1), (1,0,1), (1, 1,0), corresponding
to 0 XOR 1 = 1 and so on). We then maximise the variational lower bound using RMSPROP for
both the linear and non-linear models with 20 samples for the Monte Carlo integration. For testing
we introduce new x,,» with missing categorical values for some of the variables. We add four more
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Figure 2: Density over the latent space as predicted by the linear model (top, LGM), and non-
linear model (bottom, CLGP). Each figure, left to right, shows the density over the same latent
space for a different single categorical variable (left to right: first digit in the triplet, second digit,
and third digit in the triplet). The shade of green indicates the probability of a point in the latent
space to take value 1 for that categorical variable. The darker the shade, the higher the probability.
In blue are the latents corresponding to the training points, in yellow are the latents corresponding to
the four partially observed test points, and in red are the inducing points used to support the function.

triplets to the dataset: (0,0,7), (0,1,7), (1,0,7), (1,1,7). We evaluate the probabilities the models
assign to each of the missing values and report the results.

We assessed the error of both linear and non-linear models on the task of predicting the 4 missing
values (also known as imputation), repeating the experiment 3 times and averaging the results. The
linear model obtained an error (and standard deviation) of 6.22+0.24, whereas the non-linear model
obtained an error of 0.03 & 0.02. Note that a simple histogram based approach will do well on this
dataset as it is not sparse.

During optimisation the linear model consistently jumps between different local modes, trying to
capture all four possible triplets (fig. 2). The model assigns probabilities to the the missing values
by capturing some of the triplets well, but cannot assign high probability to the others. An example
assignment of probabilities to the correct answers (for the missing values of the four triplets) would
be (0.01, 0.43, 1, 0.01). In contrast, the CLGP model is able to capture all possible values of the re-
lation. An example assignment of probabilities to the correct answers would be (0.99,0.99,0.98, 1).
Sampling from probability vectors sampled from the latent variational posterior for both models, we
get a histogram of the posterior distribution (fig. 3). As can be seen, the CLGP model is able to fully
capture the distribution whereas the linear model is incapable of it.

A.2 Sparse Datasets

We now assess our model in the real-world domain of sparse data, comparing our continuous latent
approach to frequency based approaches. We use the Wisconsin Breast Cancer dataset (Zwitter and
Soklic, 1988). The dataset is composed of 683 data points, with 9 categorical variables taking values
between 1 and 10, and an additional categorical variable taking 0,1 values — indicating whether a
tumour is benign or malignant. We use three quarters of the dataset for training and leave the rest
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Figure 3: Histogram of categorical values (encoded in binary for the 8 possible values) for samples
drawn from the posterior of the latent space of the linear model (left, LGM), the non-linear model
(middle, CLGP), and the data used for training (right).

for testing, averaging the error on three repetitions of the experiment. We use three different random
splits of the dataset. In the test set we randomly remove one of the 10 categorical values, and test the
models’ ability to recover that value. Note that this is a harder task than the usual use of this dataset
for binary classification. We use the same model set-up as before.

We compare our model (CLGP) to a baseline model predicting uniform probability for all values
(Baseline), the linear LGM model, and a frequency based model predicting the probability for a miss-
ing value based on its frequency in the training set (Multinomial). The last model can be interpreted
as the maximum likelihood estimate (MLE) of a multinomial likelihood over the observations for
each single categorical variable. Lastly, we use a smoothed frequency model using Laplace smooth-
ing (with a smoothing coefficient of 1, commonly known as “add one smoothing”), and a frequency
model using a smaller smoothing coefficient of 0.01. The smoothed frequency models are equivalent
to the maximum a posteriori (MAP) estimate of the MLE model with a Dirichlet distribution prior
(referred to as Dirichlet Multinomial in the experiments). Small parameters for the Dirichlet distri-
bution are often used in sparse settings. More complicated frequency based approaches are possible,
performing variable selection and then looking at frequencies of pairs or triplets of variables. These
will be very difficult in this sparse small data problem.

We evaluate the models’ performance using imputation error as before on the Breast cancer dataset
(Table 1). As can be seen in the results, the frequency based approaches obtain worse results than
the continuous latent space approaches. The frequency model with no smoothing obtains error co
for split 2 because one of the test points has a value not observed before in the training set. Using
smoothing solves this but results in higher error values for the other splits. The baseline (predicting
uniformly) obtains the highest error on average. The linear model exhibits high variance for the last

Dirichlet Dirichlet
Split | Baseline | Multinomial Multinomial Multinomial LGM CLGP
(a=1) (a=0.01)
3.118 2.130 2.146 2.131 1.835+0.085 | 1.517 £+ 0.060
2 3.118 00 2.152 2.174 1.797 £0.103 | 1.748 + 0.078
3.145 2.224 2.299 2.9924 3.601 £1.042 | 1.742 + 0.042

Table 1: Error (and standard deviation) on the Breast cancer dataset, predicting the randomly
missing categorical values. The error values are calculated for three different random splits of the
dataset. The models compared are (left to right): a baseline model predicting uniform probability
for all values (Baseline), a frequency model predicting the probability for a missing value based
on its frequency in the training set (Multinomial), Dirichlet-Multinomial models with concentration
parameters « = 1 and o = 0.01 (also known as Laplace smoothing), the LGM model, and lastly the
proposed model (CLGP).
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Figure 4: Train and test error for LGM (left) and the CLGP model (right) for one of the splits
of the breast cancer dataset. The train error of LGM decreases while the test error starts increasing
at iteration 50.

split (with error values 2.3, 3.7, and 4.8), and in general has higher error standard deviation than the
non-linear model.

A.2.1 LGM Over-fitting

It is interesting to note that the latent Gaussian model (LGM) exhibits over-fitting on the last dataset.
It is possible to contribute this to the lack of regularisation over the linear transformation — the weight
matrix used to transform the latent space to the Softmax weights is optimised without a prior. In all
repetitions the model’s training error decreases while the test error starts increasing (see fig. 4 for the
train and test error of split 1). It is interesting to note that even though the test error starts increasing,
at its lowest point it is still higher than the end test error of the CLGP model. This is observed for
all splits and all repetitions.

A.3 Inference Robustness

Lastly, we inspect the robustness of our inference, evaluating the Monte Carlo estimate standard de-
viation. Fig. 5 shows the average ELBO standard deviation per iteration (averaged over 3 repetitions)

I I
20 samples

40 samples
60 samples
80 samples ||

standard deviation

iter.

Figure 5: Standard deviation (averaged over 3 repetitions) per iteration on the XOR dataset.
Shown are standard deviation using Monte Carlo integration with 20, 40, 60, and 80 samples.
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on the XOR dataset. We used Monte Carlo integration with 20 samples (used for the experiments
above), 40, 60, and 80 samples. The standard deviation for 20 and 80 samples fluctuates consider-
ably, with erratic peaks as high as 100. There is a general decreasing trend in the standard deviation’s
magnitude, with a slight increase after 40 iterations. After 100 iterations (when poorly performing
latents are shuffled) there is a sharp decrease in standard deviation. From this plot we see a slight
decrease in variance with more samples. It is interesting to note that as the approximating variational
distribution gets closer to the true posterior, the variance decreases.
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