
Latent Gaussian Processes for Distribution
Estimation of Multivariate Categorical Data

Yarin Gal, Yutian Chen, Zoubin Ghahramani
University of Cambridge

In short:

Multivariate categorical data –

• occur frequently in data analysis, language processing, medical diagnosis, etc.

• is challenging; the number of possible discrete observation vectors grows
exponentially with the number of categorical variables in the vector.

• is sparsely sampled; the diversity of data points is poor compared to the
exponentially many possible observations.

•We develop a model for distribution estimation of multivariate categorical
data:

P (y | {yn = (yn1, ..., ynD) | n = 1, ..., N})

•We use a continuous latent Gaussian space and learn a non-linear transformation
between it and the multivariate categorical observation space.

•We derive inference for our model based on recent developments in sampling-
based variational inference and stochastic optimisation.

Relations to other models

Existing approaches use –

•Discrete representations: based on frequencies of observations, but cannot
handle sparse samples well (e.g. Dirichlet-Multinomial).

•Continuous representations: linearly transform a latent space before discreti-
sation, but cannot capture multi-modality in the data (e.g. latent Gaussian model).
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Figure 1: The model we propose can be seen as a non-linear version of the la-
tent Gaussian model (left to right, Khan et al. (2012)), as a latent counterpart
to the Gaussian process (GP) classification model (back to front, Williams and
Rasmussen (2006)), or as a discrete extension of the Gaussian process latent
variable model (top to bottom, Lawrence (2005)).

The Categorical Latent Gaussian Process

We define the generative model, with kernel K(·, ·), as

xn
iid∼ N (0, σ2xI), (fndk)

N
n=1 ∼ N (0,K((xn)

N
n=1)), ynd

iid∼ Softmax(fnd1, ..., fndK).

Following a breast cancer diagnosis example, each patient is modelled by latent
xn; for each examination d, xn has a sequence of weights (fnd1, ..., fndK), one
weight for each possible test result k; Softmax returns test result ynd based on
these weights, resulting in a patient’s medical assessment yn = (yn1, ..., ynD).

Inference

•We use Sparse GPs to get linear time complexity – we condition the observations
on M inducing inputs Z with inducing outputs U with a Gaussian prior.

•Our marginal log-likelihood is intractable. We lower bound the log evidence with
a variational approximate posterior q(X,F,U) = q(X)q(U)p(F|X,U), with

xni = mni + sniε
(x)
ni ε

(x)
ni ∼ N (0, 1)

udk = µdk + Ldε
(u)
dk ε

(u)
dk ∼ N (0, IM)

fndk = aTnudk +
√
bnε

(f )
ndk ε

(f )
ndk ∼ N (0, 1)

and
an = K−1MMKMn, bn = Knn −KnMK−1MMKMn.

Then,
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Method

1. Monte Carlo integration approximates the likelihood obtaining noisy gradients:
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2. Learning-rate free stochastic optimisation is used to optimise the noisy objective.

3. Symbolic differentiation is used to get simple and modular code:

1 import theano.tensor as T

2 X = m + s * randn(N, Q)

3 U = mu + L.dot(randn(M, K))

4 Kmm , Kmn , Knn = RBF(sf2 , l, Z), RBF(sf2 , l, Z, X), RBFnn(sf2 , l, X)

5 KmmInv = sT.matrix_inverse(Kmm)

6 A = KmmInv.dot(Kmn)

7 B = Knn - T.sum(Kmn * KmmInv.dot(Kmn), 0)

8 F = A.T.dot(U) + B[:,None ]**0.5 * randn(N, K)

9 S = T.nnet.softmax(F)

10 KL_U , KL_X = get_KL_U(), get_KL_X ()

11 LS = T.sum(T.log(T.sum(Y * S, 1))) - KL_U - KL_X

12 LS_func = theano.function ([ ’’’inputs ’’’], LS)

13 dLS_dm = theano.function ([ ’’’inputs ’’’], T.grad(LS, m)) # and others

14 # ... and run RMS -PROP

That’s all.

Experiments

•Linear models have difficulty with multi-modal distributions

– We use the simple XOR dataset capturing the non-linear relation based on ob-
servations of triplets such as (1, 1, 0).

Figure 2: Density over the latent space as predicted by the linear
model (left 3 panels, LGM), and non-linear model (right 3 panels,
CLGP). Each panel shows the density over the same latent space corresponding
to a different single variable taking value 1.

•Real-world sparse small data domain on the Wisconsin breast cancer dataset.

– The number of observations is small (683) and costly to obtain,

– Usual task is simple supervised classification, predicting the development of
breast cancer in patients from 9 categorical variables each taking 10 values,

– We look instead for which tests are needed or can be deduced from
others in an attempt to reduce the number of unneeded examinations.

Split Baseline Multinomial Uni-Dir-Mult Bi-Dir-Mult LGM CLGP
1 8.68 4.41 4.41 3.41 3.57± 0.208 2.86± 0.119

2 8.68 ∞ 4.42 3.49 3.47± 0.252 3.36± 0.186

3 8.85 4.64 4.64 3.67 12.13± 9.705 3.34± 0.096

Figure 4: Model perplexity on Breast cancer dataset, predicting randomly missing cat-
egorical test results. The models compared are: Baseline predicting uniform probability for all
values, Multinomial – predicting the probability for a missing value based on its frequency, Uni-Dir-
Mult – Unigram Dirichlet Multinomial with concentration parameter α = 0.01, Bi-Dir-Mult – Bigram
Dirichlet Multinomial with concentration parameter α = 1, LGM, and the proposed model (CLGP).

•LGM over-fitting and inference robustness

Figure 5: Train and test error for LGM (left) and the CLGP model (middle) for one of the splits
of the breast cancer dataset; Standard deviation per iteration on the XOR dataset (right).

– The train error of LGM (left) decreases while the test error starts increasing.

– We see a slight decrease in variance with more samples (right); as the variational
distribution gets closer to the true posterior, the variance seems to decrease.

Closing remarks

The entire code, consisting of 95 lines of Python + optimiser, is available online at
github.com/yaringal/CLGP.


