

Train a model to recognise dog breeds; someone will try to classify a cat.

But also in decision making, life sciences, medicine, bioinformatics, self-driving cars, algo-trading...

For the practitioner:

- model diagnosis model should be certain about what it should know
- use specialised models with simple and fast models for most data
- critical systems pass data to a human to decide

Uncertainty in Bayesian modelling

- Observed inputs $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N$ and outputs $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^N$
- Capture distribution believed to have generated outputs
- Look at the first two moments:

What my deep model doesn't know...

Principled and practical uncertainty estimates in deep learning without changing a thing. Yarin Gal (yg279@cam.ac.uk), Zoubin Ghahramani (zg201@cam.ac.uk), University of Cambridge

From Bayesian modelling to Dropout

• Place prior dist. $p(\mathbf{W})$ on weights, making these r.v.s

- Given dataset \mathbf{X}, \mathbf{Y} , the r.v. \mathbf{W} has a posterior: $p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$
- Which is difficult to evaluate...
- We can define a simple distribution $q_{\theta}(\cdot)$ and approximate

 $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$

Inference with

and parameter M

= Dropout training.

Practical Uncertainty Estimates

Using dropout we fit a distribution...

• Use first moment for predictions:

$$\mathbb{E}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^T \widehat{\mathbf{y}}$$

• Use second moment for uncertainty (in regression):

$$\operatorname{Var}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^T \widehat{\mathbf{y}}_t^T \widehat{\mathbf{y}}_t - \mathbb{E}(\mathbf{y}^*)$$

with $\widehat{\mathbf{y}}_t \sim \mathsf{DropoutNetwork}(\mathbf{x}^*)$.

In more practical terms, given point x:

- drop units at test time
- repeat 10 times
- and look at mean and sample variance.
- Or in Python:
- y = [] for _ in xrange(10): y.append(model.output(x, dropout=True)) $y_mean = numpy.mean(y)$ y_var = numpy.var(y)

$(\mathbf{y}^*)^T \mathbb{E}(\mathbf{y}^*) + \tau^{-1} \mathbf{I}$

	\setminus	lodel		St	anc
		NIN		10.4	3 (L
	[DSN		9.37	(Le
	Augme	ented-D	SN	7.95	(Le
	Bayesia	an techr	niqu	es w	rith
- I - C - C - C - C - C - C - C - C - C	-A		A	X	y
	and a	1			-

More results at yarin.co/BCNN

Using the predictive variance

What would be the CO₂ level in Mauna Loa, Hawaii, *in 20 years' time*? • Normal dropout (weight averaging, 5 layers, ReLU units):

Same network, Bayesian perspective:

Online demos at yarin.co/blog

And in numbers...

	Avg. Test RMSE and Std. Errors			Avg. Test LL and Std. Errors			
Dataset	VĬ	PBP	Dropout	VI	PBP	Dropout	
Boston Housing	4.32 ± 0.29	3.01 ± 0.18	2.97 ± 0.85	-2.90 ± 0.07	-2.57 ± 0.09	-2.46 ±0.25	
Concrete Strength	7.19 ± 0.12	5.67 ± 0.09	5.23 ± 0.53	-3.39 ± 0.02	-3.16 ± 0.02	-3.04 ±0.09	
Energy Efficiency	2.65 ± 0.08	1.80 ± 0.05	1.66 ± 0.19	-2.39 ± 0.03	-2.04 ± 0.02	-1.99 ±0.09	
Kin8nm	0.10 ± 0.00	0.10 ± 0.00	0.10 ± 0.00	0.90 ± 0.01	0.90 ± 0.01	0.95 ± 0.03	
Naval Propulsion	$\textbf{0.01} \pm \textbf{0.00}$	0.01 ± 0.00	0.01 ± 0.00	3.73 ± 0.12	3.73 ± 0.01	3.80 ± 0.05	
Power Plant	4.33 ± 0.04	4.12 ± 0.03	4.02 ± 0.18	-2.89 ± 0.01	-2.84 ± 0.01	-2.80 ± 0.05	
Protein Structure	4.84 ± 0.03	4.73 ± 0.01	4.36 ± 0.04	-2.99 ± 0.01	-2.97 ± 0.00	$\textbf{-2.89} \pm \textbf{0.01}$	
Wine Quality Red	0.65 ± 0.01	0.64 ± 0.01	0.62 ± 0.04	-0.98 ± 0.01	-0.97 ± 0.01	-0.93 ±0.06	
Yacht Hydrodynamics	6.89 ± 0.67	1.02 ± 0.05	1.11 ± 0.38	-3.43 ± 0.16	-1.63 ± 0.02	-1.55 ±0.12	
Year Prediction MSD	$9.034 \pm NA$	$8.879 \pm NA$	$8.849 \pm \rm NA$	$-3.622 \pm NA$	$\textbf{-3.603} \pm \textbf{NA}$	-3.588 ±NA	

Table 1: Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves [20]), Probabilistic back-propagation (PBP, Hernández-Lobato and Adams [27]), and dropout uncertainty (Dropout).

More results at yarin.co/dropout

Full paper: "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning". Photos taken from Wikimedia or original work.

Using the predictive mean

CIFAR-10 Test Error (and Std.)

Bayesian technique dard Dropout _in et al., 2013) 10.27 ± 0.05 ee et al., 2014) $\boldsymbol{9.32\pm0.02}$ ee et al., 2014) 7.71 ± 0.09 existing CIFAR-10 state-of-the-art