
Pitfalls in the use of Parallel Inference for the
Dirichlet Process
Yarin Gal, Zoubin Ghahramani

mlg.eng.cam.ac.uk/yarin

December 2013

mlg.eng.cam.ac.uk/yarin

Outline

• The Dirichlet process

• Parallel inference

• Non-approximate parallel inference in the Dirichlet process

•What can go wrong

• How can we try to fix it

• Conclusions

2 of 25

The Dirichlet Process

Sampling from the Dirichlet process – the Chinese restaurant
process

I A restaurant with 4 tables and 2, 4, 4, and 6 customers sitting
around each one

3 of 25

The Dirichlet Process

Real world applications – Natural Language Processing

I Language modelling
I A derivative model (the Hierarchical Pitman–Yor process) was

shown to correspond to the state-of-the-art in language
modelling

I Machine Translation
I Used to obtain state-of-the-art results in Bayesian word

alignment

I Working with huge datasets (tens of GBs)

I Development cycle taking weeks at a time

I Usually using small values for the concentration parameter
(α = 0.1 is common)

4 of 25

The Dirichlet Process

I Inference is slow!

I A common problem with non-parametric techniques

I Possible solutions:

I Variational inference - an approximate approach

I Parallel MCMC inference

5 of 25

Parallel inference

Given a network with many nodes (computers in a network or cores
in a cluster), we would like to have an inference that:

I distributes the computational load evenly across the nodes,
I scales favourably with the number of nodes,
I has low overhead in the global steps,
I and converges to the true posterior distribution

6 of 25

Parallel inference in the DP

I Approximate parallel inference (Asuncion, Smyth, and Welling
[2008])

I Gives slower convergence (Williamson et al., [2013])

I Non-approximate parallel inference using a re-parametrisation
of the Dirichlet process

I Recently suggested, independently, by Lovell, Adams, and
Mansingka [2012] and Williamson, Dubey, and Xing [2013]

7 of 25

Parallel inference in the DP

Given α > 0 and base distribution H

γ ∼ DirK (αµ1, ..., αµK)

Gk ∼ DP (αµk ,H)

G =
K∑

k=1

γkGk

for some given (µk)
K
1 where

∑K
k=1 µk = 1 and µk ≥ 0 (one would

usually choose µ1 = 1
K , ..., µK = 1

K)

I We sample γ to decide how much data to send to each node,

I perform DP inference independently on each one,

I and collect the results at the end

8 of 25

Parallel inference in the DP
For a network with 10 nodes we split the data using a sample from
a Dirichlet distribution with 10 components:

I Each table corresponding to a single node and each customer
to a data point sent to that node

9 of 25

However...

However...

I Samples from the Dirichlet distribution with parameter smaller
than 1 have most of the mass concentrated around the corners
of the simplex

10 of 25

However...

I and in the limit of K we obtain samples from the Dirichlet
process with parameter α:

DP (α)

I This means that the expected number of nodes used is the
same as the expected number of tables in a restaurant with
parameter α

I (we can augment the number of nodes by sending multiple jobs
to the same machine)

11 of 25

However...

Actual samples from a Dirichlet process with 50 data points don’t
look like this:

I The expected number of tables in a restaurant with n
customers is given by

α log(n)

12 of 25

However...

So a sample from a Dirichlet process with 50 data points would look
more like this:

Which means that only a constant number of nodes, dependent on
the number of data points, would be used.

13 of 25

However...

Even worse, the sizes of the different tables follows an exponential
decay, so the the number of customers sitting next to each table
would actually be

C, Cq, Cq2, Cq3, · · ·

for q =
α

1 + α
and C =

1
1 + α

, so an actual sample would be...

14 of 25

However...

6%

94%

for n = 50 data points and α = 0.1.
15 of 25

However...

So for n = 50 data points and α = 0.1 the parallel inference would
send 94% of the data to a single machine.

I Sampling from the finite Dirichlet distribution with K
components (nodes in a network) and different parameter
values we get a load balance:

of nodes α = 0.1 α = 2
K = 101 94%, 6%, 0%, 0%, ... 54%, 23%, 12%, 6%, ...
K = 102 94%, 6%, 0%, 0%, ... 48%, 22%, 12%, 7%, ...
K = 103 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...
K = 104 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...
K = 105 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...

Figure: Average load on each node in decreasing order

16 of 25

However...

And in general, for a Dirichlet process with parameter α, 95% of the
data for would be sent to

≈ 1.3
log(α+ 1)− log(α)

nodes,

I independently of the size of the dataset,

I independently of the number of nodes in the network,

I and dependent only on the parameter used to model the
data

17 of 25

What can we do?

What can we do?

I We can try to initialise the sampler near the posterior

I We might want to use the Pitman–Yor process to distribute the
data

I We could use approximate inference with Metropolis–Hastings
corrections

I We can develop better approximate inference approaches

I Don’t use the Dirichlet process

I Use a partly-parametric partly-non-parametric approach

18 of 25

What can we do?

We can try to initialise the sampler near the posterior

I When we know the data has many clusters which are evenly
balanced

I Initialise the sampler randomly with many evenly sized clusters

I ... however still doesn’t answer many real-world cases

I ... and the distribution of the clusters between the nodes has
the same skewed balance

19 of 25

What can we do?

We could use the Pitman–Yor process to distribute the data

I This would yield
∝ nα

number of tables used

I ... but still an exponential decay in the sizes of the tables

20 of 25

What can we do?

We could also use approximate inference with Metropolis–Hastings
corrections

I Was suggested by Doshi, Knowles, Mohamed, and
Ghahramani [2009] for the Indian-buffet process

I We sample from the Markov chain and use
Metropolis–Hastings corrections to discard some of the
samples

I Recently implemented by Chang and Fisher III [2013]

I ... but we should be careful with the global step overhead

21 of 25

What can we do?

Develop better approximate inference

I Current approach uses Gibbs sampling after distributing the
data evenly across the different nodes and in the global step
we sync. the state of the nodes (Asuncion, Smyth, and Welling
[2008])

I Was reported by Williamson et al., [2013] to have slow
convergence

22 of 25

What can we do?

Don’t use the Dirichlet process

I Recently shown that the Dirichlet process is inconsistent in the
number of cluster

I An alternative distribution for clustering has been suggested:
using a Poisson distribution mixture of Dirichlet distributions

I Might open the door for more efficient parallel inference

23 of 25

What can we do?

And finally, use a partly-parametric partly-non-parametric mixture of
the Dirichlet-K distribution and Dirichlet process for clustering

I Would allow us to use an unbounded number of clusters with at
least K clusters

I The distribution of the load would be partly-balanced

24 of 25

Conclusions

Conclusions —

I Scaling up inference for the Dirichlet process is still an open
problem

I ... which has to be solved if we want it to be used in industry
and real-world applications!

25 of 25

	 The Dirichlet process
	 Parallel inference
	 Non-approximate parallel inference in the Dirichlet process
	 What can go wrong
	 How can we try to fix it
	 Conclusions

