Dropout in Recurrent Neural Networks

A Theoretically Grounded Dropout Variant in RNNs using Variational Inference
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RNNs overfit quickly
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RNNs are awesome: but also overfit very quickly.

This means...

e WWe can't use large models
e \We have to use early stopping
e We can't use small data

e \We have to waste data for validation sets

Existing dropout in RNINs

Let's use dropout then. But lots of research has claimed that that's a bad idea:
e Pachitariu & Sahani, 2013

—noise added in the recurrent connections of an RNN leads to model instabilities
e Bayer et al., 2013

—with dropout, the RNN's dynamics change dramatically
e Pham et al., 2014

—dropout in recurrent layers disrupts the RNN's ability to model sequences
e Zaremba et al., 2014

—applying dropout to the non-recurrent connections alone results in im-
proved performance

e Bluche et al., 2015

—exploratory analysis of the performance of dropout before, inside, and after
the RNN's

e Moon et al., 2015

— Drop elements in the LSTM'’s cell using the same mask at every time step.

Many settled on using dropout for
inputs and outputs alone.

VI based dropout in RNNs

Uses the same dropout mask at each time step, including recurrent layers, and
drops word types at random throughout the sentence:
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Why does it make sense?

e Input: sequence of vectors x = {x1, ..., x7} with T" time steps
e Let w = {all model weight matrices} and put prior p(w) (e.g. standard Gaussian)
e Define ht — fﬁj(Xt, ht—l)

—single recurrent unit transition. E.g. tanh(Wx; + Uh;_; + b) (similarly for
LSTM, GRU)

o Set f¥(x) = £(hr)

—model output (e.g. affine transformation of last state, or function of all states)
e Lastly, define p(y|f“(x))

—model likelihood on random function output f¥(x). E.g. N(y; f¥(x), o)

e Variational interpretation of dropout [Gal and Ghahramani, 2015]:
Dropout objective minimises

KL (g(e0)[p(w]X. Y)) o [ a(w) log p(Y[X. w)dw + KL(g(w) [p(w)

-3 / q(w) log pl(y:[£¥(x;))dw + KL(g(w)[[p(w)).

with g(w) factorising over weight columns w;;, e.g. ¢(W;x) = pdg + (1 — p)om,,.
e But

/ 2(w) log p(y £ (x) Jdw = / 4(w) log p(y £ (£ (xp, £, ho)...)))dw,

e So using MC integration with @; ~ q(w),

N —~ = ~
Lorm—Y log p(yi £ (69 i, £ (i, h0>...>)> KL (s(w) || p()).

using random mask to set weight columns to zero (dropping units),

repeating the same mask at each time step for all weight
matrices (including embedding layer)

Results

e Penn Treebank language modelling

Medium LSTM Large LSTM
Validation Test ~ WPS  Validation Test ~ WPS
Non-regularized (early stopping) 121.1 121.7 55K 128.3 1274 25K
Moon et al. [2015] 100.7 97.0 4.8K| 122.9 118.7 3K
Moon et al. [2015] +-emb dropout ~ 88.9 86.5  4.8K  88.8 86.0 3K
Zaremba et al. [2014] 36.2 827 55K 822 784 25K
Variational (tied weights) 81.8+ 0.2 79.7+0.1 47K 77.3+0.2 75.0+0.1 24K
Variational (tied weights, MC) — 79.0+0.1 — — 74.14+00 —
Variational (untied weights) 81.9+£0.2 79.7+0.1 27K 77.94+0.3 75.2+£0.2 1.6K
Variational (untied weights, MC) — 786 +0.1 -— — 73.4+00 -

Single model perplexity (on test and validation sets). Two LSTM sizes are
compared using Zaremba, Sutskever, and Vinyals [2014]'s setup.
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Validation perplexity (medium model) with dropout regularisation alone

e Sentiment analysis (raw Cornell film reviews corpus, Pang and Lee [2005])
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Different dropout probabilities used with the recurrent layer (py;) and embedding

layer (pg):
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