
Uncertainty in Deep Learning

Yarin Gal

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Gonville and Caius College September 2016

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Yarin Gal
September 2016

Acknowledgements

I would like to thank the many people that helped through comments and discussions
during the writing of the various papers composing this thesis. I would like to thank
(in alphabetical order) Christof Angermueller, Yoshua Bengio, Phil Blunsom, Yutian
Chen, Roger Frigola, Zoubin Ghahramani, Shane Gu, Alex Kendall, Yingzhen Li, Rowan
McAllister, Carl Rasmussen, Ilya Sutskever, Gabriel Synnaeve, Nilesh Tripuraneni,
Richard Turner, Oriol Vinyals, Adrian Weller, Mark van der Wilk, Yan Wu, and many
other reviewers for their helpful comments and discussions. I would further like to thank
my collaborators Rowan McAllister, Carl Rasmussen, Richard Turner, Mark van der
Wilk, and special thanks to my supervisor Zoubin Ghahramani.

Lastly, I would like to thank Google for supporting three years of my PhD with
the Google European Doctoral Fellowship in Machine Learning, and Qualcomm for
supporting my fourth year with the Qualcomm Innovation Fellowship.

Abstract

Deep learning has attracted tremendous attention from researchers in various fields of
information engineering such as AI, computer vision, and language processing [Kalch-
brenner and Blunsom, 2013; Krizhevsky et al., 2012; Mnih et al., 2013], but also from
more traditional sciences such as physics, biology, and manufacturing [Anjos et al., 2015;
Baldi et al., 2014; Bergmann et al., 2014]. Neural networks, image processing tools
such as convolutional neural networks, sequence processing models such as recurrent
neural networks, and regularisation tools such as dropout, are used extensively. However,
fields such as physics, biology, and manufacturing are ones in which representing model
uncertainty is of crucial importance [Ghahramani, 2015; Krzywinski and Altman, 2013].
With the recent shift in many of these fields towards the use of Bayesian uncertainty
[Herzog and Ostwald, 2013; Nuzzo, 2014; Trafimow and Marks, 2015], new needs arise
from deep learning.

In this work we develop tools to obtain practical uncertainty estimates in deep
learning, casting recent deep learning tools as Bayesian models without changing either
the models or the optimisation. In the first part of this thesis we develop the theory
for such tools, providing applications and illustrative examples. We tie approximate
inference in Bayesian models to dropout and other stochastic regularisation techniques,
and assess the approximations empirically. We give example applications arising from
this connection between modern deep learning and Bayesian modelling such as active
learning of image data and data-efficient deep reinforcement learning. We further
demonstrate the tools’ practicality through a survey of recent applications making use of
the suggested techniques in language applications, medical diagnostics, bioinformatics,
image processing, and autonomous driving. In the second part of the thesis we explore
the insights stemming from the link between Bayesian modelling and deep learning, and
its theoretical implications. We discuss what determines model uncertainty properties,
analyse the approximate inference analytically in the linear case, and theoretically
examine various priors such as spike and slab priors.

Table of contents

Nomenclature xii

1 Introduction: The Importance of Knowing What We Don’t Know 1
1.1 Deep learning . 2
1.2 Model uncertainty . 7
1.3 Model uncertainty and AI safety . 9

1.3.1 Physician diagnosing a patient . 9
1.3.2 Autonomous vehicles . 9
1.3.3 Critical systems and high frequency trading 10

1.4 Applications of model uncertainty . 11
1.4.1 Active learning . 11
1.4.2 Efficient exploration in deep reinforcement learning 12

1.5 Model uncertainty in deep learning . 13
1.6 Thesis structure . 16

2 The Language of Uncertainty 17
2.1 Bayesian modelling . 17

2.1.1 Variational inference . 19
2.2 Bayesian neural networks . 20

2.2.1 Brief history . 20
2.2.2 Modern approximate inference . 23
2.2.3 Challenges . 27

3 Bayesian Deep Learning 29
3.1 Advanced techniques in variational inference 30

3.1.1 Monte Carlo estimators in variational inference 30
3.1.2 Variance analysis of Monte Carlo estimators in variational inference 34

3.2 Practical inference in Bayesian neural networks 37

x Table of contents

3.2.1 Stochastic regularisation techniques 39
3.2.2 Stochastic regularisation techniques as approximate inference . . . 41
3.2.3 KL condition . 44

3.3 Model uncertainty in Bayesian neural networks 47
3.3.1 Uncertainty in classification . 51
3.3.2 Difficulties with the approach . 54

3.4 Approximate inference in complex models 56
3.4.1 Bayesian convolutional neural networks 56
3.4.2 Bayesian recurrent neural networks 58

4 Uncertainty Quality 62
4.1 Effects of model structure on uncertainty 62
4.2 Effects of approximate posterior on uncertainty 63

4.2.1 Regression . 66
4.2.2 Classification . 71

4.3 Quantitative comparison . 73
4.4 Bayesian convolutional neural networks 78

4.4.1 Model over-fitting . 80
4.4.2 MC dropout in standard convolutional neural networks 80
4.4.3 MC estimate convergence . 82

4.5 Recurrent neural networks . 83
4.6 Heteroscedastic uncertainty . 85

5 Applications 88
5.1 Recent literature . 88

5.1.1 Language applications . 89
5.1.2 Medical diagnostics and bioinformatics 89
5.1.3 Computer vision and autonomous driving 90

5.2 Active learning with image data . 91
5.3 Exploration in deep reinforcement learning 95
5.4 Data efficiency in deep reinforcement learning 97

5.4.1 PILCO . 98
5.4.2 Deep PILCO . 100
5.4.3 Experiment . 102

6 Deep Insights 105
6.1 Practical considerations for getting good uncertainty estimates 105

Table of contents xi

6.2 What determines what our uncertainty looks like? 106
6.3 Analytical analysis in Bayesian linear regression 107
6.4 ELBO correlation with test log likelihood 111
6.5 Discrete prior models . 118
6.6 Dropout as a proxy posterior in spike and slab prior models 121

6.6.1 Historical context . 121
6.6.2 Spike and slab prior models . 122
6.6.3 Related work . 123
6.6.4 Approximate inference with free-form variational distributions . . 123
6.6.5 Proxy optimal approximating distribution 124
6.6.6 Spike and slab and dropout . 126

6.7 Epistemic, Aleatoric, and Predictive uncertainties 127

7 Future Research 133

References 137

Appendix A KL condition 149

Appendix B Figures 153

Appendix C Spike and slab prior KL 159

Nomenclature

Roman Symbols

A matrix

a vector

a scalar

W Weight matrix

D Dataset

X Dataset inputs (matrix with N rows, one for each data point)

Y Dataset outputs (matrix with N rows, one for each data point)

xn Input data point for model

yn Output data point for model

ŷn Model output on input xn

Q Input dimensionality

D Output dimensionality

L Number of network layers

Ki Number of network units in layer i

Greek Symbols

ϵ a random variable

ϵ̂ a random variable realisation

Nomenclature xiii

ϵ a vector of random variables

ω a set of random variables (for example random weight matrices)

Superscripts

ω parameters of a function (e.g. fω)

Subscripts

1 variable (e.g. W1 : Q×K,W2 : K ×D)

1, ij specific element of variable W1 (e.g. w1,ij denotes the element at row i column j

of the variable W1)

i row / column of a matrix (with bold letter, e.g. xi)

ij specific element of a matrix (e.g. xij)

q with reference to a variable W : Q × K, wq denotes a row, and wk denotes a
column of W

Other Symbols

N The Gaussian distribution

MN The matrix Gaussian distribution

R The real numbers

Acronyms / Abbreviations

BNN Bayesian neural network

ELBO Evidence lower bound

KL Kullback–Leibler

CDF Cumulative distribution function

CNN Convolutional neural network

GP Gaussian process

MC Monte Carlo

xiv Nomenclature

MCMC Markov chain Monte Carlo

MDL Minimum description length

NN Neural network

pdf Probability density function

RL Reinforcement learning

RMSE Root mean square error

RNN Recurrent neural network

SRT Stochastic regularisation technique (such as dropout, multiplicative Gaussian noise,
etc.)

VI Variational inference

a.e. Almost everywhere

e.g. Exempli gratia (“for the sake of an example”)

i.e. Id est (“it is”)

i.i.d. Independent and identically distributed

s.t. Such that

w.r.t. With respect to

Notation

We use the following notation throughout the work. Bold lower case letters (x) denote
vectors, bold upper case letters (X) denote matrices, and standard weight letters (x)
denote scalar quantities. We use subscripts to denote either entire rows / columns (with
bold letters, xi), or specific elements (xij). We use subscripts to denote variables as well
(such as W1 : Q ×K,W2 : K ×D), with corresponding lower case indices to refer to
specific rows / columns (wq,wk for the first variable and wk,wd for the second). We
use a second subscript to denote the element index of a specific variable: w1,qk denotes
the element at row q column k of the variable W1. Lastly, we use ω to denote a set of
variables (e.g. ω = {W1, ...,WL}) and superscript fω to denote a function parametrised
by the variables ω.

Chapter 1

Introduction:
The Importance of Knowing What
We Don’t Know

In the Bayesian machine learning community we work with probabilistic models and
uncertainty. Models such as Gaussian processes, which define probability distributions
over functions, are used to learn the more likely and less likely ways to generalise from
observed data. This probabilistic view of machine learning offers confidence bounds for
data analysis and decision making, information that a biologist for example would rely
on to analyse her data, or an autonomous car would use to decide whether to brake
or not. In analysing data or making decisions, it is often necessary to be able to tell
whether a model is certain about its output, being able to ask “maybe I need to use more
diverse data? or change the model? or perhaps be careful when making a decision?”.
Such questions are of fundamental concern in Bayesian machine learning, and have been
studied extensively in the field [Ghahramani, 2015]. When using deep learning models
on the other hand [Goodfellow et al., 2016], we generally only have point estimates of
parameters and predictions at hand. The use of such models forces us to sacrifice our
tools for answering the questions above, potentially leading to situations where we can’t
tell whether a model is making sensible predictions or just guessing at random.

Most deep learning models are often viewed as deterministic functions, and as a result
viewed as operating in a very different setting to the probabilistic models which possess
uncertainty information. Perhaps for this reason it is quite surprising to see how close
modern deep learning is to probabilistic modelling. In fact, we shall see that we can get
uncertainty information from existing deep learning models for free—without changing

2 Introduction: The Importance of Knowing What We Don’t Know

a thing. The main goal of this thesis is to develop such practical tools to reason about
uncertainty in deep learning.

1.1 Deep learning

To introduce deep learning, I shall start from the simplest of the statistical tools: linear
regression [Gauss, 1809; Legendre, 1805; Seal, 1967]. In linear regression we are given
a set of N input-output pairs {(x1,y1), ..., (xN ,yN)}, for example CO2-temperature
observations, or the average number of accidents for different driving speeds. We assume
that there exists a linear function mapping each xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise). Our model in this case is a linear transformation of the
inputs: f(x) = xW + b, with W some Q by D matrix over the reals and b a real vector
with D elements. Different parameters W,b define different linear transformations, and
our aim is to find parameters that, for example, would minimise the average squared
error over our observed data: 1

N

∑
i ||yi − (xiW + b)||2.

In more general cases where the relation between x and y need not be linear, we may
wish to define a non-linear function f(x) mapping the inputs to the outputs. For this we
can resort to linear basis function regression [Bishop, 2006; Gergonne, 1815; Smith, 1918],
where the input x is fed through K fixed scalar-valued non-linear transformations ϕk(x)
to compose a feature vector Φ(x) = [ϕ1(x), ..., ϕK(x)]. We then perform linear regression
with this vector instead of x itself. The transformations ϕk are our basis functions, and
with scalar input x, these can be wavelets parametrised by k, polynomials of different
degrees xk, or sinusoidals with various frequencies. When ϕk(x) := xk and K = Q, basis
function regression reduces to linear regression. The basis functions are often assumed to
be fixed and orthogonal to each other, and an optimal combination of these functions is
sought.

Relaxing the constraint for the basis functions to be fixed and mutually orthogonal, we
can use parametrised basis functions instead [Bishop, 2006]. For example, we may define
the basis functions to be ϕwk,bk

k where the scalar-valued function ϕk is applied to the
inner-product ⟨wk,x⟩+ bk. In this case ϕk are often defined to be identical for all k, for
example ϕk(·) = sin(·) giving ϕwk,bk

k (x) = sin(⟨wk,x⟩+ bk). The feature vector composed
of the basis functions’ output is again fed as the input to a linear transformation. The
model output can then be written more compactly as f(x) = ΦW1,b1(x)W2 + b2 with
ΦW1,b1(x) = ϕ(W1x + b1), W1 a matrix of dimensions Q by K, b1 a vector with K

elements, W2 a matrix of dimensions K by D, and b2 a vector with D elements. To

1.1 Deep learning 3

perform regression now we can find W1,b1 as well as W2,b2 that minimise the average
squared error over our observed data, ||y− f(x)||2.

The most basic model in deep learning can be described as a hierarchy of these
parametrised basis functions (such a hierarchy is referred to as a neural network for
historical reasons, with each feature vector in the hierarchy referred to as a layer). In the
simplest setting of regression we would simply compose multiple basis function regression
models, and for classification we would further compose a logistic function at the end
(which “squashes” the linear model’s output to obtain a probability vector). Each layer
in the hierarchy can be seen as a “building block”, and the modularity in the composition
of such blocks embodies the versatility of deep learning models. The simplicity of each
block, together with the many possibilities of model combinations, might be what led
many engineers to work in the field. This in turn has led to the development of tools
that work well and scale well.

We will continue with a review of simple neural network models, relating the notation
in the field of deep learning to the mathematical formalism of the above linear basis
function regression models. We then extend these to specialised models designed to
process image data and sequence data. In the process we will introduce some of the
terminology and mathematical notation used throughout the work. We will describe
the models formally but succinctly, which will allow us to continue our discussion in the
introduction using a more precise language.

Feed-forward neural networks (NNs). We will first review a neural network model
[Rumelhart et al., 1985] for a single hidden layer. This is done for ease of notation, and
the generalisation to multiple layers is straightforward. We denote by x the model input
(referred to as input layer, a row vector with Q elements), and transform it with an
affine transformation to a row vector with K elements. We denote by W1 the linear
map (referred to as a weight matrix) and by b the translation (referred to as a bias)
used to transform the input x to obtain xW1 + b. An element-wise non-linearity σ(·)
(such as the rectified linear1 (ReLU) or TanH) is then applied to the transformation
output, resulting in a hidden layer with each element referred to as a network unit. This
is followed by a second linear transformation with weight matrix W2 mapping the hidden
layer to the model output (referred to as output layer, a row vector with D elements).
These two layers are also referred to as inner-product layers. We thus have W1 is a
Q ×K matrix, W2 is a K ×D matrix, and b is a K dimensional vector. A standard

1relu(x) = max(x, 0).

4 Introduction: The Importance of Knowing What We Don’t Know

network would output
ŷ = σ(xW1 + b)W2

given some input2 x.
To use the network for regression we might use the Euclidean loss,

EW1,W2,b(X,Y) = 1
2N

N∑
i=1
||yi − ŷi||2 (1.1)

where {y1, ...,yN} are N observed outputs, and {ŷ1, ..., ŷN} are the outputs of the model
with corresponding observed inputs {x1, ...,xN}. Minimising this loss w.r.t. W1,W2,b
would hopefully result in a model that can generalise well to unseen test data Xtest,Ytest.

To use the model for classification, predicting the probability of x being classified with
a label in the set {1, ..., D}, we pass the output of the model ŷ through an element-wise
softmax function to obtain normalised scores: p̂d = exp(ŷd)/ (∑d′ exp(ŷd′)). Taking the
log of p̂d (with d being the observed label) results in a softmax loss,

EW1,W2,b(X,Y) = − 1
N

N∑
i=1

log(p̂i,di
) (1.2)

where di ∈ {1, 2, ..., D} is the observed class for input i.
A big difficulty with the models above is their tendency to overfit—decrease their

loss on the training set X,Y while increasing their loss on the test set Xtest,Ytest. For
this reason a regularisation term is often added during optimisation. We often use L2

regularisation for each parameter weighted by some weight decays λi, resulting in a
minimisation objective (often referred to as a cost),

L(W1,W2,b) := EW1,W2,b(X,Y) + λ1||W1||2 + λ2||W2||2 + λ3||b||2. (1.3)

The above single hidden layer NN with the Euclidean loss is identical to a basis function
regression model. Extending this simple NN model to multiple layers results in a more
expressive model.

Remark (Model expressiveness). An intuitive definition for model expressiveness
might be the complexity of functions a model can capture (defining what complex
functions are is not trivial by itself, although when dealing with polynomials one
might define polynomials of high degree to be more complex than polynomials of

2Note that the output bias was omitted here; this is equivalent to centring the observed outputs.

1.1 Deep learning 5

low degree). In this sense hierarchical basis function models are more expressive
than their “flat” counter-parts. It is interesting to note that even though “flat”
basis function regression can model any function up to any given precision with
a large enough number of basis functions [Cybenko, 1989; Hornik, 1991], with a
hierarchy we can use much smaller models. Consider the example of basis function
regression with polynomial basis functions ϕk ∈ {1, x, x2, ..., xK−1}: the set of
functions expressible with these K basis functions is {all polynomials up to degree
K − 1}. Composing the basis function regression model L times results in a
model that can capture (a subset of) functions from the set {all polynomials up to
degree (K − 1)L}. A “flat” model capturing polynomials up to degree (K − 1)L

would require KL basis functions, whereas a hierarchical model with similar (but
not identical) expressiveness would only require K × L basis functions. Model
expressiveness is further discussed in [Bengio and LeCun, 2007] for example, where
binary circuits are used as an illustrative example.

The simple model structure presented above can be extended to specialised models,
aimed at treating image inputs or sequence inputs. We will next review these models
quickly.

Convolutional neural networks (CNNs). CNNs [LeCun et al., 1989; Rumelhart
et al., 1985] are popular deep learning tools for image processing, which can solve tasks
that until recently were considered to lie beyond our reach [Krizhevsky et al., 2012;
Szegedy et al., 2014]. The model is made of a recursive application of convolution and
pooling layers, followed by inner product layers at the end of the network (simple NNs
as described above). A convolution layer is a linear transformation that preserves spatial
information in the input image (depicted in figure 1.1). Pooling layers simply take the
output of a convolution layer and reduce its dimensionality (by taking the maximum of
each (2, 2) block of pixels for example). The convolution layer will be explained in more
detail in section §3.4.1.

Similarly to CNNs, recurrent neural networks are specialised models designed to
handle sequence data.

Recurrent neural networks (RNNs). RNNs [Rumelhart et al., 1985; Werbos, 1988]
are sequence-based models of key importance for natural language understanding, lan-
guage generation, video processing, and many other tasks [Kalchbrenner and Blunsom,
2013; Mikolov et al., 2010; Sundermeyer et al., 2012; Sutskever et al., 2014]. The model’s

http://xkcd.com/1425/
https://www.youtube.com/watch?v=LY7x2Ihqjmc
https://www.youtube.com/watch?v=LY7x2Ihqjmc

6 Introduction: The Importance of Knowing What We Don’t Know

Kernel
height

cv
cv

cv

Width

H
ei

gh
t

Channels

cv
cv

Kernel
width

cv
cv

cv
cv

cv

Kernel 1
of

kernels

Layer input Layer outputKernels

cvKernel 2

Fig. 1.1 A convolution layer in a CNN. The input image (Layer input) has a given height,
width, and channels (RGB for example). Each kernel is convolved with each image patch
(a single image patch is depicted under the left-most circle highlight). For example, kernel
2 preserves the blue channel only, resulting in a blue pixel in Layer output. Kernel 1, on
the other hand, ignores the blue channel resulting in a yellow pixel in the output layer.
This is a simplified view of convolutions: kernels are often not composed of the same
value in each spatial location, but rather act as edge detectors or feature detectors.

input is a sequence of symbols, where at each time step a simple neural network (RNN
unit) is applied to a single symbol, as well as to the network’s output from the previous
time step. RNNs are powerful models, showing superb performance on many tasks.

We will concentrate on simple RNN models for brevity of notation. Given input
sequence x = [x1, ...,xT] of length3 T , a simple RNN is formed by a repeated application
of a function fh. This generates a hidden state ht for time step t:

ht = fh(xt,ht−1) = σ(xtWh + ht−1Uh + bh).

for some non-linearity σ. The model output can be defined, for example, as

ŷ = fy(hT) = hTWy + by.

The definition of LSTM and GRU—more complicated RNN models—is given later in
section §3.4.2.

3Note the overloading of notation used here: xi is a vector in RQ, and x is a sequence of vectors of
length T .

1.2 Model uncertainty 7

1.2 Model uncertainty

The models above can be used for applications as diverse as skin cancer diagnosis from
lesion images, steering in autonomous vehicles, and dog breed classification in a website
where users upload pictures of their pets. For example, given several pictures of dog
breeds as training data—when a user uploads a photo of his dog—the hypothetical
website should return a prediction with rather high confidence. But what should happen
if a user uploads a photo of a cat and asks the website to decide on a dog breed?

The above is an example of out of distribution test data. The model has been trained
on photos of dogs of different breeds, and has (hopefully) learnt to distinguish between
them well. But the model has never seen a cat before, and a photo of a cat would lie
outside of the data distribution the model was trained on. This illustrative example can
be extended to more serious settings, such as MRI scans with structures a diagnostics
system has never observed before, or scenes an autonomous car steering system has never
been trained on. A possible desired behaviour of a model in such cases would be to
return a prediction (attempting to extrapolate far away from our observed data), but
return an answer with the added information that the point lies outside of the data
distribution (see a simple depiction for the case of regression in figure 1.2). I.e. we want
our model to possess some quantity conveying a high level of uncertainty with such
inputs (alternatively, conveying low confidence).

Other situations that can lead to uncertainty include

• noisy data (our observed labels might be noisy, for example as a result of measure-
ment imprecision, leading to aleatoric uncertainty),

• uncertainty in model parameters that best explain the observed data (a large
number of possible models might be able to explain a given dataset, in which case
we might be uncertain which model parameters to choose to predict with),

• and structure uncertainty (what model structure should we use? how do we specify
our model to extrapolate / interpolate well?).

The latter two uncertainties can be grouped under model uncertainty (also referred to
as epistemic uncertainty). Aleatoric uncertainty and epistemic uncertainty can then be
used to induce predictive uncertainty, the confidence we have in a prediction.

8 Introduction: The Importance of Knowing What We Don’t Know

(a) Standard deep learning model

1 0 1 2 3
20
15
10

5
0
5

10
15
20

(b) Probabilistic model

Fig. 1.2 Predictive mean and uncertainties on the Mauna Loa CO2 concen-
trations dataset, for various models, with out of distribution test point x∗.
In red is the observed function (left of the dashed blue line); in blue is the predictive
mean plus/minus two standard deviations. Different shades of blue represent half a
standard deviation. Marked with a dashed red line is a point far away from the data:
standard deep learning models confidently predict an unreasonable value for the point;
the probabilistic model predicts an unreasonable value as well but with the additional
information that the model is uncertain about its prediction.

Remark (A note on terminology). The word epistemic comes from “episteme”,
Greek for “knowledge”, i.e. epistemic uncertainty is “knowledge uncertainty”.
Aleatoric comes from the Latin “aleator”, or “dice player”, i.e. aleatoric uncer-
tainty is the “dice player’s” uncertainty. Epistemic and aleatoric uncertainties are
sometimes referred to as reducible and irreducible uncertainties respectively, since
epistemic uncertainty can be reduced with more data (knowledge), while aleatoric
uncertainty cannot (the stochasticity of a dice roll cannot be reduced by observing
more rolls). We will avoid this terminology though, since aleatoric uncertainty can
also be seen as “reducible” through an increase in measurement precision, i.e. by
changing the underlying system with which we perform the experiment.

Uncertainty information is often used in the life sciences, as discussed in the Nature
papers by Herzog and Ostwald [2013]; Krzywinski and Altman [2013]; Nuzzo [2014],
as well as the entertaining case in [Trafimow and Marks, 2015]. In such fields it is
quite important to quantify our confidence about the models’ predictions. Uncertainty
information is also important for the practitioner. Understanding if a model is under-
confident or falsely over-confident (i.e. its uncertainty estimates are too small) can help
get better performance out of it. Recognising that test data is far from the training data
we could augment the training data for example.

But perhaps much more important, model uncertainty information can be used in
systems that make decisions that affect human life—either directly or indirectly—as
discussed next.

http://www.nature.com/news/psychology-journal-bans-p-values-1.17001

1.3 Model uncertainty and AI safety 9

1.3 Model uncertainty and AI safety

With recent engineering advances in the field of machine learning, systems that until
recently were only applied to toy data are now being deployed in real-life settings.
Among these settings are scenarios in which control is handed-over to automated systems
in situations which have the possibility to become life-threatening to humans. These
include automated decision making or recommendation systems in the medical domain,
autonomous control of drones and self driving cars, the ability to affect our economy
on a global scale through high frequency trading, as well as control of critical systems.
These can all be considered under the umbrella field of AI safety.

This interpretation of AI safety is rather different to other interpretations given in the
field, which mostly concentrate on reinforcement learning (RL) settings. For example,
some look at the design of environments for self-learning agents that do not allow the
agent to exploit deficiencies in the learning process itself (such as “reward hacking”;
see for example [Amodei et al., 2016]). In contrast, I will discuss scenarios in which
certain decisions made by a machine learning model trained in a supervised setting might
endanger human life (i.e. settings in which a model incorrectly mapping inputs to outputs
can lead to undesirable consequences). In some of these scenarios, relying on model
uncertainty to adapt the decision making process might be key to preventing unintended
behaviour.

1.3.1 Physician diagnosing a patient

When a physician advises a patient to use certain drugs based on a medical record
analysis, the physician would often rely on the confidence of the expert analysing the
medical record. The introduction of systems such as automated cancer detection based
on MRI scans though could make this process much more complicated. Even at the
hands of an expert, such systems could introduce biases affecting the judgement of the
expert. A system encountering test examples which lie outside of its data distribution
could easily make unreasonable suggestions, and as a result unjustifiably bias the expert.
However, given model confidence an expert could be informed at times when the system
is essentially guessing at random.

1.3.2 Autonomous vehicles

Autonomous systems can range from a simple robotic vacuum scuttering around the
floor, to self-driving cars transporting people and goods from one place to another. These

10 Introduction: The Importance of Knowing What We Don’t Know

systems can largely be divided into two groups: those relying on rule-based systems to
control their behaviour, and those which can learn to adapt their behaviour to their
environment. Both can make use of machine learning tools. The former group through
low-level use of machine learning algorithms for feature extraction, and the latter one
through reinforcement learning.

With self-driving cars, low level feature extraction such as image segmentation and
image localisation are used to process raw sensory input [Bojarski et al., 2016]. The
output of such models is then fed into higher-level decision making procedures. The
higher-level decision making can be done through expert systems for example relying on a
fixed set of rules (“if there is a cyclist to your left, do not steer left”). However, mistakes
done by lower-level machine learning components can propagate up the decision making
process and lead to devastating results. One concrete example demonstrating the risk of
such approaches, in an assisted driving system, is the failure of a low-level component to
distinguish the white side of a turning trailer from a bright sky, which led to the first
fatality of an assisted driving system [NHTSA, 2017]. In such modular systems, one could
use the model’s confidence in low-level components and make high-level decisions given
this uncertainty information. For example, a segmentation system which can identify its
uncertainty in distinguishing between the sky and another vehicle could alert the user to
take control over the steering.

1.3.3 Critical systems and high frequency trading

As a final example, it is interesting to notice that control over critical systems is slowly
being handed over to machine learning systems. This can happen in a post office, sorting
letters according to their zip code [LeCun and Cortes, 1998; LeCun et al., 1998], or
in a nuclear power plant with a system responsible for critical infrastructure [Linda
et al., 2009]. Even in high frequency trading—where computers are given control over
systems that could potentially destabilise entire economic markets—issuing an unusual
trading command could cause a calamity. A possible solution, when using rule-based
decision making, is to rely on formal program verification systems. Such systems allow
the developer to verify the program is working as intended before deployment. But
machine learning-based decision making systems do not allow this. What should a system
do in the case of outputs with high uncertainty?

With model confidence at hand one possible solution would be to treat uncertain
outputs as special cases explicitly. In the case of a critical system we might decide to
pass the input to a human to make a decision. Alternatively, one could use a simple and

1.4 Applications of model uncertainty 11

fast model to perform predictions, and use a more elaborate but slower model only for
inputs on which the weak model is uncertain.

In this work we will develop the tools required to reason about model confidence in
deep learning, which could be applied in the scenarios discussed above. This will be by
developing a general framework that can be applied to existing tools. This in turn allows
the continued use of existing systems which have proven themselves useful, and for which
large amounts of research have already been dedicated. Concrete examples of the use of
these developments in the settings mentioned above will be given in section §5.1.

1.4 Applications of model uncertainty

Beside AI safety, there exist many applications which rely on model uncertainty. These
applications include choosing what data to learn from, or exploring an agent’s environment
efficiently. Common to both these tasks is the use of model uncertainty to learn from
small amounts of data. This is often a necessity in settings in which data collection
is expensive (such as the annotation of individual examples by an expert), or time
consuming (such as the repetition of an experiment multiple times).

1.4.1 Active learning

How could we use machine learning to aid an expert working in a laborious field? One
approach is to automate small parts of the expert’s work, such as mundane cell counting,
or cancer diagnosis based on MRI scans. This can be a difficult problem in machine
learning though. Many machine learning algorithms, including deep learning, often
require large amounts of labelled data to generalise well. The amount of labelled data
required increases with the complexity of the problem or the complexity of the input
data: image inputs for example often require large models to be processed, and in turn
these require large amounts of data (Krizhevsky et al. [2012] for example use hundreds
of gigabytes of labelled images). To automate MRI scan analysis for example, this would
require an expert to annotate a large number of MRI scans, labelling them to indicate
a patient having cancer or not. But expert time is expensive, and often obtaining the
amount of required labelled data is not feasible. How can we learn in settings where
labelled data is scarce and expert knowledge is expensive?

One possible approach to this task could rely on active learning [Settles, 2010]. In this
learning framework the model itself would choose what unlabelled data would be most

12 Introduction: The Importance of Knowing What We Don’t Know

informative for it, and ask an external “oracle” (for example a human annotator) for a label
only for these new data points. The choice of data points to be labelled is done through
an acquisition function, which ranks points based on their potential informativeness.
Different acquisition functions exist, and many make use of model uncertainty about
the unlabelled data points in order to decide on their potential informativeness [Houlsby
et al., 2011]. Following this learning framework we can decrease the amount of required
data by orders of magnitude, while still maintaining good model performance (as we will
see below in §5.2).

Returning to the example above of cancer diagnosis from MRI scans, we would seek
a model that can produce good uncertainty estimates for image data, and rely on these
to design an appropriate acquisition function. Deep learning provides superb tools for
image processing that generalise well, but these rely on huge amounts of labelled data
and do not provide model uncertainty. In this work we will develop extensions of such
tools that can be deployed in small data regimes, and provide good model confidence.
With these tools we will demonstrate the feasibility of the ideas above in active learning
(section §5.2, joint work with Riashat Islam as part of his Master’s project).

1.4.2 Efficient exploration in deep reinforcement learning

Reinforcement learning (RL) algorithms learn control tasks via trial and error, much like
a child learning to ride a bicycle [Sutton and Barto, 1998]. But trials of real world control
tasks often involve time and resources we wish not to waste. Alternatively, the number
of trials might be limited due to wear and tear of the system, making data-efficiency
critical.

As a simple introduction to reinforcement learning, consider an agent (a Roomba
vacuum for example) that needs to learn about its environment (a living room) based
on its actions (rolling around in different directions). It can decide to go forward and
might bump into a wall. Encouraging the Roomba not to crash into walls with positive
rewards, over time it will learn to avoid them in order to maximise its rewards. The
Roomba has to explore its environment looking for these rewards, and trade-off between
this exploration, and exploitation of what it already knows.

Recent advances in deep learning approaches to RL (referred to as deep RL) have
demonstrated impressive results in game playing [Mnih et al., 2013]. Such approaches
make use of NNs for Q-value function approximation. These are functions that estimate
the quality of different actions an agent can take. Epsilon greedy search is often used
where the agent selects its best action with some probability and explores otherwise. But
with uncertainty information an agent can decide when to exploit and when to explore

1.5 Model uncertainty in deep learning 13

its environment. And with uncertainty estimates over the agent’s Q-value function,
techniques such as Thompson sampling [Thompson, 1933] can be used to learn much
faster. This will be demonstrated below (section §5.3).

Even though exploration techniques such as Thompson sampling can help learn better
policies faster, a much more drastic improvement in data efficiency can be achieved by
modelling the system dynamics [Atkeson and Santamaria, 1997]. A dynamics model
allows the agent to generalise its knowledge about the system dynamics to other, un-
observed, states. Probabilistic dynamics models allow an agent to consider transition
uncertainty throughout planning and prediction, improving data efficiency even further.
PILCO [Deisenroth and Rasmussen, 2011], for example, is a data-efficient probabilistic
model-based policy search algorithm. PILCO analytically propagates uncertain state
distributions through a Gaussian process dynamics model. This is done by recursively
feeding the output state distribution (output uncertainty) of one time step as the input
state distribution (input uncertainty) of the next time step, until a fixed time horizon T .
This allows the agent to consider the long-term consequences (expected cumulative cost)
of a particular controller parametrisation w.r.t. all plausible dynamics models. PILCO
relies on Gaussian processes (GPs), which work extremely well with small amounts of
low dimensional data, but scale cubically with the number of trials. Further, PILCO’s
distribution propagation adds a squared term in the observation space dimensionality,
making it hard to scale the framework to high dimensional observation spaces. This
makes it difficult to use PILCO with tasks that require a larger number of trials. Even
more so, PILCO does not consider temporal correlation in model uncertainty between
successive state transitions. This means that PILCO underestimates state uncertainty at
future time steps [Deisenroth et al., 2015], which can lead to diminished performance.

In section §5.4 we attempt to answer these shortcomings by replacing PILCO’s Gaus-
sian process with a Bayesian deep dynamics model, while maintaining the framework’s
probabilistic nature and its data-efficiency benefits (joint work with Rowan McAllister
and Carl Rasmussen [Gal et al., 2016]).

1.5 Model uncertainty in deep learning

Having established that model confidence is a good quantity to possess, it is important
to note that most deep learning models do not offer such information. Regression models
output a single vector regressing to the mean of the data (as can be seen in figure 1.2).
In classification models, the probability vector obtained at the end of the pipeline (the
softmax output) is often erroneously interpreted as model confidence. A model can be

14 Introduction: The Importance of Knowing What We Don’t Know

(a) Arbitrary function f(x) as a function of
data x (softmax input)

(b) σ(f(x)) as a function of data x (softmax
output)

Fig. 1.3 A sketch of softmax input and output for an idealised binary classifi-
cation problem. Training data is given between the dashed grey lines. Function point
estimate is shown with a solid line. Function uncertainty is shown with a shaded area.
Marked with a dashed red line is a point x∗ far from the training data. Ignoring function
uncertainty, point x∗ is classified as class 1 with probability 1.

uncertain in its predictions even with a high softmax output (figure 1.3). Passing a
point estimate of a function (solid line 1.3a) through a softmax (solid line 1.3b) results
in extrapolations with unjustified high confidence for points far from the training data.
x∗ for example would be classified as class 1 with probability 1. However, passing the
distribution (shaded area 1.3a) through a softmax (shaded area 1.3b) better reflects
classification uncertainty far from the training data.

Even though modern deep learning models used in practice do not capture model
confidence, they are closely related to a family of probabilistic models which induce
probability distributions over functions: the Gaussian process. Given a neural network,
by placing a probability distribution over each weight (a standard normal distribution for
example), a Gaussian process can be recovered in the limit of infinitely many weights (see
Neal [1995] or Williams [1997]). For a finite number of weights, model uncertainty can still
be obtained by placing distributions over the weights—these models are called Bayesian
neural networks. These were extensively studied by [MacKay, 1992b], work which was
further extended by [Neal, 1995]. More recently these ideas have been resurrected under
different names with variational techniques by [Blundell et al., 2015; Graves, 2011; Kingma
and Welling, 2013] (although such techniques used with Bayesian neural networks can
be traced back as far as Hinton and Van Camp [1993] and Barber and Bishop [1998]).
But some of these models are quite difficult to work with—often requiring many more
parameters to be optimised—and haven’t really caught-on within the deep learning
community, perhaps because of their limited practicality.

What would make a tool for obtaining model uncertainty practical then? One
requirement of such a tool would be to scale well to large data, and scale well to
complex models (such as CNNs and RNNs). Much more important perhaps, it would be

http://www.inference.eng.cam.ac.uk/mackay/itila/Potter.html

1.5 Model uncertainty in deep learning 15

impractical to change existing model architectures that have been well studied, and it is
often impractical to work with complex and cumbersome techniques which are difficult
to explain to non-experts. Existing approaches to obtain model confidence often do not
scale to complex models or large amounts of data, and require us to develop new models
for existing tasks for which we already have well performing tools.

We will thus concentrate on the development of practical techniques to obtain model
confidence in deep learning, techniques which are also well rooted within the theoretical
foundations of probability theory and Bayesian modelling. Specifically, we will make use
of stochastic regularisation techniques (SRTs). SRTs are recently developed techniques
for model regularisation that have been tremendously successful within deep learning,
and are used in almost all modern deep learning models. These techniques adapt the
model output stochastically as a way of model regularisation (hence the name stochastic
regularisation). This results in the loss becoming a random quantity, which is optimised
using tools from the stochastic non-convex optimisation literature. Popular SRTs include
dropout [Hinton et al., 2012], multiplicative Gaussian noise [Srivastava et al., 2014],
dropConnect [Wan et al., 2013], and countless other recent techniques4,5.

As we will see below, we can take almost any network trained with an SRT, and given
some input x∗ obtain a predictive mean E[y∗] (the expected model output given our
input), and predictive variance Var[y∗] (how much the model is confident in its prediction).
To obtain these, we simulate a network output with input x∗, treating the SRT as if we
were using the model during training (i.e. obtain a random output through a stochastic
forward pass). We repeat this process several times (for T repetitions), sampling i.i.d.
outputs {ŷ∗

1(x∗), ..., ŷ∗
T (x∗)}. As will be explained below, these are empirical samples

from an approximate predictive distribution. We can get an empirical estimator for the
predictive mean of our approximate predictive distribution as well as the predictive
variance (our uncertainty) from these samples:

E[y∗] ≈ 1
T

T∑
t=1

ŷ∗
t (x∗)

Var[y∗] ≈ τ−1ID + 1
T

T∑
t=1

ŷ∗
t (x∗)T ŷ∗

t (x∗)− E[y∗]TE[y∗]. (1.4)

Theoretical justification for these two simple equations will be given in chapter 3.
4 The idea of adding noise to a model to avoid overfitting is quite old, and for input noise has been

studied for example in [Bishop, 1995].
5 In the dropout case, initial research studying the technique from a Bayesian perspective includes

[Ba and Frey, 2013; Maeda, 2014; Wang and Manning, 2013].

16 Introduction: The Importance of Knowing What We Don’t Know

Equation (1.4) results in uncertainty estimates which are practical with large models
and big data, and that can be applied in image based models, sequence based models,
and many different settings such as reinforcement learning and active learning. Further,
the combination of these techniques allows us to perform tasks that were not possible
until recently. For example, we demonstrate below how to perform active learning with
image data, a task which is extremely challenging due to the lack of tools offering good
uncertainty estimates from image data.

1.6 Thesis structure

The first part of this thesis (chapters 3–5) will be concerned with providing tools to
obtain practical uncertainty estimates, and demonstrating how these tools could be used
in many example applications. This part should be easily accessible for experts as well
as non-experts in the field. The second part of this thesis (chapter 6) goes in depth into
the theoretical implications of the work above.

Some of the work in this thesis was previously presented in [Gal, 2015; Gal and
Ghahramani, 2015a,b,c,d, 2016a,b,c; Gal et al., 2016], but this thesis contains many new
pieces of work as well. The most notable of these are a theoretical analysis of Monte Carlo
estimator variance used in variational inference (§3.1.1–§3.1.2), a survey of measures of
uncertainty in classification tasks (§3.3.1), an empirical analysis of different Bayesian
neural network priors (§4.1) and posteriors with various approximating distributions
(§4.2), new quantitative results comparing dropout to existing techniques (§4.3), tools for
heteroscedastic predictive uncertainty in Bayesian neural networks (§4.6), applications
in active learning (§5.2), a discussion of what determines what our model uncertainty
looks like (§6.1–§6.2), an analytical analysis of the dropout approximating distribution
in Bayesian linear regression (§6.3), an analysis of ELBO-test log likelihood correlation
(§6.4), discrete prior models (§6.5), an interpretation of dropout as a proxy posterior
in spike and slab prior models (§6.6), as well as a procedure to optimise the dropout
probabilities based on the variational interpretation to separate the different sources of
uncertainty (§6.7).

The code for the experiments presented in this work is available at https://github.
com/yaringal.

https://github.com/yaringal
https://github.com/yaringal

Chapter 2

The Language of Uncertainty

To formalise our discussion of model uncertainty we will rely on probabilistic modelling,
and more specifically on Bayesian modelling. Bayesian probability theory offers us the
machinery we need to develop our tools. Together with techniques for approximate
inference in Bayesian models, in the next chapter we will present the main results of this
work. But prior to that, let us review the main ideas underlying Bayesian modelling,
approximate inference, and a model of key importance to us: the Bayesian neural network.

2.1 Bayesian modelling

Given training inputs X = {x1, . . . ,xN} and their corresponding outputs Y = {y1, . . . ,yN},
in Bayesian (parametric) regression we would like to find the parameters ω of a function
y = fω(x) that are likely to have generated our outputs. What parameters are likely to
have generated our data? Following the Bayesian approach we would put some prior
distribution over the space of parameters, p(ω). This distribution represents our prior
belief as to which parameters are likely to have generated our data before we observe
any data points. Once some data is observed, this distribution will be transformed to
capture the more likely and less likely parameters given the observed data points. For
this we further need to define a likelihood distribution p(y|x,ω)—the probabilistic model
by which the inputs generate the outputs given some parameter setting ω.

For classification tasks we may assume a softmax likelihood,

p
(
y = d|x,ω

)
= exp(fω

d (x))∑
d′ exp(fω

d′(x))

18 The Language of Uncertainty

or a Gaussian likelihood for regression:

p
(
y|x,ω

)
= N (y; fω(x), τ−1I) (2.1)

with model precision τ . This can be seen as corrupting the model output with observation
noise with variance τ−1.

Given a dataset X,Y, we then look for the posterior distribution over the space of
parameters by invoking Bayes’ theorem:

p(ω|X,Y) = p(Y|X,ω)p(ω)
p(Y|X) .

This distribution captures the most probable function parameters given our observed
data. With it we can predict an output for a new input point x∗ by integrating

p(y∗|x∗,X,Y) =
∫
p(y∗|x∗,ω)p(ω|X,Y)dω.

This process is known as inference1.
A key component in posterior evaluation is the normaliser, also called model evidence:

p(Y|X) =
∫
p(Y|X,ω)p(ω)dω. (2.2)

Performing this integration is also referred to as marginalising the likelihood over ω,
which is the origin of the alternative name for the model evidence: marginal likelihood.
Marginalisation can be done analytically for simple models such as Bayesian linear
regression. In such models the likelihood is conjugate to the prior, and the integral can be
solved with known tools in calculus. Marginalisation is the bread and butter of Bayesian
modelling, and ideally we would want to marginalise over all uncertain quantities—i.e.
average w.r.t. all possible model parameter values ω, each weighted by its plausibility
p(ω).

But with more interesting models (even basis function regression when the basis
functions are not fixed) this marginalisation cannot be done analytically. In such cases
an approximation is needed.

1Note that “inference” in Bayesian modelling has a different meaning to that in deep learning. In
Bayesian modelling “inference” is the process of integration over model parameters. This means that
“approximate inference” can involve optimisation at training time (approximating this integral). This is
in contrast to deep learning literature where “inference” often means model evaluation at test time alone.

2.1 Bayesian modelling 19

2.1.1 Variational inference

The true posterior p(ω|X,Y) cannot usually be evaluated analytically. Instead we define
an approximating variational distribution qθ(ω), parametrised by θ, whose structure is
easy to evaluate. We would like our approximating distribution to be as close as possible
to the posterior distribution obtained from the original model. We thus minimise the
Kullback–Leibler (KL) divergence [Kullback, 1959; Kullback and Leibler, 1951] w.r.t. θ,
intuitively a measure of similarity between two distributions:

KL(qθ(ω) || p(ω|X,Y)) =
∫
qθ(ω) log qθ(ω)

p(ω|X,Y)dω. (2.3)

Note that this integral is only defined when qθ(ω) is absolutely continuous w.r.t. p(ω|X,Y)
(i.e. for every measurable set A, p(A|X,Y) = 0 implies qθ(A) = 0). We denote by q∗

θ(ω)
the minimum of this optimisation objective (often a local minimum).

Minimising the KL divergence allows us to approximate the predictive distribution as

p(y∗|x∗,X,Y) ≈
∫
p(y∗|x∗,ω)q∗

θ(ω)dω =: q∗
θ(y∗|x∗). (2.4)

KL divergence minimisation is also equivalent to maximising the evidence lower bound
(ELBO) w.r.t. the variational parameters defining qθ(ω),

LVI(θ) :=
∫
qθ(ω) log p(Y|X,ω)dω −KL(qθ(ω)||p(ω)) ≤ log p(Y|X) = log evidence,

(2.5)

which defines the objective we will refer to henceforth. Maximising the first term in this
last equation (referred to as the expected log likelihood) encourages qθ(ω) to explain the
data well, while minimising the second term (referred to as the prior KL) encourages
qθ(ω) to be as close as possible to the prior. This acts as an “Occam razor” term and
penalises complex distributions qθ(ω).

This procedure is known as variational inference (VI), a standard technique in
Bayesian modelling [Jordan et al., 1999]. Variational inference replaces the Bayesian
modelling marginalisation with optimisation, i.e. we replace the calculation of integrals
with that of derivatives. But compared to the optimisation approaches often used in
deep learning, in this setting we optimise over distributions instead of point estimates2.
This approach preserves many of the advantages of Bayesian modelling (such as the

2Note that optimisation in the deep learning sense can be recovered by setting the approximating
distribution as a delta qθ(ω) := δ(ω − θ).

20 The Language of Uncertainty

balance between complex models and models that explain the data well), and results in
probabilistic models that capture model uncertainty.

The calculation of derivatives is often much easier than that of integrals, which
makes many approximations tractable. But even though this procedure makes inference
analytical for a large class of models, it still lacks in many ways. This technique does not
scale to large data (evaluating

∫
qθ(ω) log p(Y|X,ω)dω requires calculations over the

entire dataset), and the approach does not adapt to complex models (models in which
this last integral cannot be evaluated analytically). Recent advances in VI allow us to
circumvent these difficulties, and we will get back to this topic later in §3.1. But first we
review a model of key importance to us: the Bayesian neural network.

2.2 Bayesian neural networks

First suggested in the ‘90s and studied extensively since then [MacKay, 1992b; Neal,
1995], Bayesian neural networks (BNNs, Bayesian NNs) offer a probabilistic interpretation
of deep learning models by inferring distributions over the models’ weights. The model
offers robustness to over-fitting, uncertainty estimates, and can easily learn from small
datasets.

Bayesian NNs place a prior distribution over a neural network’s weights, which induces
a distribution over a parametric set of functions. Given weight matrices Wi and bias
vectors bi for layer i, we often place standard matrix Gaussian prior distributions over the
weight matrices, p(Wi) = N (0, I), and often assume a point estimate for the bias vectors
for simplicity. Likelihood specification often follows the standard Bayesian literature
(such as the softmax likelihood or Gaussian likelihood, §2.1).

Bayesian neural networks are easy to formulate, but difficult to perform inference in.
Many have tried over the years, to varying degrees of success. This is surveyed next.

2.2.1 Brief history

In their work at AT&T Bell Laboratories in 1987, Denker, Schwartz, Wittner, Solla,
Howard, Jackel, and Hopfield [1987] looked at the general problem of learning from
examples. They extended on an already vast existing literature in neural networks
research, and proposed a new way to train these. In essence, Denker et al. [1987, page
904] proposed placing a prior distribution over the space of weights (and used a uniform
distribution on a compact space). Denoting all possible (binary) inputs as {x1, ...,xN},
they then mapped each weight configuration to a set of corresponding network outputs

2.2 Bayesian neural networks 21

{ŷ1, ..., ŷN}. This allowed them to integrate over the weights and obtain a marginal
probability for each set {ŷ1, ..., ŷN}. Given observed training data, the probabilities of
inconsistent network weights were set to zero, leading to an updated marginal probability
for each set {ŷ1, ..., ŷN}. These marginal probabilities were then used to calculate the
efficiency of a network (by calculating its entropy).

Working from AT&T Bell Laboratories as well, Tishby, Levin, and Solla [1989]
extended on the ideas of Denker et al. [1987] and developed a statistical framework to
reason about network generalisation error. As far as I could find, this is the earliest
citation for what one would consider today to be a “Bayesian neural network”. Tishby
et al. [1989] showed that the only statistical interpretation of a NN Euclidean loss is
as maximum likelihood w.r.t. a Gaussian likelihood over the network outputs. They
proceeded to define a prior distribution over the network weights, and showed that
inference could theoretically be performed through the invocation of Bayes’ theorem.
This was used to propose a quantity dependent on the training set alone that would
correlate to the network’s generalisation error on a test set (although the problem of
inference practicality was overlooked).

In more work coming out from AT&T Bell Laboratories, Denker and LeCun [1991]
extended on Tishby et al. [1989]’s ideas and suggested the use of Laplace’s method to
approximate the posterior of the Bayesian NN. Denker and LeCun [1991] used the (back
then) newly suggested “backpropagation” technique, and optimised the neural network
weights to find a mode. They then fitted a Gaussian to the discovered mode, with the
width of the Gaussian determined by the Hessian of the likelihood at that mode.

Working from California Institute of Technology, MacKay [1992b] performed an
extensive study of Bayesian NNs. MacKay [1992b] advocated the use of model evidence
for model comparison, and obtained this quantity following the approximation of Denker
and LeCun [1991]. Using an array of experiments with different model sizes and model
configurations, MacKay [1992b] showed that model evidence correlates to generalisation
error, and thus can be used to select model size. MacKay [1992b] further showed that
model misspecification can lead to Bayes failure, where model evidence does not indicate
model generalisation. As he showed, this could happen for example when the priors
of multiple weight layers are tied together, and thus low probability could be given to
models with large input weight magnitude together with small output weight magnitude
unjustifiably.

As a way of model regularisation, Hinton and Van Camp [1993] (working from Toronto)
suggested the use of minimum description length (MDL) to penalise high amounts of
information contained in a network’s weights. They showed that for a single hidden

22 The Language of Uncertainty

layer NN it is possible to compute their suggested (and somewhat ad-hoc) objective
analytically. This technique can be seen as the first variational inference approximation
to Bayesian NNs—even though the suggested technique is motivated through information
theoretic foundations, the resulting optimisation objective is identical to VI’s ELBO (as
will be explained below).

In his thesis, Neal [1995] developed alternative inference approximations for Bayesian
NNs based on Monte Carlo (MC) techniques. Hamiltonian Monte Carlo (HMC, also
Hybrid Monte Carlo) was suggested for posterior inference, a technique based on dynamical
simulation that does not rely on any prior assumptions about the form of the posterior
distribution. Neal [1995] attempted to reproduce MacKay [1992b]’s experiments which
relied on Laplace’s method [Denker and LeCun, 1991]. Neal [1995, page 122] validated
some of MacKay [1992b]’s experiments, but could not reproduce some others, presumably
because of the approximation error of Laplace’s method. In addition to this work, Neal
[1995] further studied different prior distributions in Bayesian NNs, and showed that in
the limit of the number of units the model would converge to various stable processes,
depending on the prior used (for example, the model would converge to a Gaussian
process when a Gaussian prior is used).

One last key development relevant to our setting stems from work by Barber and
Bishop [1998]. In the work, Barber and Bishop [1998] developed Hinton and Van Camp
[1993]’s MDL approximation under a VI interpretation, and replaced Hinton and
Van Camp [1993]’s diagonal covariance matrices with full covariance matrices. Bar-
ber and Bishop [1998] further highlighted the fact that the obtained objective forms a
lower bound to the model evidence. Lastly, Barber and Bishop [1998] placed gamma priors
over the network hyper-parameters. They then performed VI with free-form variational
distributions over the hyper-parameters, and derived their optimal form. This allowed
the model evidence (the quantity that the ELBO bounds) to remain constant w.r.t. the
changing hyper-parameter values, since the hyper-parameters are always averaged w.r.t.
their approximating distribution.

Remark (Multimodal or unimodal approximating distributions?). MacKay [1992b]
used a unimodal Gaussian distribution to fit the posterior and reasoned that this
already gives us much more than a maximum likelihood estimate (MLE). That’s
because the width of the fitted Gaussian acts as an "Occam razor" and penalises
complex models (in essence capturing the ratio between the posterior parameters’
distribution volume to prior parameters’ distribution volume). Neal [1995] criticised
the simplistic unimodal approximation though, and argued that the approximation

2.2 Bayesian neural networks 23

only works in low dimensional problems (and therefore we should use HMC that
doesn’t place any assumptions over the posterior structure, and able to capture
complicated multimodal posterior and predictive distributions).
But fitting the posterior over the weights of a Bayesian NN with a unimodal
approximating distribution does not mean the predictive distribution would be
unimodal! imagine for simplicity that the intermediate feature output from the first
layer is a unimodal distribution (a uniform for example) and let’s say, for the sake
of argument, that the layers following that are modelled with delta distributions (or
Gaussians with very small variances). Given enough follow-up layers we can capture
any function to arbitrary precision—including the inverse cumulative distribution
function (CDF) of any multimodal distribution. Passing our uniform output from
the first layer through the rest of the layers—in effect transforming the uniform
with this inverse CDF—would give a multimodal predictive distribution.

These approaches represent important first steps towards practical inference in
Bayesian NNs. But these are difficult to adapt to modern needs found in the field. Next
we review more modern approaches to approximate inference in Bayesian NNs.

2.2.2 Modern approximate inference

Modern research in Bayesian NNs often relies on either different flavours of variational
inference, or sampling based techniques. Each approach has its merits, but has its
limitations as well. Next we will survey some of the recently suggested approaches.

For variational inference, modern approaches follow the work of Hinton and Van Camp
[1993] closely. This work relied on a fully factorised approximation—the approximating
distribution assumes independence of each weight scalar in each layer from all other
weights. We will go over this approach in more detail from the VI perspective. This will
be followed by a survey of extensions to this approach.

Recall that we are interested in finding the distribution of weight matrices (parametris-
ing our functions) that have generated our data. This is the posterior over the weights
given our observables X,Y: p(ω|X,Y). This posterior is not tractable in general, and
we use variational inference to approximate it. For this we need to define an approxi-
mating variational distribution qθ(ω), and then minimise the KL divergence between the

24 The Language of Uncertainty

approximating distribution and the full posterior3:

KL
(
qθ(ω)||p(ω|X,Y)

)
∝ −

∫
qθ(ω) log p(Y|X,ω)dω + KL(qθ(ω)||p(ω)) (2.6)

= −
N∑
i=1

∫
qθ(ω) log p(yi|fω(xi))dω + KL(qθ(ω)||p(ω))

with fω(xi) the model output on input xi and with the terms summed-over in the last
equation referred to as expected log likelihoods. Hinton and Van Camp [1993] defined
qθ(ω) to factorise over the weights:

qθ(ω) =
L∏
i=1

qθ(Wi) =
L∏
i=1

Ki∏
j=1

Ki+1∏
k=1

qmijk,σijk
(wijk) =

∏
i,j,k

N (wijk;mijk, σ
2
ijk).

Optimising the objective is challenging, since the expected log likelihood is intractable for
most BNN model structures. Therefore Hinton and Van Camp [1993] only demonstrated
the technique with a single hidden layer in which case the optimisation objective is
analytical.

Even when the optimisation objective is analytical, this approximation can work
quite badly in practice. This could possibly be attributed to the method losing impor-
tant information about weight correlations. Barber and Bishop [1998], by modelling
correlations between the weights, managed to improve on [Hinton and Van Camp, 1993].
But this came with the price of increased computational complexity. The method now
required the representation of covariance matrices with a number of entries quadratic in
the number of weights in the model. This is impractical for most modern models, since
the number of model parameters in modern deep learning tends to be as large as modern
hardware would allow. With the additional constraint of having to handle large amounts
of data, plain VI could not scale to modern needs and was thus mostly forgotten.

In recent work, Graves [2011] has attempted to answer the difficulties above. Graves
[2011] used data sub-sampling techniques in a fully factorised VI objective (although
this was developed in the context of MDL). This allowed the technique to scale to large
amounts of data. Graves [2011] approximated the intractable expected log likelihood
with Monte Carlo estimates [Opper and Archambeau, 2009], which allowed the technique
to scale to more complex models, going beyond the single layer restriction4. Ironically,
even though Bayesian NNs were not mentioned in the paper even once, Graves [2011]’s

3We slightly abuse standard notation here, and use A ∝ B to mean that A is identical to B up to
some constant c: A = B + c rather than A = cB.

4These are two techniques that started gaining in popularity within VI at the time, and will be
reviewed in more detail in the next chapter.

2.2 Bayesian neural networks 25

work can be seen as a big step forward from previous research on approximate inference
in BNNs. For the first time a practical technique was proposed, which scaled to complex
models and big data. Sadly, similarly to Hinton and Van Camp [1993], the technique
still performed badly in practice [Hernandez-Lobato and Adams, 2015], perhaps because
of the lack of correlations over the weights. As a result it was not picked-up and actively
extended-on by the community for a long period of time.

In more recent work, done in parallel to the one presented in this thesis, Blundell et al.
[2015] has built on Graves [2011]’s approach, re-parametrising the expected log likelihood
MC estimates following Kingma and Welling [2013]. Blundell et al. [2015] further changed
the BNN model itself by putting a mixture of Gaussians prior over each weight and
optimised the mixture components. This allowed them to improve model performance
compared to Graves [2011], and match that of existing approaches in the field. But even
this variational approach can still be computationally expensive—the use of Gaussian
approximating distributions increases the number of model parameters considerably,
without increasing model capacity by much. Blundell et al. [2015] for example used
Gaussian distributions for Bayesian NN posterior approximation, doubling the number of
model parameters. This makes the approach difficult for use with large complex models
since the increase in the number of parameters can be too costly, especially on systems
with limited memory.

An alternative approach to variational inference makes use of expectation propagation
[Hernandez-Lobato and Adams, 2015]. Hernandez-Lobato and Adams [2015]’s probabilis-
tic back propagation (PBP) has improved considerably on VI approaches such as [Graves,
2011] both in root mean square error (RMSE) and in uncertainty estimation. Closely
related to PBP are the recently suggested approximate inference techniques based on
α-divergence minimisation [Hernández-Lobato et al., 2016; Li and Turner, 2016; Minka,
2005]. Most of these are still under active development, and not used in practice yet
(with the exception of [Hernández-Lobato et al., 2016], which was used in reinforcement
learning [Depeweg et al., 2016]). These approximate inference techniques offer alternative
minimisation objectives to VI’s ELBO, relying on various forms of Rényi’s α-divergence
[Rényi et al., 1961]. The approximating distributions used in these papers are still rather
simple, with [Depeweg et al., 2016; Hernández-Lobato et al., 2016] for example making use
of fully factorised Gaussian distributions. The main motivation behind the techniques is
to avoid VI’s mode-seeking behaviour, and indeed in fitting a more dispersed distribution
(a distribution spreading its mass on larger parts of the support), these techniques seem
to sacrifice their estimation of the dominant modes of the posterior. But in performing

26 The Language of Uncertainty

predictions we often care about finding modes and exploring around them, rather than
interpolating between different modes.

An alternative line of research has extended on Neal [1995]’s HMC rather than the
work of Hinton and Van Camp [1993]. HMC makes use of Hamiltonian dynamics in
MCMC [Duane et al., 1987], following Newton’s laws of motion [Newton, 1687]. Neal
[1995]’s use of HMC in statistics was to generate samples from a model’s posterior which
would be difficult to sample from directly. But HMC can be difficult to work with in
practice, as setting the leapfrog step sizes can be somewhat of an art. Further, the
method does not scale to large data. This is because the method requires us to calculate
gradients for the likelihood evaluated on the entire dataset [Neal, 2011]. The Langevin
method is a simplification of Hamiltonian dynamics where only a single leapfrog step
is used. The use of a single step simplifies the inference method itself considerably,
and allows it to be scaled to large data. The latter is achieved through the use of
stochastic estimates of the gradient of the likelihood, replacing the gradients over the
entire dataset [Welling and Teh, 2011]. These stochastic estimates of the likelihood are
similar to the ones used to scale-up VI used by Graves [2011]. Welling and Teh [2011]’s
scalable Langevin method was named Stochastic Gradient Langevin Dynamics (SGLD).
The SGLD technique generates a set of samples {ω̂t} from the model’s posterior over
the random variable ω by adding stochastic gradient steps to the previously generated
samples:

∆ω = ϵ

2

(
∇ log p(ω) + N

M

∑
i∈S
∇ log p(yi|xi,ω)

)
+ η

η ∼ N (0, ϵ).

Here S is a randomly sampled set of M indices from {1, ..., N} and ϵ is decreased in
magnitude following the Robbins–Monro equations [Robbins and Monro, 1951]. Unlike
fully-factorised VI, this approach can capture weight correlations since the approximate
posterior structure need not be specified. However, the main difficulty with SGLD is
that it often collapses to a single mode and explores that mode alone. This is because ϵ
decreases so rapidly that the probability of the method to jump outside of the region
of a mode and converge to another mode is extremely small. Even though that in the
limit of time the entire support of the distribution will be explored, in practice the
method explores a single mode, similar to VI. Further, the method generates correlated
samples—which means that many samples need to be generated, since many intermediate
samples have to be discarded. These factors somewhat limit SGLD’s practicality.

2.2 Bayesian neural networks 27

One last approach I shall review here cannot technically be considered as approximate
inference in BNNs, but nonetheless can be used to estimate model uncertainty. The
technique uses an ensemble of deterministic models, meaning that each model in the
ensemble produces a point estimate rather than a distribution. It works by independently
training many randomly initialised instances of a model on the same dataset (or different
random subsets in the case of bootstrapping), and given an input test point, evaluating the
sample variance of the outputs from all deterministic models [Osband et al., 2016]. Even
though this approach is more computationally efficient than many Bayesian approaches to
model uncertainty (apart from the need to represent the parameters of multiple models),
its produced uncertainty estimates lack in many ways as explained in the next illustrative
example. To see this, let’s see what would happen if each deterministic model were
to be given by an RBF network (whose predictions coincide with the predictive mean
of a Gaussian process with a squared-exponential (SE) covariance function). An RBF
network predicts zero for test points far from the training data. This means that in an
ensemble of RBF networks, each and every network will predict zero for a given test
point far from the training data. As a result, the sample variance of this technique will
be zero at the given test point. The ensemble of models will have very high confidence in
its prediction of zero even though the test point lies far from the data! This limitation
can be alleviated by using an ensemble of probabilistic models instead of deterministic
models. Even though the RBF network’s predictions coincide with the predictive mean
of the SE Gaussian process, by using a Gaussian process we could also make use of its
predictive variance. The Gaussian process predictions far from the training data will
have large model uncertainty. In the ensemble, we would thus wish to take into account
each model’s confidence as well as its mean (by sampling an output from each model’s
predictive distribution before calculating our sample variance). These ideas are assessed
below in the context of Bayesian recurrent neural networks (§4.5).

2.2.3 Challenges

In the introduction (§1.5) we discussed what makes an approximate inference technique
practical. We concluded that a technique should:

1. scale well to large data,

2. easily adapt to complex models (that can be as big as modern architecture would
allow, or complex pipelines combining many building blocks),

3. not necessitate the change of existing model architectures (or objectives),

28 The Language of Uncertainty

4. and should be easy for non-experts to use and understand.

The practicality of the techniques above is mixed, as discussed per technique. HMC
for example, even though shown to obtain good results, does not scale to large data
[Neal, 1995], and it is difficult to explain the technique to non-experts. α-divergence
based techniques share this latter difficulty as well, limiting their use by non-experts.

In the next chapter we will develop an approximate inference technique for Bayesian
NNs which will satisfy the requirements above. This will be demonstrated in the following
chapters, where a large number of real-world use cases will be presented. Even more
interesting, it will be shown that most modern deep learning models have been performing
approximate Bayesian inference all along.

Chapter 3

Bayesian Deep Learning

In previous chapters we reviewed Bayesian neural networks (BNNs) and historical tech-
niques for approximate inference in these, as well as more recent approaches. We discussed
the advantages and disadvantages of different techniques, examining their practicality.
This, perhaps, is the most important aspect of modern techniques for approximate infer-
ence in BNNs. The field of deep learning is pushed forward by practitioners, working on
real-world problems. Techniques which cannot scale to complex models with potentially
millions of parameters, scale well with large amounts of data, need well studied models
to be radically changed, or are not accessible to engineers, will simply perish.

In this chapter we will develop on the strand of work of [Graves, 2011; Hinton and
Van Camp, 1993], but will do so from the Bayesian perspective rather than the information
theory one. Developing Bayesian approaches to deep learning, we will tie approximate
BNN inference together with deep learning stochastic regularisation techniques (SRTs)
such as dropout. These regularisation techniques are used in many modern deep learning
tools, allowing us to offer a practical inference technique.

We will start by reviewing in detail the tools used by Graves [2011], and extend on
these with recent research. In the process we will comment and analyse the variance
of several stochastic estimators used in variational inference (VI). Following that we
will tie these derivations to SRTs, and propose practical techniques to obtain model
uncertainty, even from existing models. We finish the chapter by developing specific
examples for image based models (CNNs) and sequence based models (RNNs). These
will be demonstrated in chapter 5, where we will survey recent research making use of
the suggested tools in real-world problems.

30 Bayesian Deep Learning

3.1 Advanced techniques in variational inference

We start by reviewing recent advances in VI. We are interested in the posterior over the
weights given our observables X,Y: p

(
ω|X,Y

)
. This posterior is not tractable for a

Bayesian NN, and we use variational inference to approximate it. Recall our minimisation
objective (eq. (2.6)),

LVI(θ) := −
N∑
i=1

∫
qθ(ω) log p(yi|fω(xi))dω + KL(qθ(ω)||p(ω)). (3.1)

Evaluating this objective poses several difficulties. First, the summed-over terms∫
qθ(ω) log p(yi|fω(xi))dω are not tractable for BNNs with more than a single hidden

layer. Second, this objective requires us to perform computations over the entire dataset,
which can be too costly for large N .

To solve the latter problem, we may use data sub-sampling (also referred to as
mini-batch optimisation). We approximate eq. (3.1) with

L̂VI(θ) := −N
M

∑
i∈S

∫
qθ(ω) log p(yi|fω(xi))dω + KL(qθ(ω)||p(ω)) (3.2)

with a random index set S of size M .
The data sub-sampling approximation forms an unbiased stochastic estimator to eq.

(3.1), meaning that ES[L̂VI(θ)] = LVI(θ). We can thus use a stochastic optimiser to
optimise this stochastic objective, and obtain a (local) optimum θ∗ which would be an
optimum to LVI(θ) as well [Robbins and Monro, 1951]. This approximation is often used
in the deep learning literature, and was suggested by Hoffman et al. [2013] in the VI
context (surprisingly) only recently1.

The remaining difficulty with the objective in eq. (3.1) is the evaluation of the expected
log likelihood

∫
qθ(ω) log p(yi|fω(xi))dω. Monte Carlo integration of the integral has

been attempted by some, to varying degrees of success. We will review three approaches
used in the VI literature and analyse their variance.

3.1.1 Monte Carlo estimators in variational inference

We often use Monte Carlo (MC) estimation in variational inference to estimate the
expected log likelihood (the integral in eq. (3.2)). But more importantly we wish to
estimate the expected log likelihood’s derivatives w.r.t. the approximating distribution

1Although online VI methods processing one point at a time have a long history [Ghahramani and
Attias, 2000; Sato, 2001]

3.1 Advanced techniques in variational inference 31

parameters θ. This allows us to optimise the objective and find the optimal parameters θ∗.
There exist three main techniques for MC estimation in the VI literature (a brief survey
of the literature was collected by [Schulman et al., 2015]). These have very different
characteristics and variances for the estimation of the expected log likelihood and its
derivative. Here we will contrast all three techniques in the context of VI and analyse
them both empirically and theoretically.

To present the various techniques we will consider the general case of estimating the
integral derivative:

I(θ) = ∂

∂θ

∫
f(x)pθ(x)dx (3.3)

which arises when we optimise eq. (3.2) (we will also refer to a stochastic estimator of
this quantity as a stochastic derivative estimator). Here f(x) is a function defined on
the reals, differentiable almost everywhere (a.e., differentiable on R apart from a zero
measure set), and pθ(x) is a probability density function (pdf) parametrised by θ from
which we can easily generate samples. We assume that the integral exists and is finite,
and that f(x) does not depend on θ. Note that we shall write f ′(x) when we differentiate
f(x) w.r.t. its input (i.e. ∂

∂x
f(x), in contrast to the differentiation of f(x) w.r.t. other

variables).
We further use pθ(x) = N (x;µ, σ2) as a concrete example, with θ = {µ, σ}. In this

case, we will refer to an estimator of (3.3) as the mean derivative estimator (for some
function f(x)) when we differentiate w.r.t. θ = µ, and the standard deviation derivative
estimator when we differentiate w.r.t. θ = σ.

Three MC estimators for eq. (3.3) are used in the VI literature:

1. The score function estimator (also known as a likelihood ratio estimator and
Reinforce, [Fu, 2006; Glynn, 1990; Paisley et al., 2012; Williams, 1992]) relies on
the identity ∂

∂θ
pθ(x) = pθ(x) ∂

∂θ
log pθ(x) and follows the parametrisation:

∂

∂θ

∫
f(x)pθ(x)dx =

∫
f(x) ∂

∂θ
pθ(x)dx (3.4)

=
∫
f(x)∂ log pθ(x)

∂θ
pθ(x)dx

leading to the unbiased stochastic estimator Î1(θ) = f(x)∂ log pθ(x)
∂θ

with x ∼ pθ(x),
hence Epθ(x)[Î1(θ)] = I(θ). Note that the first transition is possible since x and
f(x) do not depend on θ, and only pθ(x) depends on it. This estimator is simple
and applicable with discrete distributions, but as Paisley et al. [2012] identify, it

32 Bayesian Deep Learning

has rather high variance. When used in practice it is often coupled with a variance
reduction technique.

2. Eq. (3.3) can be re-parametrised to obtain an alternative MC estimator, which we
refer to as a pathwise derivative estimator (this estimator is also referred to in the
literature as the re-parametrisation trick, infinitesimal perturbation analysis, and
stochastic backpropagation [Glasserman, 2013; Kingma and Welling, 2013, 2014;
Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014]). Assume that pθ(x) can
be re-parametrised as p(ϵ), a parameter-free distribution, s.t. x = g(θ, ϵ) with a
deterministic differentiable bivariate transformation g(·, ·). For example, with our
pθ(x) = N (x;µ, σ2) we have g(θ, ϵ) = µ+ σϵ together with p(ϵ) = N (ϵ; 0, I). Then
the following estimator arises:

Î2(θ) = f ′(g(θ, ϵ)) ∂
∂θ
g(θ, ϵ). (3.5)

Here Ep(ϵ)[Î2(θ)] = I(θ).

Note that compared to the estimator above where f(x) is used, in this case we use
its derivative f ′(x). In the Gaussian case, both the derivative w.r.t. µ as well as
the derivative w.r.t. σ use f(x)’s first derivative (note the substitution of ϵ with
x = µ+ σϵ):

∂

∂µ

∫
f(x)pθ(x)dx =

∫
f ′(x)pθ(x)dx,

∂

∂σ

∫
f(x)pθ(x)dx =

∫
f ′(x)(x− µ)

σ
pθ(x)dx,

i.e. Î2(µ) = f ′(x) and Î2(σ) = f ′(x) (x−µ)
σ

with Epθ(x)[Î2(µ)] = I(µ) and Epθ(x)[Î2(σ)] =
I(σ). An interesting question arises when we compare this estimator (Î2(θ)) to
the one above (Î1(θ)): why is it that in one case we use the function f(x), and in
the other use its derivative? This is answered below, together with an alternative
derivation to that of Kingma and Welling [2013, section 2.4].

The pathwise derivative estimator seems to (empirically) result in a lower variance
estimator than the one above, although to the best of my knowledge no proof to this
has been given in the literature. An analysis of this parametrisation, together with
examples where the estimator has higher variance than that of the score function
estimator is given below.

3.1 Advanced techniques in variational inference 33

3. Lastly, it is important to mention the estimator given in [Opper and Archambeau,
2009, eq. (6-7)] (studied in [Rezende et al., 2014] as well). Compared to both
estimators above, Opper and Archambeau [2009] relied on the characteristic function
of the Gaussian distribution, restricting the estimator to Gaussian pθ(x) alone.
The resulting mean derivative estimator, ∂

∂µ

∫
f(x)pθ(x)dx, is identical to the one

resulting from the pathwise derivative estimator.

But when differentiating w.r.t. σ, the estimator depends on f(x)’s second derivative
[Opper and Archambeau, 2009, eq. (19)]:

∂

∂σ

∫
f(x)pθ(x)dx = 2σ · 12

∫
f ′′(x)pθ(x)dx (3.6)

i.e. Î3(σ) = σf ′′(x) with Epθ(x)[Î3(σ)] = I(σ). This is in comparison to the
estimators above that use f(x) or its first derivative. We refer to this estimator as
a characteristic function estimator.

These three MC estimators are believed to have decreasing estimator variances (1) >
(2) > (3). Before we analyse this variance, we offer an alternative derivation to Kingma
and Welling [2013]’s derivation of the pathwise derivative estimator.

Remark (Auxiliary variable view of the pathwise derivative estimator). Kingma
and Welling [2013]’s derivation of the pathwise derivative estimator was obtained
through a change of variables. Instead we justify the estimator through a construc-
tion relying on an auxiliary variable augmenting the distribution pθ(x).
Assume that the distribution pθ(x) can be written as

∫
pθ(x, ϵ)dϵ =

∫
pθ(x|ϵ)p(ϵ)dϵ,

with pθ(x|ϵ) = δ(x− g(θ, ϵ)) a dirac delta function. Then

∂

∂θ

∫
f(x)pθ(x)dx = ∂

∂θ

∫
f(x)

(∫
pθ(x, ϵ)dϵ

)
dx

= ∂

∂θ

∫
f(x)pθ(x|ϵ)p(ϵ)dϵdx

= ∂

∂θ

∫ (∫
f(x)δ

(
x− g(θ, ϵ)

)
dx
)
p(ϵ)dϵ.

Now, since δ(x− g(θ, ϵ)) is zero for all x apart from x = g(θ, ϵ),

∂

∂θ

∫ (∫
f(x)δ

(
x− g(θ, ϵ)

)
dx
)
p(ϵ)dϵ = ∂

∂θ

∫
f(g(θ, ϵ))p(ϵ)dϵ

34 Bayesian Deep Learning

=
∫ ∂

∂θ
f(g(θ, ϵ))p(ϵ)dϵ

=
∫
f ′(g(θ, ϵ)) ∂

∂θ
g(θ, ϵ)p(ϵ)dϵ.

This derivation raises an interesting question: why is it that here the function f(x)
depends on θ, whereas in the above (the score function estimator) it does not? A clue
into explaining this can be found through a measure theoretic view of the score function
estimator:

∂

∂θ

∫
f(x)pθ(x)dx = ∂

∂θ

∫ (
f(x)pθ(x)

)
dλ(x)

where λ(x) is the Lebesgue measure. Here the measure does not depend on θ, hence
x does not depend on θ. Only the integrand f(x)pθ(x) depends on θ, therefore the
estimator depends on ∂

∂θ
pθ(x) and f(x). This is in comparison to the pathwise derivative

estimator:

∂

∂θ

∫
f(x)pθ(x)dx = ∂

∂θ

∫
f(x)dpθ(x).

Here the integration is w.r.t. the measure pθ(x), which depends on θ. As a result the
random variable x as a measurable function depends on θ, leading to f(x) being a
measurable function depending on θ. Intuitively, the above can be seen as “stretching”
and “contracting” the space following the density pθ(x), leading to a function defined on
this space to depend on θ.

3.1.2 Variance analysis of Monte Carlo estimators in varia-
tional inference

Next we analyse the estimator variance for the three estimators above using a Gaussian
distribution pθ(x) = N (x;µ, σ2). We will refer to the estimators as the score function esti-
mator (1), the pathwise derivative estimator (2), and the characteristic function estimator
(3). We will alternate between the estimator names and numbers indistinguishably.

We begin with the observation that none of the estimators has the lowest variance for
all functions f(x). For each estimator there exists a function f(x) such that the estimator
would achieve lowest variance when differentiating w.r.t. µ, ∂

∂µ

∫
f(x)pθ(x)dx. Further,

for each estimator there exists a function f(x) (not necessarily the same) such that the
estimator would achieve lowest variance when differentiating w.r.t. σ, ∂

∂σ

∫
f(x)pθ(x)dx.

3.1 Advanced techniques in variational inference 35

f(x) Score Pathwise Character.
function derivative function

x + x2 1.7 · 101 4.0 · 100 4.0 · 100

sin(x) 3.3 · 10−1 2.0 · 10−1 2.0 · 10−1

sin(10x) 5.0 · 10−1 5.0 · 101 5.0 · 101

Table 3.1 ∂
∂µ

∫
f(x)pθ(x)dx variance

f(x) Score Pathwise Character.
function derivative function

x + x2 8.6 · 101 9.1 · 100 0.0 · 100

sin(x) 8.7 · 10−1 3.0 · 10−1 4.3 · 10−1

sin(10x) 1.0 · 100 5.0 · 101 5.0 · 103

Table 3.2 ∂
∂σ

∫
f(x)pθ(x)dx variance

Table 3.3 Estimator variance for various functions f(x) for the score function estimator,
the pathwise derivative estimator, and the characteristic function estimator ((1), (2),
and (3) above). On the left is mean derivative estimator variance, and on the right is
standard deviation derivative estimator variance, both w.r.t. pθ = N (µ, σ2) and evaluated
at µ = 0, σ = 1. In bold is lowest estimator variance.

We assess empirical sample variance of T = 106 samples for the mean and standard
deviation derivative estimators. Tables 3.1 and 3.2 show estimator sample variance for
the integral derivative w.r.t. µ and σ respectively, for three different functions f(x). Even
though all estimators result in roughly the same means, their variances differ considerably.

For functions with slowly varying derivatives in a neighbourhood of zero (such as the
smooth function f(x) = x+ x2) we have that the estimator variance obeys (1) > (2) >
(3). Also note that mean variance for (2) and (3) are identical, and that σ derivative
variance under the characteristic function estimator in this case is zero (since the second
derivative for this function is zero). Lastly, note that even though f(x) = sin(x) is
smooth with bounded derivatives, the similar function f(x) = sin(10x) has variance (3)
> (2) > (1). This is because the derivative of the function has high magnitude and varies
much near zero.

I will provide a simple property a function has to satisfy for it to have lower variance
under the pathwise derivative estimator and the characteristic function estimator than
the score function estimator. This will be for the mean derivative estimator.

Proposition 1. Let f(x), f ′(x), f ′′(x) be real-valued functions s.t. f(x) is an indefinite
integral of f ′(x), and f ′(x) is an indefinite integral of f ′′(x). Assume that Varpθ(x)((x−
µ)f(x)) <∞, and Varpθ(x)(f ′(x)) <∞, as well as Epθ(x)(|(x−µ)f ′(x) + f(x)|) <∞ and
Epθ(x)(|f ′′(x)|) <∞, with pθ(x) = N (µ, σ2).

If it holds that

Epθ(x)
(
(x− µ)f ′(x) + f(x)

)2
− σ4Epθ(x)

(
f ′′(x)2

)
≥ 0,

then the pathwise derivative and the characteristic function mean derivative estimators
w.r.t. the function f(x) will have lower variance than the score function estimator.

36 Bayesian Deep Learning

Before proving the proposition, I will give some intuitive insights into what the
condition means. For this, assume for simplicity that µ = 0 and σ = 1. This gives the
simplified condition

Epθ(x)
(
xf ′(x) + f(x)

)2
≥ Epθ(x)

(
f ′′(x)2

)
.

First, observe that all expectations are taken over pθ(x), meaning that we only care
about the functions’ average behaviour near zero. Second, a function f(x) with a large
derivative absolute value will change considerably, hence will have high variance. Since
the pathwise derivative estimator boils down to f ′(x) in the Gaussian case, and the score
function estimator boils down to xf(x) (shown in the proof), we wish the expected change
in ∂

∂x
xf(x) = xf ′(x) + f(x) to be higher than the expected change in ∂

∂x
f ′(x) = f ′′(x),

hence the condition.

Proof. We start with the observation that the score function mean estimator w.r.t. a
Gaussian pθ(x) is given by

∂

∂µ

∫
f(x)pθ(x)dx =

∫
f(x)x− µ

σ2 pθ(x)dx

resulting in the estimator Î1 = f(x)x−µ
σ2 . The pathwise derivative and the characteristic

function estimators are identical for the mean derivative, and given by Î2 = f ′(x). We
thus wish to show that Varpθ(x)(Î2) ≤ Varpθ(x)(Î1) under the proposition’s assumptions.
Since Varpθ(x)(Î1) = Varpθ(x)(xf(x)−µf(x))

σ4 , we wish to show that

σ4Varpθ(x)
(
f ′(x)

)
≤ Varpθ(x)

(
(x− µ)f(x)

)
.

Proposition 3.2 in [Cacoullos, 1982] states that for g(x), g′(x) real-valued functions s.t.
g(x) is an indefinite integral of g′(x), and Varpθ(x)(g(x)) < ∞ and Epθ(x)(|g′(x)|) < ∞,
there exists that

σ2Epθ(x)
(
g′(x)

)2
≤ Varpθ(x)

(
g(x)

)
≤ σ2Epθ(x)

(
g′(x)2

)
.

Substituting g(x) with (x− µ)f(x) we have

σ2Epθ(x)
(
(x− µ)f ′(x) + f(x)

)2
≤ Varpθ(x)

(
(x− µ)f(x)

)

3.2 Practical inference in Bayesian neural networks 37

and substituting g(x) with f ′(x) we have

Varpθ(x)
(
f ′(x)

)
≤ σ2Epθ(x)

(
f ′′(x)2

)
.

Under the proposition’s assumption that

Epθ(x)
(
(x− µ)f ′(x) + f(x)

)2
− σ4Epθ(x)

(
f ′′(x)2

)
≥ 0

we conclude

σ4Varpθ(x)
(
f ′(x)

)
≤ σ6Epθ(x)

(
f ′′(x)2

)
≤ σ2Epθ(x)

(
(x− µ)f ′(x) + f(x)

)2

≤ Varpθ(x)
(
(x− µ)f(x)

)
as we wanted to show.

For example, with the simple polynomial function f(x) = x + x2 and µ = 0, σ = 1
from table 3.3 we have

EN (0,1)
(
xf ′(x) + f(x)

)2
− EN (0,1)

(
f ′′(x)2

)
= EN (0,1)

(
2x+ 3x2

)2
− 22

= 32 − 22 > 0,

and indeed the score function estimator variance is higher than that of the pathwise
derivative estimator and that of the characteristic function estimator. A similar result
can be derived for the standard deviation derivative estimator.

From empirical observation, the functions f(x) often encountered in VI seem to
satisfy the variance relation (1) > (2). For this reason, and since we will make use of
distributions other than Gaussian, we continue our work using the pathwise derivative
estimator.

3.2 Practical inference in Bayesian neural networks

We now derive what would hopefully be a practical inference method for Bayesian neural
networks. Inspired by the work of Graves [2011], we propose an inference technique
that satisfies our definition of practicality, making use of the tools above. The work in
this section and the coming sections was previously presented in [Gal, 2015; Gal and
Ghahramani, 2015a,b,c,d, 2016a,b,c].

38 Bayesian Deep Learning

In his work, Graves [2011] used both delta approximating distributions, as well as fully
factorised Gaussian approximating distributions. As such, Graves [2011] relied on Opper
and Archambeau [2009]’s characteristic function estimator in his approximation of eq.
(3.2). Further, Graves [2011] factorised the approximating distribution for each weight
scalar, losing weight correlations. This approach has led to the limitations discussed in
§2.2.2, hurting the method’s performance and practicality.

Using the tools above, and relying on the pathwise derivative estimator instead of
the characteristic function estimator in particular, we can make use of more interesting
non-Gaussian approximating distributions. Further, to avoid losing weight correlations,
we factorise the distribution for each weight row wl,i in each weight matrix Wl, instead
of factorising over each weight scalar. The reason for this will be given below. Using
these two key changes, we will see below how our approximate inference can be closely
tied to SRTs, suggesting a practical, well performing, implementation.

To use the pathwise derivative estimator we need to re-parametrise each qθl,i
(wl,i) as

wl,i = g(θl,i, ϵl,i) and specify some p(ϵl,i) (this will be done at a later time). For simplicity
of notation we will write p(ϵ) = ∏

l,i p(ϵl,i), and ω = g(θ, ϵ) collecting all model random
variables. Starting from the data sub-sampling objective (eq. (3.2)), we re-parametrise
each integral to integrate w.r.t. p(ϵ):

L̂VI(θ) = −N
M

∑
i∈S

∫
qθ(ω) log p(yi|fω(xi))dω + KL(qθ(ω)||p(ω))

= −N
M

∑
i∈S

∫
p(ϵ) log p(yi|f g(θ,ϵ)(xi))dϵ + KL(qθ(ω)||p(ω))

and then replace each expected log likelihood term with its stochastic estimator (eq.
(3.5)), resulting in a new MC estimator:

L̂MC(θ) = −N
M

∑
i∈S

log p(yi|f g(θ,ϵ)(xi)) + KL(qθ(ω)||p(ω)) (3.7)

s.t. ES,ϵ(L̂MC(θ)) = LVI(θ).
Following results in stochastic non-convex optimisation [Rubin, 1981], optimising

L̂MC(θ) w.r.t. θ would converge to the same optima as optimising our original objective
LVI(θ). One thus follows algorithm 1 for inference.

Predictions with this approximation follow equation (2.4) which replaces the posterior
p(ω|X,Y) with the approximate posterior qθ(ω). We can then approximate the predictive

3.2 Practical inference in Bayesian neural networks 39

Algorithm 1 Minimise divergence between qθ(ω) and p(ω|X, Y)

1: Given dataset X,Y,
2: Define learning rate schedule η,
3: Initialise parameters θ randomly.
4: repeat
5: Sample M random variables ϵ̂i ∼ p(ϵ), S a random subset of {1, .., N} of size M .
6: Calculate stochastic derivative estimator w.r.t. θ:

∆̂θ ← −N
M

∑
i∈S

∂

∂θ
log p(yi|f g(θ,̂ϵi)(xi)) + ∂

∂θ
KL(qθ(ω)||p(ω)).

7: Update θ:
θ ← θ + η∆̂θ.

8: until θ has converged.

distribution with MC integration as well:

q̃θ(y∗|x∗) := 1
T

T∑
t=1

p(y∗|x∗, ω̂t) −−−→
T→∞

∫
p
(
y∗|x∗,ω

)
qθ(ω)dω (3.8)

≈
∫
p
(
y∗|x∗,ω

)
p(ω|X,Y)dω

= p(y∗|x∗,X,Y)

with ω̂t ∼ qθ(ω).
We next present distributions qθ(ω) corresponding to several SRTs, s.t. standard

techniques in the deep learning literature could be seen as identical to executing algorithm
1 for approximate inference with qθ(ω). This means that existing models that use such
SRTs can be interpreted as performing approximate inference. As a result, uncertainty
information can be extracted from these, as we will see in the following sections.

3.2.1 Stochastic regularisation techniques

First, what are SRTs? Stochastic regularisation techniques are techniques used to
regularise deep learning models through the injection of stochastic noise into the model.
By far the most popular technique is dropout [Hinton et al., 2012; Srivastava et al., 2014],
but other techniques exist such as multiplicative Gaussian noise (MGN, also referred to
as Gaussian dropout) [Srivastava et al., 2014], or dropConnect [Wan et al., 2013], among
many others [Huang et al., 2016; Krueger et al., 2016; Moon et al., 2015; Singh et al.,

40 Bayesian Deep Learning

2016]. We will concentrate on dropout for the moment, and discuss alternative SRTs
below.

Notation remark. In this section and the next, in order to avoid confusion between
matrices (used as weights in a NN) and stochastic random matrices (which are random
variables inducing a distribution over BNN weights), we change our notation slightly
from §1.1. Here we use M to denote a deterministic matrix over the reals, W to denote a
random variable defined over the set of real matrices2, and use Ŵ to denote a realisation
of W.

Dropout is a technique used to avoid over-fitting in neural networks. It was suggested
as an ad-hoc technique, and was motivated with sexual breeding metaphors rather than
through theoretical foundations [Srivastava et al., 2014, page 1932]. It was introduced
several years ago by Hinton et al. [2012] and studied more extensively in [Srivastava
et al., 2014]. We will describe the use of dropout in simple single hidden layer neural
networks (following the notation of §1.1 with the adjustments above). To use dropout
we sample two binary vectors ϵ̂1, ϵ̂2 of dimensions Q (input dimensionality) and K

(intermediate layer dimensionality) respectively. The elements of the vector ϵ̂i take value
0 with probability 0 ≤ pi ≤ 1 for i = 1, 2. Given an input x, we set p1 proportion of the
elements of the input to zero in expectation: x̂ = x⊙ ϵ̂1

3. The output of the first layer
is given by h = σ(x̂M1 + b), in which we randomly set p2 proportion of the elements to
zero: ĥ = h⊙ ϵ̂2, and linearly transform the vector to give the dropout model’s output
ŷ = ĥM2. We repeat this for multiple layers.

We sample new realisations for the binary vectors ϵ̂i for every input point and every
forward pass through the model (evaluating the model’s output), and use the same values
in the backward pass (propagating the derivatives to the parameters to be optimised
θ = {M1,M2,b}). At test time we do not sample any variables and simply use the
original units x,h scaled by 1

1−pi
.

Multiplicative Gaussian noise is similar to dropout, where the only difference is that
ϵ̂i are vectors of draws from a Gaussian distribution N (1, α) with a positive parameter
α, rather than draws from a Bernoulli distribution.

2The reason for this notation is that M will often coincide with the mean of the random matrix W.
3Here ⊙ is the element-wise product.

3.2 Practical inference in Bayesian neural networks 41

3.2.2 Stochastic regularisation techniques as approximate in-
ference

Dropout and most other SRTs view the injected noise as applied in the feature space (the
input features to each layer: x,h). In Bayesian NNs, on the other hand, the stochasticity
comes from our uncertainty over the model parameters. We can transform dropout’s
noise from the feature space to the parameter space as follows4:

ŷ = ĥM2

= (h⊙ ϵ̂2)M2

= (h · diag(ϵ̂2))M2

= h(diag(ϵ̂2)M2)
= σ

(
x̂M1 + b

)
(diag(ϵ̂2)M2)

= σ
(
(x⊙ ϵ̂1)M1 + b

)
(diag(ϵ̂2)M2)

= σ
(
x(diag(ϵ̂1)M1) + b

)
(diag(ϵ̂2)M2)

writing Ŵ1 := diag(ϵ̂1)M1 and Ŵ2 := diag(ϵ̂2)M2 we end up with

ŷ = σ
(
xŴ1 + b

)
Ŵ2 =: fŴ1,Ŵ2,b(x)

with random variable realisations as weights, and write ω̂ = {Ŵ1,Ŵ2,b}.
This allows us to write dropout’s objective in a more convenient form. Recall that a

neural network’s optimisation objective is given by eq. (1.3). For dropout it will simply
be:

L̂dropout(M1,M2,b) := 1
M

∑
i∈S

EŴi
1,Ŵ

i
2,b(xi,yi) + λ1||M1||2 + λ2||M2||2 + λ3||b||2,

(3.9)

with Ŵi
1,Ŵi

2 corresponding to new masks ϵ̂i1, ϵ̂
i
2 sampled for each data point i. Here

we used data sub-sampling with a random index set S of size M , as is common in deep
learning.

4Here the diag(·) operator maps a vector to a diagonal matrix whose diagonal is the elements of the
vector.

42 Bayesian Deep Learning

As shown by Tishby et al. [1989], in regression EM1,M2,b(x,y) can be rewritten as
the negative log-likelihood scaled by a constant:

EM1,M2,b(x,y) = 1
2 ||y− fM1,M2,b(x)||2 = −1

τ
log p(y|fM1,M2,b(x)) + const (3.10)

where p(y|fM1,M2,b(x)) = N (y; fM1,M2,b(x), τ−1I) with τ−1 observation noise. It is
simple to see that this holds for classification as well (in which case we should set τ = 1).

Recall that ω̂ = {Ŵ1,Ŵ2,b} and write

ω̂i = {Ŵi
1,Ŵi

2,b} = {diag(ϵ̂i1)M1, diag(ϵ̂i2)M2,b} =: g(θ, ϵ̂i)

with θ = {M1,M2,b}, ϵ̂i1 ∼ p(ϵ1), and ϵ̂i2 ∼ p(ϵ2) for 1 ≤ i ≤ N . Here p(ϵl) (l = 1, 2) is
a product of Bernoulli distributions with probabilities 1− pl, from which a realisation
would be a vector of zeros and ones.

We can plug identity (3.10) into objective (3.9) and get

L̂dropout(M1,M2,b) = − 1
Mτ

∑
i∈S

log p(yi|f g(θ,̂ϵi)(x)) + λ1||M1||2 + λ2||M2||2 + λ3||b||2

(3.11)

with ϵ̂i realisations of the random variable ϵ.
The derivative of this optimisation objective w.r.t. model parameters θ = {M1,M2,b}

is given by

∂

∂θ
L̂dropout(θ) = − 1

Mτ

∑
i∈S

∂

∂θ
log p(yi|f g(θ,̂ϵi)(x)) + ∂

∂θ

(
λ1||M1||2 + λ2||M2||2 + λ3||b||2

)
.

The optimisation of a NN with dropout can then be seen as following algorithm 2.
There is a great sense of similarity between algorithm 1 for approximate inference in a

Bayesian NN and algorithm 2 for dropout NN optimisation. Specifically, note the case of a
Bayesian NN with approximating distribution q(ω) s.t. ω = {diag(ϵ1)M1, diag(ϵ2)M2,b}
with p(ϵl) (l = 1, 2) a product of Bernoulli distributions with probability 1− pl (which we
will refer to as a Bernoulli variational distribution or a dropout variational distribution).
The only differences between algorithm 1 and algorithm 2 are

1. the regularisation term derivatives (KL(qθ(ω)||p(ω)) in algo. 1 and λ1||M1||2 +
λ2||M2||2 + λ3||b||2 in algo. 2),

2. and the scale of ∆̂θ (multiplied by a constant 1
Nτ

in algo. 2).

3.2 Practical inference in Bayesian neural networks 43

Algorithm 2 Optimisation of a neural network with dropout
1: Given dataset X,Y,
2: Define learning rate schedule η,
3: Initialise parameters θ randomly.
4: repeat
5: Sample M random variables ϵ̂i ∼ p(ϵ), S a random subset of {1, .., N} of size M .
6: Calculate derivative w.r.t. θ:

∆̂θ ← − 1
Mτ

∑
i∈S

∂

∂θ
log p(yi|f g(θ,̂ϵi)(x)) + ∂

∂θ

(
λ1||M1||2 + λ2||M2||2 + λ3||b||2

)
.

7: Update θ:
θ ← θ + η∆̂θ.

8: until θ has converged.

More specifically, if we define the prior p(ω) s.t. the following holds:

∂

∂θ
KL(qθ(ω)||p(ω)) = ∂

∂θ
Nτ

(
λ1||M1||2 + λ2||M2||2 + λ3||b||2

)
(3.12)

(referred to as the KL condition), we would have the following relation between the
derivatives of objective (3.11) and objective (3.7):

∂

∂θ
L̂dropout(θ) = 1

Nτ

∂

∂θ
L̂MC(θ)

with identical optimisation procedures!
We found that for a specific choice for the approximating distribution qθ(ω), VI

results in identical optimisation procedure to that of a dropout NN. I would stress that
this means that optimising any neural network with dropout is equivalent to a form of
approximate inference in a probabilistic interpretation of the model5. This means that
the optimal weights found through the optimisation of a dropout NN (using algo. 2)
are the same as the optimal variational parameters in a Bayesian NN with the same
structure. Further, this means that a network already trained with dropout is a Bayesian
NN, thus possesses all the properties a Bayesian NN possesses.

We have so far concentrated mostly on the dropout SRT. As to alternative SRTs, re-
member that an approximating distribution qθ(ω) is defined through its re-parametrisation
ω = g(θ, ϵ). Various SRTs can be recovered for different re-parametrisations. For exam-

5Note that to get well-calibrated uncertainty estimates we have to optimise the dropout probability
p as well as θ, for example through grid-search over over validation log probability. This is discussed
further in §4.3

44 Bayesian Deep Learning

ple, multiplicative Gaussian noise [Srivastava et al., 2014] can be recovered by setting
g(θ, ϵ) = {diag(ϵ1)M1, diag(ϵ2)M2,b} with p(ϵl) (for l = 1, 2) a product of N (1, α) with
positive-valued α6. This can be efficiently implemented by multiplying a network’s units
by i.i.d. draws from a N (1, α). On the other hand, setting g(θ, ϵ) = {M1⊙ϵ1,M2⊙ϵ2,b}
with p(ϵl) a product of Bernoulli random variables for each weight scalar we recover
dropConnect [Wan et al., 2013]. This can be efficiently implemented by multiplying a
network’s weight scalars by i.i.d. draws from a Bernoulli distribution. It is interesting
to note that Graves [2011]’s fully factorised approximation can be recovered by setting
g(θ, ϵ) = {M1 + ϵ1,M2 + ϵ2,b} with p(ϵl) a product of N (0, α) for each weight scalar.
This SRT is often referred to as additive Gaussian noise.

3.2.3 KL condition

For VI to result in an identical optimisation procedure to that of a dropout NN, the KL
condition (eq. (3.12)) has to be satisfied. Under what constraints does the KL condition
hold? This depends on the model specification (selection of prior p(ω)) as well as choice
of approximating distribution qθ(ω). For example, it can be shown that setting the model
prior to p(ω) = ∏L

i=1 p(Wi) = ∏L
i=1N (0, I/l2i), in other words independent normal priors

over each weight, with prior length-scale7

l2i = 2Nτλi
1− pi

(3.13)

we have

∂

∂θ
KL(qθ(ω)||p(ω)) ≈ ∂

∂θ
Nτ(λ1||M1||2 + λ2||M2||2 + λ3||b||2)

for a large enough number of hidden units and a Bernoulli variational distribution. This
is discussed further in appendix A. Alternatively, a discrete prior distribution

p(w) ∝ e− l2
2 wT w

6For the multiplicative Gaussian noise this result was also presented in [Kingma et al., 2015], which
was done in parallel to this work.

7A note on mean-squared-error losses: the mean-squared-error loss can be seen as a scaling of the
Euclidean loss (eq. (1.1)) by a factor of 2, which implies that the factor of 2 in the length-scale should
be removed. The mean-squared-error loss is used in many modern deep learning packages instead (or as)
the Euclidean loss.

3.2 Practical inference in Bayesian neural networks 45

defined over a finite space w ∈ X satisfies the KL condition (eq. (3.12)) exactly. This is
discussed in more detail in §6.5. For multiplicative Gaussian noise, Kingma et al. [2015]
have shown that an improper log-uniform prior distribution satisfies our KL condition.

Notation remark. In the rest of this work we will use M and W interchangeably,
with the understanding that in deterministic NNs the random variable W will follow a
delta distribution with mean parameter M.

Remark (What is a prior length-scale l2i ?). It is interesting to explain why we
consider the parameter l to be a prior length-scale in a Bayesian NN when setting
a Gaussian prior N (0, I/l2) over the weights. To see this, re-parametrise the input
prior distribution as W′

1 ∼ N (0, I), with W1 = W′
1/l:

ŷ = σ

(
x

W′
1
l

+ b
)

W2 = σ

(
x
l
W′

1 + b
)

W2

i.e. placing a prior distribution N (0, I/l2) over W1 can be replaced by scaling the
inputs by 1/l with a N (0, I) prior instead. For example, multiplying the inputs
by 100 (making the function smoother) and placing a prior length-scale l = 100
would give identical model output to placing a prior length-scale l = 1 with the
original inputs. This means that the length-scale’s unit of measure is identical to
the inputs’ one.
What does the prior length-scale mean? To see this, consider a real valued function
f(x), periodic with period P , and consider its Fourier expansion with K terms:

fK(x) := A0

2 +
K∑
k=1

Ak · sin
(

2πk
P
x+ ϕk

)
.

This can be seen as a single hidden layer neural network with a non-linearity
σ(·) := sin(·), input weights given by the Fourier frequencies W1 := [2πk

P
]Kk=1 (which

are fixed and not learnt), b := [ϕk]Kk=1 is the bias term of the hidden layer, the
Fourier coefficients are the output weights W2 := [Ak]Kk=1, and A0

2 is the output
bias (which can be omitted for centred data). For simplicity we assume that W1 is
composed of only the Fourier frequencies for which the Fourier coefficients are not
zero. For example, W1 might be composed of high frequencies, low frequencies, or
a combination of the two.

46 Bayesian Deep Learning

This view of single hidden layer neural networks gives us some insights into the role
of the different quantities used in a neural network. For example, erratic functions
have high frequencies, i.e. high magnitude input weights W1. On the other hand,
smooth slow-varying functions are composed of low frequencies, and as a result the
magnitude of W1 is small. The magnitude of W2 determines how much different
frequencies will be used to compose the output function fK(x). High magnitude W2

results in a large magnitude for the function’s outputs, whereas low W2 magnitude
gives function outputs scaled down and closer to zero.
When we place a prior distribution over the input weights of a BNN, we can capture
this characteristic. Having W1 ∼ N (0, I/l2) a priori with long length-scale l results
in weights with low magnitude, and as a result slow-varying induced functions. On
the other hand, placing a prior distribution with a short length-scale gives high
magnitude weights, and as a result erratic functions with high frequencies. This
will be demonstrated empirically in §4.1.
Given the intuition about weight magnitude above, equation (3.13) can be re-written
to cast some light on the structure of the weight-decay in a neural networka:

λi = l2i (1− pi)
2Nτ . (3.14)

A short length-scale li (corresponding to high frequency data) with high pre-
cision τ (equivalently, small observation noise) results in a small weight-decay
λi—encouraging the model to fit the data well but potentially generalising badly.
A long length-scale with low precision results in a large weight-decay—and stronger
regularisation over the weights. This trade-off between the length-scale and model
precision results in different weight-decay values.
Lastly, I would comment on the choice of placing a distribution over the rows of a
weight matrix rather than factorising it over each row’s elements. Gal and Turner
[2015] offered a derivation related to the Fourier expansion above, where a function
drawn from a Gaussian process (GP) was approximated through a finite Fourier
decomposition of the GP’s covariance function. This derivation has many properties
in common with the view above. Interestingly, in the multivariate f(x) case the
Fourier frequencies are given in the columns of the equivalent weight matrix W1

of size Q (input dimension) by K (number of expansion terms). This generalises
on the univariate case above where W1 is of dimensions Q = 1 by K and each
entry (column) is a single frequency. Factorising the weight matrix approximating

3.3 Model uncertainty in Bayesian neural networks 47

distribution qθ(W1) over its rows rather than columns captures correlations over
the function’s frequencies.

aNote that with a mean-squared-error loss the factor of 2 should be removed.

3.3 Model uncertainty in Bayesian neural networks

We next derive results extending on the above showing that model uncertainty can be
obtained from NN models that make use of SRTs such as dropout.

Recall that our approximate predictive distribution is given by eq. (2.4):

q∗
θ(y∗|x∗) =

∫
p(y∗|fω(x∗))q∗

θ(ω)dω (3.15)

where ω = {Wi}Li=1 is our set of random variables for a model with L layers, fω(x∗) is
our model’s stochastic output, and q∗

θ(ω) is an optimum of eq. (3.7).
We will perform moment-matching and estimate the first two moments of the predictive

distribution empirically. The first moment can be estimated as follows:

Proposition 2. Given p(y∗|fω(x∗)) = N (y∗; fω(x∗), τ−1I) for some τ > 0, Eq∗
θ

(y∗|x∗)[y∗]
can be estimated with the unbiased estimator

Ẽ[y∗] := 1
T

T∑
t=1

f ω̂t(x∗) −−−→
T→∞

Eq∗
θ

(y∗|x∗)[y∗] (3.16)

with ω̂t ∼ q∗
θ(ω).

Proof.

Eq∗
θ

(y∗|x∗)[y∗] =
∫

y∗q∗
θ(y∗|x∗)dy∗

=
∫ ∫

y∗N (y∗; fω(x∗), τ−1I)q∗
θ(ω)dωdy∗

=
∫ (∫

y∗N (y∗; fω(x∗), τ−1I)dy∗
)
q∗
θ(ω)dω

=
∫

fω(x∗)q∗
θ(ω)dω,

giving the unbiased estimator Ẽ[y∗] := 1
T

∑T
t=1 f ω̂t(x∗) following MC integration with T

samples.

48 Bayesian Deep Learning

When used with dropout, we refer to this Monte Carlo estimate (3.16) as MC dropout.
In practice MC dropout is equivalent to performing T stochastic forward passes through
the network and averaging the results. For dropout, this result has been presented
in the literature before as model averaging [Srivastava et al., 2014]. We have given
a new derivation for this result which allows us to derive mathematically grounded
uncertainty estimates as well, and generalises to all SRTs (including SRTs such as
multiplicative Gaussian noise where the model averaging interpretation would result in
infinitely many models). Srivastava et al. [2014, section 7.5] have reasoned based on
empirical experimentation that the model averaging can be approximated by multiplying
each network unit hi by 1/(1− pi) at test time, referred to as standard dropout. This
can be seen as propagating the mean of each layer to the next. Below (in section §4.4)
we give results showing that there exist models in which standard dropout gives a bad
approximation to the model averaging.

We estimate the second raw moment (for regression) using the following proposition:

Proposition 3.
Given p(y∗|fω(x∗)) = N (y∗; fω(x∗), τ−1I) for some τ > 0, Eq∗

θ
(y∗|x∗)

[
(y∗)T (y∗)

]
can be

estimated with the unbiased estimator

Ẽ
[
(y∗)T (y∗)

]
:= τ−1I + 1

T

T∑
t=1

f ω̂t(x∗)T f ω̂t(x∗) −−−→
T→∞

Eq∗
θ

(y∗|x∗)
[
(y∗)T (y∗)

]

with ω̂t ∼ q∗
θ(ω) and y∗, f ω̂t(x∗) row vectors (thus the sum is over the outer-products).

Proof.

Eq∗
θ

(y∗|x∗)
[
(y∗)T (y∗)

]
=
∫ (∫

(y∗)T (y∗)p(y∗|x∗,ω)dy∗
)
q∗
θ(ω)dω

=
∫ (

Covp(y∗|x∗,ω)[y∗] + Ep(y∗|x∗,ω)[y∗]TEp(y∗|x∗,ω)[y∗]
)
q∗
θ(ω)dω

=
∫ (

τ−1I + fω(x∗)T fω(x∗)
)
q∗
θ(ω)dω

giving the unbiased estimator Ẽ
[
(y∗)T (y∗)

]
:= τ−1I + 1

T

∑T
t=1 f ω̂t(x∗)T f ω̂t(x∗) following

MC integration with T samples.

To obtain the model’s predictive variance we use the unbiased estimator:

Ṽar[y∗] := τ−1I + 1
T

T∑
t=1

f ω̂t(x∗)T f ω̂t(x∗)− Ẽ[y∗]T Ẽ[y∗]

3.3 Model uncertainty in Bayesian neural networks 49

−−−→
T→∞

Varq∗
θ

(y∗|x∗)[y∗]

which equals the sample variance of T stochastic forward passes through the NN plus
the inverse model precision.

How can we find the model precision? In practice in the deep learning literature we
often grid-search over the weight-decay λ to minimise validation error. Then, given a
weight-decay λi (and prior length-scale li), eq. (3.13) can be re-written to find the model
precision8:

τ = (1− p)l2i
2Nλi

. (3.17)

Remark (Predictive variance and posterior variance). It is important to note the
difference between the variance of the approximating distribution qθ(ω) and the
variance of the predictive distribution qθ(y|x) (eq. (3.15)).
To see this, consider the illustrative example of an approximating distribution
with fixed mean and variance used with the first weight layer W1, for example a
standard Gaussian N (0, I). Further, assume for the sake of argument that delta
distributions (or Gaussians with very small variances) are used to approximate the
posterior over the layers following the first layer. Given enough follow-up layers we
can capture any function to arbitrary precision—including the inverse cumulative
distribution function (CDF) of any distribution (similarly to the remark in §2.2.1,
but with the addition of a Gaussian CDF as we don’t have a uniform on the first
layer in this case). Passing the distribution from the first layer through the rest of
the layers transforms the standard Gaussian with this inverse CDF, resulting in
any arbitrary distribution as determined by the CDF.
In this example, even though the variance of each weight layer is constant, the
variance of the predictive distribution can take any value depending on the learnt
CDF. This example can be extended from a standard Gaussian approximating
distribution to a mixture of Gaussians with fixed standard deviations, and to discrete
distributions with fixed probability vectors (such as the dropout approximating
distribution). Of course, in real world cases we would prefer to avoid modelling the

8Prior length-scale li can be fixed based on the density of the input data X and our prior belief as to
the function’s wiggliness, or optimised over as well (w.r.t. predictive log-likelihood over a validation set).
The dropout probability is optimised using grid search similarly.

50 Bayesian Deep Learning

deep layers with delta approximating distributions since that would sacrifice our
ability to capture model uncertainty.

Given a dataset X,Y and a new data point x∗ we can calculate the probability
of possible output values y∗ using the predictive probability p(y∗|x∗,X,Y). The log
of the predictive likelihood captures how well the model fits the data, with larger
values indicating better model fit. Our predictive log-likelihood (also referred to as test
log-likelihood) can be approximated by MC integration of eq. (3.15) with T terms:

˜log p(y∗|x∗,X,Y) := log
(

1
T

T∑
t=1

p(y∗|x∗,ωt)
)
−−−→
T→∞

log
∫
p(y∗|x∗,ω)q∗

θ(ω)dω

≈ log
∫
p(y∗|x∗,ω)p(ω|X,Y)dω

= log p(y∗|x∗,X,Y)

with ωt ∼ q∗
θ(ω) and since q∗

θ(ω) is the minimiser of eq. (2.3). Note that this is a
biased estimator since the expected quantity is transformed with the non-linear logarithm
function, but the bias decreases as T increases.

For regression we can rewrite this last equation in a more numerically stable way9:

˜log p(y∗|x∗,X,Y) = logsumexp
(
− 1

2τ ||y− f ω̂t(x∗)||2
)
− log T − 1

2 log 2π + 1
2 log τ

(3.18)

with our precision parameter τ .
Uncertainty quality can be determined from this quantity as well. Excessive un-

certainty (large observation noise, or equivalently small model precision τ) results in
a large penalty from the last term in the predictive log-likelihood. On the other hand,
an over-confident model with large model precision compared to poor mean estimation
results in a penalty from the first term—the distance ||y− f ω̂t(x∗)||2 gets amplified by τ
which drives the exponent to zero.

Note that the normal NN model itself is not changed. To estimate the predictive
mean and predictive uncertainty we simply collect the results of stochastic forward passes
through the model. As a result, this information can be used with existing NN models
trained with SRTs. Furthermore, the forward passes can be done concurrently, resulting
in constant running time identical to that of standard NNs.

9logsumexp is the log-sum-exp function.

3.3 Model uncertainty in Bayesian neural networks 51

3.3.1 Uncertainty in classification

In regression we summarised predictive uncertainty by looking at the sample variance
of multiple stochastic forward passes. In the classification setting, however, we need
to rely on alternative approaches to summarise uncertainty10. We will analyse three
approaches to summarise uncertainty within classification: variation ratios [Freeman,
1965], predictive entropy [Shannon, 1948], and mutual information [Shannon, 1948]. These
measures capture different notions of uncertainty: model uncertainty and predictive
uncertainty, and will be explained below. But first, how do we calculate these quantities
in our setting?

To use variation ratios we would sample a label from the softmax probabilities at
the end of each stochastic forward pass for a test input x. Collecting a set of T labels
yt from multiple stochastic forward passes on the same input we can find the mode of
the distribution11 c∗ = arg max

c=1,...,C

∑
t 1[yt = c], and the number of times it was sampled

fx = ∑
t 1[yt = c∗]. We then set

variation-ratio[x] := 1− fx

T
. (3.19)

The variation ratio is a measure of dispersion—how “spread” the distribution is around
the mode. In the binary case, the variation ratio attains its maximum of 0.5 when the
two classes are sampled equally likely, and its minimum of 0 when only a single class is
sampled.

Remark (Variation ratios and approximate inference). The variation ratio as it
was formulated in [Freeman, 1965] and used above can be seen as approximating
the quantity

1− p(y = c∗|x,Dtrain)

with c∗ = arg max
c=1,...,C

p(y = c|x,Dtrain). This is because for yt the t’th class sampled

for input x we have:

fx

T
= 1
T

∑
t

1[yt = c∗] −−−→
T→∞

Eq∗
θ

(y|x)
[
1[y = c∗]

]

10These approaches are necessary since the probability vector resulting from a deterministic forward
pass through the model does not capture confidence, as explained in figure 1.3.

11Here 1[·] is the indicator function.

52 Bayesian Deep Learning

=q∗
θ(y = c∗|x)

≈p(y = c∗|x,Dtrain)

and,

c∗ = arg max
c=1,...,C

∑
t

1[yt = c] =arg max
c=1,...,C

1
T

∑
t

1[yt = c]

−−−→
T→∞

arg max
c=1,...,C

Eq∗
θ

(y|x)[1[y = c]]

=arg max
c=1,...,C

q∗
θ(y = c|x).

≈arg max
c=1,...,C

p(y = c|x,Dtrain)

since q∗
θ(ω) is a minimiser of the KL divergence to p(ω|Dtrain) and therefore

q∗
θ(y|x) ≈

∫
p(y|fω(x))p(ω|Dtrain)dω (following eq. (3.15)).

Unlike variation ratios, predictive entropy has its foundations in information theory.
This quantity captures the average amount of information contained in the predictive
distribution:

H[y|x,Dtrain] := −
∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain) (3.20)

summing over all possible classes c that y can take. Given a test point x, the predictive
entropy attains its maximum value when all classes are predicted to have equal uniform
probability, and its minimum value of zero when one class has probability 1 and all others
probability 0 (i.e. the prediction is certain).

In our setting, the predictive entropy can be approximated by collecting the probability
vectors from T stochastic forward passes through the network, and for each class c
averaging the probabilities of the class from each of the T probability vectors, replacing
p(y = c|x,Dtrain) in eq. (3.20). In other words, we replace p(y = c|x,Dtrain) with
1
T

∑
t p(y = c|x, ω̂t), where p(y = c|x, ω̂t) is the probability of input x to take class c

with model parameters ω̂t ∼ q∗
θ(ω):

[p(y = 1|x, ω̂t), ..., p(y = C|x, ω̂t)] := Softmax(f ω̂t(x)).

3.3 Model uncertainty in Bayesian neural networks 53

Then,

H̃[y|x,Dtrain] :=−
∑
c

(
1
T

∑
t

p(y = c|x, ω̂t)
)

log
(

1
T

∑
t

p(y = c|x, ω̂t)
)

−−−→
T→∞

−
∑
c

(∫
p(y = c|x,ω)q∗

θ(ω)dω

)
log

(∫
p(y = c|x,ω)q∗

θ(ω)dω

)

≈−
∑
c

(∫
p(y = c|x,ω)p(ω|Dtrain)dω

)
log

(∫
p(y = c|x,ω)p(ω|Dtrain)dω

)
=−

∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain)

=H[y|x,Dtrain]

with ω̂t ∼ q∗
θ(ω) and since q∗

θ(ω) is the optimum of eq. (3.7). Note that this is a biased
estimator since the unbiased estimator 1

T

∑
t p(y = c|x, ω̂t) −−−→

T→∞

∫
p(y = c|x,ω)q∗

θ(ω)dω

is transformed through the non-linear function H[·]. The bias of this estimator will
decrease as T increases.

As an alternative to the predictive entropy, the mutual information between the
prediction y and the posterior over the model parameters ω offers a different measure of
uncertainty:

I[y,ω|x,Dtrain] := H[y|x,Dtrain]− Ep(ω|Dtrain)
[
H[y|x,ω]

]
= −

∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain)

+ Ep(ω|Dtrain)
[∑

c

p(y = c|x,ω) log p(y = c|x,ω)
]

with c the possible classes y can take. This tractable view of the mutual information
was suggested in [Houlsby et al., 2011] in the context of active learning. Test points x
that maximise the mutual information are points on which the model is uncertain on
average, yet there exist model parameters that erroneously produce predictions with high
confidence.

The mutual information can be approximated in our setting in a similar way to the
predictive entropy approximation:

Ĩ[y,ω|x,Dtrain] :=−
∑
c

(
1
T

∑
t

p(y = c|x, ω̂t)
)

log
(

1
T

∑
t

p(y = c|x, ω̂t)
)

+ 1
T

∑
c,t

p(y = c|x, ω̂t) log p(y = c|x, ω̂t)

−−−→
T→∞

H[y|x,Dtrain]− Eq∗
θ

(ω)
[
H[y|x,ω]

]

54 Bayesian Deep Learning

≈I[y,ω|x,Dtrain]

with ω̂t ∼ q∗
θ(ω).

Some intuition. To understand the different measures for uncertainty, we shall look
at three concrete examples in binary classification of dogs and cats given an input image.
More specifically, we will look at the sets of probability vectors obtained from multiple
stochastic forward passes, and the uncertainty measures resulting from these sets. The
three examples are where the probabilities for the class “dog” in all vectors are

1. all equal to 1 (i.e. the probability vectors collected are {(1, 0), ..., (1, 0)}),

2. all equal to 0.5 (i.e. the probability vectors collected are {(0.5, 0.5), ..., (0.5, 0.5)}),
and

3. half of the probabilities sampled equal to 0 and half of the probabilities equal to 1
(i.e. the probability vectors collected are {(1, 0), (0, 1), (0, 1), ..., (1, 0)} for example).

In example (1) the prediction has high confidence, whereas in examples (2) and (3) the
prediction has low confidence. These are examples of predictive uncertainty. Compared
to this notion of confidence, in examples (1) and (2) the model is confident about its
output since it gives identical probabilities in multiple forward passes. On the other
hand, in the last example (3) the model is uncertain about its output, corresponding to
the case in figure 1.3 (where the layer before the softmax has high uncertainty). This is
an example of model uncertainty.

In example (1), both variation ratios, predictive entropy, and the mutual information
would return value 0, all measures indicating high confidence. In example (3) variation
ratios, predictive entropy, and the mutual information would all return value 0.5, all
measures indicating high uncertainty. All three measures of uncertainty agree on these
two examples.

However, in example (2) variation ratios and predictive entropy would return value
0.5, whereas the mutual information would return value 0. In this case variation ratios
and predictive entropy capture the uncertainty in the prediction, whereas the mutual
information captures the model’s confidence in its output. This information can be used
for example in active learning, and will be demonstrated in section §5.2.

3.3.2 Difficulties with the approach

Our technique is simple: perform several stochastic forward passes through the model, and
look at the sample mean and variance. But it has several shortcomings worth discussing.

3.3 Model uncertainty in Bayesian neural networks 55

First, even though the training time of our model is identical to that of existing models
in the field, the test time is scaled by T—the number of averaged forward passes through
the network. This may not be of real concern in some real world applications, as NNs are
often implemented on distributed hardware. Distributed hardware allows us to obtain
MC estimates in constant time almost trivially, by transferring an input to a GPU and
setting a mini-batch composed of the same input multiple times. In dropout for example
we sample different Bernoulli realisations for each output unit and each mini-batch input,
which results in a matrix of probabilities. Each row in the matrix is the output of the
dropout network on the same input generated with different random variable realisations
(dropout masks). Averaging over the rows results in the MC dropout estimate.

Another concern is that the model’s uncertainty is not calibrated. A calibrated
model is one in which the predictive probabilities match the empirical frequency of the
data. The lack of calibration can be seen through the derivation’s relation to Gaussian
processes [Gal and Ghahramani, 2015b]. Gaussian processes’ uncertainty is known
to not be calibrated—the Gaussian process’s uncertainty depends on the covariance
function chosen, which is shown in [Gal and Ghahramani, 2015b] to be equivalent to
the non-linearities and prior over the weights. The choice of a GP’s covariance function
follows from our assumptions about the data. If we believe, for example, that the model’s
uncertainty should increase far from the data we might choose the squared exponential
covariance function.

For many practical applications the lack of calibration means that model uncertainty
can increase for large magnitude data points or be of different scale for different datasets.
To calibrate model uncertainty in regression tasks we can scale the uncertainty linearly
to remove data magnitude effects, and manipulate uncertainty percentiles to compare
among different datasets. This can be done by finding the number of validation set
points having larger uncertainty than that of a test point. For example, if a test point
has predictive standard deviation 5, whereas almost all validation points have standard
deviation ranging from 0.2 to 2, then the test point’s uncertainty value will be in the top
percentile of the validation set uncertainty measures, and the model will be considered as
very uncertain about the test point compared to the validation data. However, another
model might give the same test point predictive standard deviation of 5 with most of
the validation data given predictive standard deviation ranging from 10 to 15. In this
model the test point’s uncertainty measure will be in the lowest percentile of validation
set uncertainty measures, and the model will be considered as fairly confident about the
test point with respect to the validation data.

56 Bayesian Deep Learning

One last concern is a known limitation of VI. Variational inference is known to
underestimates predictive variance [Turner and Sahani, 2011], a property descendent
from our objective (which penalises qθ(ω) for placing mass where p(ω|X,Y) has no
mass, but less so for not placing mass where it should). Several solutions exist for
this (such as [Giordano et al., 2015]), with different limitations for their practicality.
Uncertainty under-estimation does not seem to be of real concern in practice though,
and the variational approximation seems to work well in practical applications as we will
see in the next chapter.

3.4 Approximate inference in complex models

We finish the chapter by extending the approximate inference technique above to more
complex models such as convolutional neural networks and recurrent neural networks.
This will allow us to obtain model uncertainty for models defined over sequence based
datasets or for image data. We describe the approximate inference using Bernoulli
variational distributions for convenience of presentation, although any SRT could be used
instead.

3.4.1 Bayesian convolutional neural networks

In existing convolutional neural networks (CNNs) literature dropout is mostly used after
inner-product layers at the end of the model alone. This can be seen as applying a
finite deterministic transformation to the data before feeding it into a Bayesian NN.
As such, model uncertainty can still be obtained for such models, but an interesting
question is whether we could use approximate Bayesian inference over the full CNN.
Here we wish to integrate over the convolution layers (kernels) of the CNN as well. To
implement a Bayesian CNN we could apply dropout after all convolution layers as well
as inner-product layers, and evaluate the model’s predictive posterior using eq. (3.8) at
test time. Note though that generalisations to SRTs other than dropout are also possible
and easy to implement.

Recall the structure of a CNN described in §1.1 and in figure 1.1. In more de-
tail, the input to the i’th convolution layer is represented as a 3 dimensional tensor
x ∈ RHi−1×Wi−1×Ki−1 with height Hi−1, width Wi−1, and Ki−1 channels. A convolution
layer is then composed of a sequence of Ki kernels (weight tensors): kk ∈ Rh×w×Ki−1

for k = 1, ..., Ki. Here we assume kernel height h, kernel width w, and the last di-
mension to match the number of channels in the input layer: Ki−1. Convolving

3.4 Approximate inference in complex models 57

the kernels with the input (with a given stride s) then results in an output layer
of dimensions y ∈ RH′

i−1×W ′
i−1×Ki with H ′

i−1 and W ′
i−1 being the new height and

width, and Ki channels—the number of kernels. Each element yi,j,k is the sum of
the element-wise product of kernel kk with a corresponding patch in the input image x:
[[xi−h/2,j−w/2,1, ..., xi+h/2,j+w/2,1], ..., [xi−h/2,j−w/2,Ki−1 , ..., xi+h/2,j+w/2,Ki−1]].

To integrate over the kernels, we reformulate the convolution as a linear operation. Let
kk ∈ Rh×w×Ki−1 for k = 1, ..., Ki be the CNN’s kernels with height h, width w, and Ki−1

channels in the i’th layer. The input to the layer is represented as a 3 dimensional tensor
x ∈ RHi−1×Wi−1×Ki−1 with height Hi−1, width Wi−1, and Ki−1 channels. Convolving the
kernels with the input with a given stride s is equivalent to extracting patches from the
input and performing a matrix product: we extract h× w ×Ki−1 dimensional patches
from the input with stride s and vectorise these. Collecting the vectors in the rows of
a matrix we obtain a new representation for our input x ∈ Rn×hwKi−1 with n patches.
The vectorised kernels form the columns of the weight matrix Wi ∈ RhwKi−1×Ki . The
convolution operation is then equivalent to the matrix product xWi ∈ Rn×Ki . The
columns of the output can be re-arranged into a 3 dimensional tensor y ∈ RHi×Wi×Ki

(since n = Hi ×Wi). Pooling can then be seen as a non-linear operation on the matrix y.
Note that the pooling operation is a non-linearity applied after the linear convolution
counterpart to ReLU or Tanh non-linearities.

To make the CNN into a probabilistic model we place a prior distribution over each
kernel and approximately integrate each kernels-patch pair with Bernoulli variational
distributions. We sample Bernoulli random variables ϵi,j,n and multiply patch n by
the weight matrix Wi · diag([ϵi,j,n]Ki

j=1). This product is equivalent to an approximating
distribution modelling each kernel-patch pair with a distinct random variable, tying
the means of the random variables over the patches. The distribution randomly sets
kernels to zero for different patches. This approximating distribution is also equivalent
to applying dropout for each element in the tensor y before pooling. Implementing our
Bayesian CNN is therefore as simple as using dropout after every convolution layer before
pooling.

The standard dropout test time approximation (scaling hidden units by 1/(1− pi))
does not perform well when dropout is applied after convolutions—this is a negative result
we identified empirically. We solve this by approximating the predictive distribution
following eq. (3.8), averaging stochastic forward passes through the model at test time
(using MC dropout). We assess the model above with an extensive set of experiments
studying its properties in §4.4.

58 Bayesian Deep Learning

3.4.2 Bayesian recurrent neural networks

We next develop inference with Bernoulli variational distributions for recurrent neural
networks (RNNs), although generalisations to SRTs other than dropout are trivial. We
will concentrate on simple RNN models for brevity of notation. Derivations for LSTM
and GRU follow similarly. Given input sequence x = [x1, ...,xT] of length T , a simple
RNN is formed by a repeated application of a deterministic function fh. This generates a
hidden state ht for time step t:

ht = fh(xt,ht−1) = σ(xtWh + ht−1Uh + bh)

for some non-linearity σ. The model output can be defined, for example, as

fy(hT) = hTWy + by.

To view this RNN as a probabilistic model we regard ω = {Wh,Uh,bh,Wy,by} as
random variables (following Gaussian prior distributions). To make the dependence on
ω clear, we write fω

y for fy and similarly for fω
h . We define our probabilistic model’s

likelihood as above (section 2.1). The posterior over random variables ω is rather complex,
and we approximate it with a variational distribution q(ω). For the dropout SRT for
example we may use a Bernoulli approximating distribution.

Recall our VI optimisation objective eq. (3.1). Evaluating each log likelihood term in
eq. (3.1) with our RNN model we have

∫
q(ω) log p(y|fω

y (hT))dω =
∫
q(ω) log p

(
y
∣∣∣∣∣fω

y

(
fω
h (xT ,hT−1)

))
dω

=
∫
q(ω) log p

(
y
∣∣∣∣∣fω

y

(
fω
h (xT , fω

h (...fω
h (x1,h0)...))

))
dω

with h0 = 0. We approximate this with MC integration with a single sample:

≈ log p
(

y
∣∣∣∣∣f ω̂

y

(
f ω̂
h (xT , f ω̂

h (...f ω̂
h (x1,h0)...))

))
,

with ω̂ ∼ q(ω), resulting in an unbiased estimator to each sum term12.
12Note that for brevity we did not re-parametrise the integral, although this should be done to obtain

low variance derivative estimators.

3.4 Approximate inference in complex models 59

This estimator is plugged into equation (3.1) to obtain our minimisation objective

L̂MC = −
N∑
i=1

log p
(

yi
∣∣∣∣∣f ω̂i

y

(
f ω̂i
h (xi,T , f ω̂i

h (...f ω̂i
h (xi,1,h0)...))

))
+ KL(q(ω)||p(ω)). (3.21)

Note that for each sequence xi we sample a new realisation ω̂i = {Ŵi
h, Ûi

h, b̂ih,Ŵi
y, b̂iy},

and that each symbol in the sequence xi = [xi,1, ...,xi,T] is passed through the function
f ω̂i
h with the same weight realisations Ŵi

h, Ûi
h, b̂ih used at every time step t ≤ T .

In the dropout case, evaluating the model output f ω̂
y (·) with sample ω̂ corresponds to

randomly zeroing (masking) rows in each weight matrix W during the forward pass. In
our RNN setting with a sequence input, each weight matrix row is randomly masked
once, and importantly the same mask is used through all time steps. When viewed as a
stochastic regularisation technique, our induced dropout variant is therefore identical
to implementing dropout in RNNs with the same network units dropped at each time
step, randomly dropping inputs, outputs, and recurrent connections. Predictions can be
approximated by either propagating the mean of each layer to the next (referred to as the
standard dropout approximation), or by performing dropout at test time and averaging
results (MC dropout, eq. (3.16)).

Remark (Bayesian versus ensembling interpretation of dropout). Apart from our
Bayesian approximation interpretation, dropout in deep networks can also be seen as
following an ensembling interpretation [Srivastava et al., 2014]. This interpretation
also leads to MC dropout at test time. But the ensembling interpretation does
not determine whether the ensemble should be over the network units or the
weights. For example, in an RNN this view will not lead to our dropout variant,
unless the ensemble is defined to tie the weights of the network ad hoc. This is in
comparison to the Bayesian approximation view where the weight tying is forced
by the probabilistic interpretation of the model.
The same can be said about the latent variable model view of dropout [Maeda,
2014] where a constraint over the weights would have to be added ad hoc to derive
the results presented here.

Certain RNN models such as LSTMs [Graves et al., 2013; Hochreiter and Schmidhuber,
1997] and GRUs [Cho et al., 2014] use different gates within the RNN units. For example,
an LSTM is defined by setting four gates: “input”, “forget”, “output”, and an “input
modulation gate”,

i = sigm
(
ht−1Ui + xtWi

)
f = sigm

(
ht−1Uf + xtWf

)

60 Bayesian Deep Learning

o = sigm
(
ht−1Uo + xtWo

)
g = tanh

(
ht−1Ug + xtWg

)
ct = f ⊙ ct−1 + i⊙ g ht = o⊙ tanh(ct) (3.22)

with ω = {Wi,Ui,Wf ,Uf ,Wo,Uo,Wg,Ug} weight matrices and sigm the sigmoid
non-linearity. Here an internal state ct (also referred to as cell) is updated additively.

Alternatively, the model could be re-parametrised as in [Graves et al., 2013]:

i
f
o
g

 =

sigm
sigm
sigm
tanh

W ·

 xt
ht−1

 (3.23)

with ω = {W}, W = [Wi,Ui; Wf ,Uf ; Wo,Uo; Wg,Ug] a matrix of dimensions 4K by
2K (K being the dimensionality of xt). We name this parametrisation a tied-weights
LSTM (compared to the untied-weights LSTM parametrisation in eq. (3.22)).

Even though these two parametrisations result in the same deterministic model output,
they lead to different approximating distributions q(ω). With the first parametrisation
one could use different dropout masks for different gates (even when the same input xt is
used). This is because the approximating distribution is placed over the matrices rather
than the inputs: we might drop certain rows in one weight matrix W applied to xt and
different rows in another matrix W′ applied to xt. With the second parametrisations we
would place a distribution over the single matrix W. This leads to a faster forward-pass,
but with slightly diminished results (this tradeoff is examined in section §4.5).

Remark (Word embeddings dropout). In datasets with continuous inputs we often
apply SRTs such as dropout to the input layer—i.e. to the input vector itself. This
is equivalent to placing a distribution over the weight matrix which follows the
input and approximately integrating over it (the matrix is optimised, therefore
prone to overfitting otherwise).
But for models with discrete inputs such as words (where every word is mapped to a
continuous vector—a word embedding)—this is seldom done. With word embeddings
the input can be seen as either the word embedding itself, or, more conveniently, as
a “one-hot” encoding (a vector of zeros with 1 at a single position). The product of
the one-hot encoded vector with an embedding matrix WE ∈ RV×D (where D is
the embedding dimensionality and V is the number of words in the vocabulary)
then gives a word embedding. Curiously, this parameter layer is the largest layer in

3.4 Approximate inference in complex models 61

most language applications, yet it is often not regularised. Since the embedding
matrix is optimised it can lead to overfitting, and it is therefore desirable to apply
dropout to the one-hot encoded vectors. This in effect is identical to dropping
words at random throughout the input sentence, and can also be interpreted as
encouraging the model to not “depend” on single words for its output.
Note that as before, we randomly set rows of the matrix WE ∈ RV×D to zero. Since
we repeat the same mask at each time step, we drop the same words throughout
the sequence—i.e. we drop word types at random rather than word tokens (as an
example, the sentence “the dog and the cat” might become “— dog and — cat”
or “the — and the cat”, but never “— dog and the cat”). A possible inefficiency
implementing this is the requirement to sample V Bernoulli random variables,
where V might be large. This can be solved by the observation that for sequences
of length T , at most T embeddings could be dropped (other dropped embeddings
have no effect on the model output). For T ≪ V it is therefore more efficient
to first map the words to the word embeddings, and only then to zero-out word
embeddings based on their word type.

F • f

In the next chapter we will study the techniques above empirically and analyse
them quantitatively. This is followed by a survey of recent literature making use of
the techniques in real-world problems concerning AI safety, image processing, sequence
processing, active learning, and other examples.

Chapter 4

Uncertainty Quality

In this chapter we assess the techniques developed in the previous chapters, concentrating
on questions such as what our model uncertainty looks like. We experiment with different
model architectures and approximating distributions, and use various regression and
classification settings. Assessing the models’ confidence quantitatively we can see how
much we sacrifice in our attempt at deriving practical inference techniques in Bayesian
neural networks (NNs).

More specifically, in this chapter we will look at how model structure affects model
uncertainty by sampling functions from our prior. This can help in choosing an appropriate
model for a given dataset. Given a dataset, we will then assess how different approximating
distributions capture noisy data and uncertainty far from the data. We will compare
the uncertainty estimates obtained from several stochastic regularisation techniques
(SRTs) such as dropout and multiplicative Gaussian noise, as well as more traditional
approximating distributions in variational inference (VI) such as a fully factorised
Gaussian and a mixture of Gaussians. This is followed by a study of model uncertainty
in classification, as well as specialised models such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). We defer real-world examples to the
next chapter.

4.1 Effects of model structure on uncertainty

We start by looking at how model structure affects uncertainty, i.e. the variation in
functions captured by a given model structure. We look at the a priori distribution over
functions, before performing inference. This distribution weighs some functions as being
more likely by giving them a higher prior probability, and weighs other functions as being
less likely by giving them a lower prior probability. In practice this results in a higher

4.2 Effects of approximate posterior on uncertainty 63

penalty for the a priori less likely functions when we optimise our variational objective,
trying to find a function to fit our data.

The distribution over functions can be visualised by sampling weight matrices from
the prior with different non-linearities, model sizes, and number of hidden layers. We
then evaluate the network with the sampled weights over a grid of points (for example
[−2, 2]) and plot the results. Such a plot depicts a single draw from the prior over
functions. Repeating this procedure multiple times we can get an idea of what the prior
over functions looks like for a particular prior over weight matrices.

As a starting point, we evaluate networks with four hidden layers (fig. 4.1) and a
choice of three non-linearities (ReLU in fig. 4.1g, TanH in fig. 4.1n, or Sigmoid in fig.
4.1u). We use the prior N (0, 1/l2) over both the weights and biases, with different
length-scale values l. We evaluate three model sizes: networks with 32 units in each
hidden layer, 512 units, or 4096 units. We demonstrate the effects of prior choice by
varying the prior length-scale. We experiment with length-scales 1 and 10 for the ReLU
and TanH non-linearities, and length-scales 0.1 and 1 for the Sigmoid non-linearity. It is
clear from the plots that longer length-scales result in smoother functions, and larger
models result in more erratic functions1. ReLU networks seem to be mostly invariant
to prior length-scale, with the bias magnitude changing the spread of the functions. A
similar plot for a network with a single hidden layer is given in appendix B (fig. B.1).

It is interesting to see that short length-scales in the lower layers yield more erratic
functions, whereas the length-scale of the output layer (lW5 for a network with 4 hidden
layers) controls the output magnitude (fig. 4.2). The effect of the bias length-scale can
be seen in fig. 4.3. Vertical distance between the functions changes with a short bias
length-scale, as well as the frequency magnitude for the longer bias length-scale.

4.2 Effects of approximate posterior on uncertainty

We next assess the uncertainty estimates obtained from various approximating distri-
butions on the task of regression. We compare the uncertainty obtained from different
model architectures and non-linearities, both on tasks of extrapolation and interpolation.
We use three regression datasets and model scalar functions which are easy to visualise.
These are tasks one would often come across in real-world data analysis.

We start with a small synthetic dataset based on the one presented in [Snelson and
Ghahramani, 2005]. This dataset consists of 5000 data points, with a fairly large amount

1This was also observed by [Neal, 1995]. Larger NNs can capture a larger class of functions, thus will
have higher uncertainty as well. Note that a function’s smoothness depends on its X-axis range.

64 Uncertainty Quality

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.51e3

(a) l = 1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 1e 1

(b) l = 10, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3 1e5

(c) l = 1, K = 512

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

4

(d) l = 10, K = 512

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.51e7

(e) l = 1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.51e2

(f) l = 10, K = 4096

(g) ReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 1e1

(h) l = 1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

3 1e 1

(i) l = 10, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
8

6

4

2

0

2

4

6 1e1

(j) l = 1, K = 512

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
4

3

2

1

0

1

2

3

(k) l = 10, K = 512

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5 1e2

(l) l = 1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.51e1

(m) l = 10, K = 4096

(n) TanH

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.51e2

(o) l = 0.1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.01e1

(p) l = 1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
6

4

2

0

2

4 1e2

(q) l = 0.1, K = 512

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
4

3

2

1

0

1

2

3

4 1e1

(r) l = 1, K = 512

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.01e3

(s) l = 0.1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.01e2

(t) l = 1, K = 4096

(u) Sigmoid

Fig. 4.1 Draws from a Bayesian neural network prior (W ∼ N (0, 1/l2)) with L = 4
hidden layers, for various non-linearities, model sizes (K), and length-scales (l). Thick
line is the mean of 20 samples. Best viewed on a computer screen.

4.2 Effects of approximate posterior on uncertainty 65

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.51e11

(a) lW5 = 0.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

(b) lW5 = 10 · 109

Fig. 4.2 Draws from a Bayesian neural network prior with L = 4 hidden layers, K = 1024
units, short length-scale l = 0.1, and ReLU non-linearity; Weight length-scale in the last
layer lW5 affects the Y axis magnitude.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5 1e1

(a) K = 128

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.51e1

(b) K = 1024

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 1e1

(c) K = 4096

(d) lb5 = 0.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

(e) K = 128

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
4

3

2

1

0

1

2

(f) K = 1024

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

4

(g) K = 4096

(h) lb5 = 1

Fig. 4.3 Effect of bias length-scale on draws from a Bayesian neural network prior. All
networks use L = 4 hidden layers, short length-scale l = 0.1, and TanH non-linearity; We
use lW5 = 100 to decreasing the output magnitude for drawing purposes. Note the change
in vertical distance between the functions with short bias length-scale, and frequency
magnitude for the longer bias length-scale.

66 Uncertainty Quality

of noise in the data. We evaluate model extrapolation as well as confidence on the noisy
data. We then use a subset of the atmospheric CO2 concentrations dataset derived
from in situ air samples collected at Mauna Loa Observatory, Hawaii [Keeling et al.,
2004] (referred to as CO2) to evaluate model extrapolation on noiseless data. We give
further results on the reconstructed solar irradiance dataset [Lean, 2004] assessing model
interpolation. The last two datasets are fairly small, with each dataset consisting of
about 200 data points. We centred and normalised both datasets.

In the following experiments we assess VI approximate inference with various approx-
imating distributions:

1. Bernoulli approximating distribution, implemented as dropout:

ω = {diag(ϵ1)W1, diag(ϵ2)W2,b}

with variational parameters W1,W2,b and p(ϵl) (l = 1, 2) a product of Bernoulli
distributions with probability pl.

2. Multiplicative Gaussian approximating distribution, implemented as multiplica-
tive Gaussian noise (MGN): ω = {diag(ϵ1)W1, diag(ϵ2)W2,b} with varia-
tional parameters W1,W2,b and p(ϵl) (for l = 1, 2) a product of draws from
N (1, pi/(1− pi)).

3. A fully factorised Gaussian distribution, similar to the one used in [Graves,
2011], but following the pathwise derivative estimator brought above.

4. A mixture of Gaussians (MoG) with two mixture components, factorised over
the rows of the weight matrices (similar to the factorisation assumptions in the
Bernoulli approximating distribution; this is identical to the mixture of Gaussians
approximation in appendix A, but with the standard deviations not fixed at small
values).

For the first two methods we assumed a delta approximating distribution over the biases,
whereas in the last two we placed a factorised Gaussian over the bias. To avoid a big
increase in the number of parameters we tied the standard deviations at each layer in
these models, and used a single scalar parameter.

4.2.1 Regression

We start by assessing model uncertainty on the small and noisy [Snelson and Ghahra-
mani, 2005] dataset. Figure 4.4 shows the fits of the two SRT approximating distributions

4.2 Effects of approximate posterior on uncertainty 67

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) Dropout

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(b) Multiplicative Gaus-
sian noise (MGN)

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) Factorised Gaussian

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) Mixture of Gaussians
(MoG)

(e) ReLU

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(f) Dropout

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(g) Multiplicative Gaus-
sian noise (MGN)

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(h) Factorised Gaussian

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(i) Mixture of Gaussians
(MoG)

(j) TanH

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(k) Dropout

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(l) Multiplicative Gaus-
sian noise (MGN)

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(m) Factorised Gaussian

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(n) Mixture of Gaussians
(MoG)

(o) Sigmoid

Fig. 4.4 Draws from a Bayesian neural network posterior with various approximating
distributions; The networks used have L = 4 layers, each with K = 1024 units, length-
scale l = 5, p = 0.5 for the mixture models, with different non-linearities. Shown are
predictive mean (thick blue line), predictive uncertainty (shaded area, showing 2 standard
deviations), and draws from the posterior (thin black lines). Scattered are training points.
Best viewed on a computer screen.

68 Uncertainty Quality

(dropout and multiplicative Gaussian noise), as well as the factorised Gaussian and the
mixture of Gaussians. This is shown for a network with L = 4 hidden layers, K = 1024
units in each layer, and various non-linearities. Each SRT model was optimised for
50 epochs using the Adam optimiser [Kingma and Ba, 2014], and the VI models were
optimised for 100 epochs. Prior length-scale for all layers was set to l = 5, with weight
decay set to 4 · 10−5 (following eq. (3.14), with model precision fixed to its true value at
τ = 10). Note how for the ReLU models uncertainty increases far from the data for all
approximating distributions, which is not the case with the other non-linearities. Note
also how the factorised Gaussian and mixture of Gaussians seem to underfit compared
to the SRTs. All models increase their uncertainty to capture the magnitude of the
noisy data, with draws from the posteriors depicting the possible functions that can
explain the data. Note also how dropout and MGN result in practically identical model
uncertainty. Further results are given in appendix B, comparing model fits with different
numbers of hidden layers (L = 1 and L = 4), model sizes (K = 128 and K = 1024),
and non-linearities (ReLU, TanH, and Sigmoid) for dropout (fig. B.2), multiplicative
Gaussian noise (fig. B.3), fully factorised Gaussian (fig. B.4), and mixture of Gaussians
(fig. B.5). Interestingly, with the smaller models (K = 128) MoG and the factorised
Gaussian do not underfit.

In the above in each model we set the SRT probability for the first layer to zero:
p1 = 0. To see why, observe the difference between fig. 4.5a and fig. 4.5b. Both depict
the posterior by sampling a set of weights from the approximate posterior (Wi ∼ q(Wi))

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) i.i.d. draws per test set
and p1 = 0

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(b) i.i.d. draws per test set
and p1 = 0.5

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) i.i.d. draws per test point
and p1 = 0

Fig. 4.5 Draws from a Bayesian neural network posterior with dropout approximating
distribution; The networks used have L = 4 layers, each with K = 1024 units, weight
decay λ = 4 · 10−5 (equivalent to l = 5 with N = 5000 and τ = 10), and ReLU non-
linearities. We have p = 0.5 for all layers apart from the first (where we have either
p1 = 0 or p1 = 0.5). All networks were trained with dropout masks sampled i.i.d. for each
data point, but tested differently. Some were tested by drawing a single mask for the
entire test set multiple times (i.i.d. draws per test set), whereas others by drawing a
different mask for each test point multiple times (i.i.d. draws per test point).

4.2 Effects of approximate posterior on uncertainty 69

and evaluating the network with the sampled weights on the entire space (this is in
contrast to sampling a new set of realisations for each test point, as is depicted in figure
4.5c). In fig. 4.5b we set all dropout probabilities to 0.5. As a result, with probability
0.5, the sampled functions from the posterior would be identically zero. This is because
a zero draw from the Bernoulli distribution together with a scalar input leads the model
to completely drop its input. This is a behaviour we might not believe the posterior
should exhibit, and could change this by setting a different probability for the first layer.
Setting p1 = 0 for example is identical to placing a delta approximating distribution over
the first weight layer. Note that the dropout probability could be optimised instead.

Next, we trained several models on the noiseless CO2 dataset. We use NNs with
either 4 or 5 hidden layers and 1024 hidden units. We use either ReLU non-linearities
or TanH non-linearities in each network, and use dropout probabilities of either 0.1 or
0.2. Extrapolation results are shown in figure 4.6. The model is trained on the training
data (left of the dashed blue line), and tested on the entire dataset. Fig. 4.6a shows the
results for standard dropout (i.e. with weight averaging and without assessing model
uncertainty) for the 5 layer ReLU model. Fig. 4.6b shows the results obtained from a
Gaussian process with a squared exponential covariance function for comparison. Fig.
4.6c shows the results of the same network as in fig. 4.6a, but with MC dropout used
to evaluate the predictive mean and uncertainty for the training and test sets. Lastly,
fig. 4.6d shows the same using the TanH network with 5 layers (plotted with 8 times
the standard deviation for visualisation purposes). The shades of blue represent model
uncertainty: each colour gradient represents half a standard deviation (in total, predictive
mean plus/minus 2 standard deviations are shown, representing 95% confidence). Not
plotted are the models with 4 layers as these converge to the same results.

Extrapolating the observed data, none of the models can capture the periodicity
(although with a suitable covariance function the Gaussian process (GP) will capture it
well). The standard dropout NN model (fig. 4.6a) predicts value 0 for point x∗ (marked
with a dashed red line) with high confidence, even though it is clearly not a sensible
prediction. The GP model represents this by increasing its predictive uncertainty—in
effect declaring that the predictive value might be 0 but the model is uncertain. This
behaviour is captured in MC dropout as well. Even though the models in figures 4.6
have an incorrect predictive mean, the increased standard deviation expresses the models’
uncertainty about the point. Note that as before the uncertainty is increasing far from
the data for the ReLU model, whereas for the TanH model it stays bounded. For
the TanH model we assessed the uncertainty using both dropout probability 0.1 and
dropout probability 0.2. Models initialised with dropout probability 0.1 initially exhibit

70 Uncertainty Quality

(a) Standard dropout with weight averaging

1 0 1 2 3
20
15
10

5
0
5

10
15
20

(b) Gaussian process with SE cov. function

1 0 1 2 3
20
15
10

5
0
5

10
15
20

(c) MC dropout with ReLU non-linearities

1 0 1 2 3
20
15
10

5
0
5

10
15
20

(d) MC dropout with TanH non-linearities

Fig. 4.6 Predictive mean and uncertainties on the Mauna Loa CO2 concentra-
tions dataset, for various models. In red is the observed function (left of the dashed
blue line); in blue is the predictive mean plus/minus two standard deviations (8 for fig.
4.6d). Different shades of blue represent half a standard deviation. Marked with a dashed
red line is a point far away from the data: standard dropout confidently predicts an
unreasonable value for the point; the other models predict unreasonable values as well but
with the additional information that the models are uncertain about their predictions.

1 0 1 2 3
20
15
10

5
0
5

10
15
20

Fig. 4.7 Predictive mean and uncertainties on the Mauna Loa CO2 concentrations dataset
for the MC dropout model with ReLU non-linearities, approximated with 10 samples.

4.2 Effects of approximate posterior on uncertainty 71

smaller uncertainty than the ones initialised with dropout probability 0.2, but towards
the end of the optimisation when the model has converged the uncertainty is almost
indistinguishable. It is worth mentioning that we attempted to fit the data with models
with a smaller number of layers unsuccessfully.

The number of forward iterations used to estimate the uncertainty (T) was 1000 for
drawing purposes. A much smaller numbers can be used to get a reasonable estimation
to the predictive mean and uncertainty (see fig. 4.7 for example with T = 10).

For interpolation we repeat the experiment with ReLU networks with 5 hidden layers
and the same setup on a new dataset: solar irradiance. Here we use weight decay of
5 · 10−7. Interpolation results are shown in fig. 4.8. Fig. 4.8a shows interpolation of
missing sections (bounded between pairs of dashed blue lines) for the Gaussian process
with squared exponential covariance function, as well the function value on the training
set. In red is the observed function, in green are the missing sections, and in blue is the
model predictive mean. Fig. 4.8b shows the same for the ReLU dropout model with
5 layers. Both models interpolate the data well, with increased uncertainty over the
missing segments. However, VI underestimates model uncertainty considerably here2.
This experiment demonstrates the dangers with model uncertainty resulting from VI
approaches. Note however that all variational inference techniques would under-estimate
model uncertainty unless the true posterior is in the class of approximating variational
distributions.

4.2.2 Classification

To assess model confidence in classification we test a convolutional neural network
trained on the MNIST dataset [LeCun and Cortes, 1998]. We trained the LeNet convolu-
tional neural network model [LeCun et al., 1998] with dropout applied before the last
fully connected inner-product layer (the usual way dropout is used in CNNs). We used
dropout probability of 0.5. We trained the model for 106 iterations. We used Caffe [Jia
et al., 2014] reference implementation for this experiment.

We evaluated the trained model on a continuously rotated image of the digit 1 (shown
on the X axis of fig. 4.9). We scatter 100 stochastic forward passes of the softmax input
(the output from the last fully connected layer, fig. 4.9a), as well as of the softmax output
for each of the top classes (fig. 4.9b). The plots show the softmax input value and softmax
output value for the 3 digits with the largest values for each corresponding input. When
the softmax input for a class is larger than that of all other classes (class 1 for the first

2Note the extremely high model precision used: τ = (1−p)l2

2Nλ = l2

4 104 based on eq. (3.17).

72 Uncertainty Quality

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

1

0

1

2

3

4

(a) Gaussian process with SE covariance function

(b) MC dropout with ReLU non-linearities

Fig. 4.8 Predictive mean and uncertainties on the reconstructed solar irradi-
ance dataset with missing segments, for the GP and MC dropout approxi-
mation. In red is the observed function and in green are the missing segments. In blue
is the predictive mean plus/minus two standard deviations of the various approximations.

(a) Softmax input scatter (b) Softmax output scatter

Fig. 4.9 A scatter of 100 forward passes of the softmax input and output for
dropout LeNet. On the X axis is a rotated image of the digit 1. The input is classified
as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed
in colour).

4.3 Quantitative comparison 73

5 images, class 5 for the next 2 images, and class 7 for the rest in fig 4.9a), the model
predicts the corresponding class. For the 12 images, the model predicts classes [1 1 1 1 1
5 5 7 7 7 7 7]. Looking at the softmax input values, if the range of high uncertainty of a
class is far from that of other classes’ (for example the left most image) then the input
is classified with high confidence. On the other hand, if the range of high uncertainty
intersects that of other classes (such as in the case of the middle input image), then even
though the softmax output can be arbitrarily high (as far as 1 if the mean is far from
the means of the other classes), the softmax output uncertainty can be as large as the
entire space. This signifies the model’s uncertainty in its softmax output value—i.e. in
the prediction. In this scenario it would not be reasonable to use argmax to return class
5 for the middle image when its uncertainty is so high. One would expect the model to
ask an external annotator for a label for this input.

4.3 Quantitative comparison

We next assess the models’ confidence quantitatively to see how much we sacrifice in
our attempt at deriving practical inference techniques in Bayesian NNs. We compare
the Bernoulli approximating distribution (corresponding to dropout) to two existing
inference methods: [Graves, 2011] and [Hernandez-Lobato and Adams, 2015]. Quite
surprisingly, we show that by using dropout’s uncertainty we can obtain a considerable
improvement in predictive log-likelihood and root mean square error (RMSE) compared
to these techniques.

Predictive log-likelihood captures how well a model fits the data, with larger values
indicating better model fit. Uncertainty quality can be determined from this quantity as
well. We replicate the experiment set-up in Hernandez-Lobato and Adams [2015] and
compare the RMSE and predictive log-likelihood of dropout (referred to as “Dropout”
in the experiments) to that of Probabilistic Back-propagation (referred to as “PBP”,
[Hernandez-Lobato and Adams, 2015]) and to a popular variational inference technique
in Bayesian NNs (referred to as “VI”, [Graves, 2011]). The aim of this experiment is to
compare the uncertainty quality obtained from a naive application of dropout in NNs to
that of specialised methods developed to capture uncertainty.

Following our Bayesian interpretation of dropout we need to define a prior length-scale,
and find an optimal model precision parameter τ which will allow us to evaluate the
predictive log-likelihood (eq. (3.18)). Similar to [Hernandez-Lobato and Adams, 2015] we
use Bayesian optimisation (BO, [Snoek et al., 2012, 2015]) over validation log-likelihood
to find optimal τ , and set the prior length-scale to 10−2 for most datasets based on the

74 Uncertainty Quality

range of the data. Note that this is a standard dropout NN, where the prior length-scale
l and model precision τ are simply used to define the model’s weight decay through eq.
(3.17). We used dropout with probabilities 0.05 and 0.005 since the network size is very
small (with 50 units following [Hernandez-Lobato and Adams, 2015]) and the datasets
are fairly small as well. The BO runs used 40 iterations following the original setup,
but after finding the optimal parameter values we used 10x more iterations, as dropout
takes longer to converge. Even though the model doesn’t converge within 40 iterations,
it gives BO a good indication of whether a parameter is good or not. Finally, we used
mini-batches of size 32 and the Adam optimiser [Kingma and Ba, 2014]. Further details
about the various datasets are given in [Hernandez-Lobato and Adams, 2015].

The results are shown in table 4.1. Dropout significantly outperforms all other models
both in terms of RMSE as well as test log-likelihood on all datasets apart from Yacht,
for which PBP obtains better RMSE. All experiments were averaged on 20 random splits
of the data (apart from Protein for which only 5 splits were used and Year for which one
split was used). It is interesting to note that the median for most datasets gives much
better performance than the mean. For example, on the Boston Housing dataset dropout
achieves median RMSE of 2.68 with an IQR interval of [2.45, 3.35] (compared to mean
2.97) and predictive log-likelihood median of -2.34 with IQR [-2.54, -2.29] (compared to
mean -2.46). In the Concrete Strength dataset dropout achieves median RMSE of 5.15
(compared to mean 5.23)3.

To implement the model we used Keras [Chollet, 2015], an open source deep learning
package based on Theano [Bergstra et al., 2010]. In [Hernandez-Lobato and Adams,
2015] BO for VI seems to require a considerable amount of additional time compared to
PBP. However our model’s running time (including BO) is comparable to PBP’s Theano
implementation. On the Naval Propulsion dataset for example our model takes 276
seconds on average per split (start-to-finish, divided by the number of splits). Out of
that, with the optimal parameters BO found, model training took 95 seconds. This is
in comparison to PBP’s 220 seconds. For Kin8nm our model requires 188 seconds on
average including BO, 65 seconds without, compared to PBP’s 156 seconds.

Dropout’s RMSE in table 4.1 is given by averaging stochastic forward passes through
the network following eq. (3.16) (MC dropout). We observed an improvement using
this estimate compared to the standard dropout weight averaging, and also compared
to much smaller dropout probabilities (near zero). For the Boston Housing dataset for
example, repeating the same experiment with dropout probability 0 results in RMSE of

3Full raw results and code are available online at https://github.com/yaringal/
DropoutUncertaintyExps.

https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/DropoutUncertaintyExps

4.3 Quantitative comparison 75

Av
g.

Te
st

R
M

SE
an

d
St

d.
Er

ro
rs

Av
g.

Te
st

LL
an

d
St

d.
Er

ro
rs

D
at

as
et

N
Q

V
I

P
B

P
D

ro
po

ut
V

I
P

B
P

D
ro

po
ut

Bo
st

on
H

ou
sin

g
50

6
13

4.
32
±

0.
29

3.
01
±

0.
18

2.
97
±

0.
19

-2
.9

0
±

0.
07

-2
.5

7
±

0.
09

-2
.4

6
±

0.
06

C
on

cr
et

e
St

re
ng

th
1,

03
0

8
7.

19
±

0.
12

5.
67
±

0.
09

5.
23
±

0.
12

-3
.3

9
±

0.
02

-3
.1

6
±

0.
02

-3
.0

4
±

0.
02

En
er

gy
Effi

ci
en

cy
76

8
8

2.
65
±

0.
08

1.
80
±

0.
05

1.
66
±

0.
04

-2
.3

9
±

0.
03

-2
.0

4
±

0.
02

-1
.9

9
±

0.
02

K
in

8n
m

8,
19

2
8

0.
10
±

0.
00

0.
10
±

0.
00

0.
10
±

0.
00

0.
90
±

0.
01

0.
90
±

0.
01

0.
95
±

0.
01

N
av

al
Pr

op
ul

sio
n

11
,9

34
16

0.
01
±

0.
00

0.
01
±

0.
00

0.
01
±

0.
00

3.
73
±

0.
12

3.
73
±

0.
01

3.
80
±

0.
01

Po
we

r
Pl

an
t

9,
56

8
4

4.
33
±

0.
04

4.
12
±

0.
03

4.
02
±

0.
04

-2
.8

9
±

0.
01

-2
.8

4
±

0.
01

-2
.8

0
±

0.
01

Pr
ot

ei
n

St
ru

ct
ur

e
45

,7
30

9
4.

84
±

0.
03

4.
73
±

0.
01

4.
36
±

0.
01

-2
.9

9
±

0.
01

-2
.9

7
±

0.
00

-2
.8

9
±

0.
00

W
in

e
Q

ua
lit

y
R

ed
1,

59
9

11
0.

65
±

0.
01

0.
64
±

0.
01

0.
62
±

0.
01

-0
.9

8
±

0.
01

-0
.9

7
±

0.
01

-0
.9

3
±

0.
01

Ya
ch

t
H

yd
ro

dy
na

m
ic

s
30

8
6

6.
89
±

0.
67

1.
02
±

0.
05

1.
11
±

0.
09

-3
.4

3
±

0.
16

-1
.6

3
±

0.
02

-1
.5

5
±

0.
03

Ye
ar

Pr
ed

ic
tio

n
M

SD
51

5,
34

5
90

9.
03

4
±

N
A

8.
87

9
±

N
A

8.
84

9
±

N
A

-3
.6

22
±

N
A

-3
.6

03
±

N
A

-3
.5

88
±

N
A

Ta
bl

e
4.

1
A

ve
ra

ge
te

st
pe

rf
or

m
an

ce
in

R
M

SE
an

d
pr

ed
ic

ti
ve

lo
g

lik
el

ih
oo

d
fo

r
a

po
pu

la
r

va
ria

tio
na

li
nf

er
en

ce
m

et
ho

d
(V

I,
G

ra
ve

s
[2

01
1]

),
Pr

ob
ab

ili
st

ic
ba

ck
-p

ro
pa

ga
tio

n
(P

B
P

,H
er

na
nd

ez
-L

ob
at

o
an

d
A

da
m

s
[2

01
5]

),
an

d
dr

op
ou

t
un

ce
rt

ai
nt

y
(D

ro
po

ut
).

D
at

as
et

siz
e

(N
)

an
d

in
pu

t
di

m
en

sio
na

lit
y

(Q
)

ar
e

al
so

gi
ve

n.

76 Uncertainty Quality

Av
g.

Te
st

R
M

SE
an

d
St

d.
Er

ro
rs

Av
g.

Te
st

LL
an

d
St

d.
Er

ro
rs

D
at

as
et

D
ro

po
ut

10
x

E
po

ch
s

2
L

ay
er

s
D

ro
po

ut
10

x
E

po
ch

s
2

L
ay

er
s

Bo
st

on
H

ou
sin

g
2.

97
±

0.
19

2.
80
±

0.
19

2.
80
±

0.
13

-2
.4

6
±

0.
06

-2
.3

9
±

0.
05

-2
.3

4
±

0.
02

C
on

cr
et

e
St

re
ng

th
5.

23
±

0.
12

4.
81
±

0.
14

4.
50
±

0.
18

-3
.0

4
±

0.
02

-2
.9

4
±

0.
02

-2
.8

2
±

0.
02

En
er

gy
Effi

ci
en

cy
1.

66
±

0.
04

1.
09
±

0.
05

0.
47
±

0.
01

-1
.9

9
±

0.
02

-1
.7

2
±

0.
02

-1
.4

8
±

0.
00

K
in

8n
m

0.
10
±

0.
00

0.
09
±

0.
00

0.
08
±

0.
00

0.
95
±

0.
01

0.
97
±

0.
01

1.
10
±

0.
00

N
av

al
Pr

op
ul

sio
n

0.
01
±

0.
00

0.
00
±

0.
00

0.
00
±

0.
00

3.
80
±

0.
01

3.
92
±

0.
01

4.
32
±

0.
00

Po
we

r
Pl

an
t

4.
02
±

0.
04

4.
00
±

0.
04

3.
63
±

0.
04

-2
.8

0
±

0.
01

-2
.7

9
±

0.
01

-2
.6

7
±

0.
01

Pr
ot

ei
n

St
ru

ct
ur

e
4.

36
±

0.
01

4.
27
±

0.
01

3.
62
±

0.
01

-2
.8

9
±

0.
00

-2
.8

7
±

0.
00

-2
.7

0
±

0.
00

W
in

e
Q

ua
lit

y
R

ed
0.

62
±

0.
01

0.
61
±

0.
01

0.
60
±

0.
01

-0
.9

3
±

0.
01

-0
.9

2
±

0.
01

-0
.9

0
±

0.
01

Ya
ch

t
H

yd
ro

dy
na

m
ic

s
1.

11
±

0.
09

0.
72
±

0.
06

0.
66
±

0.
06

-1
.5

5
±

0.
03

-1
.3

8
±

0.
01

-1
.3

7
±

0.
02

Ta
bl

e
4.

2
A

ve
ra

ge
te

st
pe

rf
or

m
an

ce
in

R
M

SE
an

d
pr

ed
ic

ti
ve

lo
g

lik
el

ih
oo

d
fo

r
dr

op
ou

t
un

ce
rt

ai
nt

y
as

ab
ov

e
(D

ro
po

ut
),

th
e

sa
m

e
m

od
el

op
tim

ise
d

wi
th

10
tim

es
th

e
nu

m
be

ro
fe

po
ch

sa
nd

id
en

tic
al

m
od

el
pr

ec
isi

on
(1

0x
ep

oc
hs

),
an

d
th

e
sa

m
e

m
od

el
ag

ai
n

w
ith

2
la

ye
rs

in
st

ea
d

of
1

(2
L

ay
er

s)
.

4.3 Quantitative comparison 77

3.07 and predictive log-likelihood of -2.59. This demonstrates that dropout significantly
affects the predictive log-likelihood and RMSE, even though the dropout probability is
fairly small.

Remark. We used dropout following the same way the method would be used
in current research—without adapting model structure and without optimising
the objective using a derivative w.r.t. the weight decaya. We used this standard
methodology to demonstrate the results that could be obtained from existing
models, with the only change being the MC dropout evaluation. Further, in the
results above we attempted to match PBP’s run time (hence used only 10x more
epochs compared to PBP’s 40 epochs). Experimenting with 100x more epochs
compared to PBP (10x more epochs compared to the results in table 4.1) gives a
considerable improvement both in terms of test RMSE as well as test log-likelihood
over the results in table 4.1. We further assessed a model with the same number of
units and 2 hidden layers instead of 1. Both experiments are shown in table 4.2.
Experimenting with different network architectures we expect the method to give
further improved uncertainty estimates.
It is also important to mention the results collected by Bui et al. [2016] extending on
the above. Bui et al. [2016] have repeated the experiment setup above, evaluating
many more models including the Gaussian process, deep Gaussian processes, and
Bayesian neural networks trained with SGLD [Welling and Teh, 2011] as well as
HMC [Neal, 1995]. Bui et al. [2016] foundb SGLD’s performance to be similar to
dropout in table 4.1, with SGLD outperforming dropout on 5 out of the 10 datasets,
and dropout outperforming SGLD on the other 5. HMC seemed to supersede all
other techniques on average (although both SGLD and HMC require much longer
run-times). I would mention that these experiments were done on single hidden
layer NNs with 50 units, and the results might not be the same with larger models.

aNote that in the Gaussian processes literature the objective would be optimised w.r.t. the
model precision τ , corresponding to our NN’s weight decay through eq. (3.17). In the deep
learning literature though the weight decay would often be grid-searched over to minimise
validation error. We repeated this standard approach here. However to be more efficient we
used Bayesian optimisation to determine the weight decay instead of searching over a grid.
Alternatively, the objective could be optimised w.r.t. the model precision τ as in the GP case,
which we demonstrate in section §4.6.

bNote that our reported dropout standard error was erroneously scaled-up by a factor of
4.5 at the time of publication (i.e. for Boston RMSE we reported standard error 0.85 instead
of 0.19). The erroneous results are the ones used in [Bui et al., 2016].

78 Uncertainty Quality

4.4 Bayesian convolutional neural networks

We give further empirical evaluation with specialised model structures—Bayesian convo-
lutional neural networks (CNNs). This extends on the experiments above where dropout
was applied only after the inner-product layers of a CNN. In comparison, here we perform
dropout after all convolution and weight layers, viewed as approximate inference in a
Bayesian CNN following the results of the previous chapter. We assess the LeNet network
structure [LeCun et al., 1998] on MNIST [LeCun and Cortes, 1998] and CIFAR-10
[Krizhevsky and Hinton, 2009] with different settings, and show improvement in test
accuracy compared to existing techniques in the literature. We evaluate the number of
samples needed to obtain an improvement in results using MC dropout (eq. (3.8)), and
finish with improved results on CIFAR-10 obtained by an almost trivial change of an
existing model. All experiments were done using the Caffe framework [Jia et al., 2014],
requiring identical training time to that of standard CNNs4.

In this section we refer to our Bayesian CNN implementation with dropout used after
every parameter layer as “lenet-all”. We compare this model to a CNN with dropout
used after the inner-product layers at the end of the network alone—the traditional
use of dropout in the literature. We refer to this model as “lenet-ip”. Additionally we
compare to LeNet as described originally in [LeCun et al., 1998] with no dropout at all,
referred to as “lenet-none”. We evaluate each dropout network structure (lenet-all and
lenet-ip) using two testing techniques. The first is using weight averaging, the standard
way dropout is used in the literature (referred to as “Standard dropout”). We use the
Caffe [Jia et al., 2014] reference implementation for this. The second testing technique
interleaves Bayesian methodology into deep learning. We average T stochastic forward
passes through the model following the Bayesian interpretation of dropout derived in eq.
(3.8). This technique is referred to as “MC dropout”. In this experiment we average
T = 50 forward passes through the network.

Figure 4.10 shows classification error as a function of batches on log scale for all
three models (lenet-all, lenet-ip, and lenet-none) with the two different testing techniques
(Standard dropout and MC dropout) for MNIST (fig. 4.10a) and CIFAR-10 (fig. 4.10b).
It seems that Standard dropout in lenet-ip results in improved results compared to
lenet-none, with the results more pronounced on the MNIST dataset than on CIFAR-10.
When the Standard dropout testing technique is used with our Bayesian CNN (with
dropout applied after every parameter layer—lenet-all) performance suffers. However, by
averaging the forward passes of the same network—using the same network weights—the

4The configuration files are available online at
https://github.com/yaringal/DropoutUncertaintyCaffeModels.

https://github.com/yaringal/DropoutUncertaintyCaffeModels

4.4 Bayesian convolutional neural networks 79

104 105 106 107

Batches

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
rr

o
r

(%
)

Standard dropout (lenet-all)

MC dropout (lenet-all)

Standard dropout (lenet-ip)

MC dropout (lenet-ip)

No dropout (lenet-none)

(a) MNIST

103 104 105

Batches

15

20

25

30

35

40

45

50

55

60

E
rr

o
r

(%
)

Standard dropout (lenet-all)

MC dropout (lenet-all)

Standard dropout (lenet-ip)

MC dropout (lenet-ip)

No dropout (lenet-none)

(b) CIFAR-10

Fig. 4.10 Test error for LeNet with dropout applied after every weight layer
(lenet-all—our Bayesian CNN implementation, blue), dropout applied after
the fully connected layer alone (lenet-ip, green), and without dropout (lenet-
none, dotted red line). Standard dropout is shown with a dashed line, MC dropout
is shown with a solid line. Note that although Standard dropout lenet-all performs very
badly on both datasets (dashed blue line), when evaluating the same network with MC
dropout (solid blue line) the model outperforms all others.

performance of lenet-all supersedes that of all other models (“MC dropout lenet-all” in
both 4.10a and 4.10b).

Most existing CNN literature uses Standard dropout after the fully-connected layers
alone, equivalent to “Standard dropout lenet-ip” in our experiment [Krizhevsky et al.,
2012]. Srivastava et al. [2014] claim, based on empirical observations, that Standard
dropout gives very close results to MC dropout in standard NN architectures, but the
claim was not verified with CNN architectures. Dropout is not used in CNNs after
convolution layers in existing literature perhaps because empirical results with Standard
dropout suggested deteriorated performance (as can also be seen in our experiments).
Standard dropout approximates model output during test time by propagating the mean
of each layer to the next. However this can be a crude approximation to the predictive
mean of the model, which can otherwise be obtained by Monte Carlo averaging of
stochastic forward passes through the model (eq. (3.8)). The empirical results given in
Srivastava et al. [2014, section 7.5] suggested that Standard dropout is equivalent to MC
dropout, and it seems that most research has followed this approximation. However the
results we obtained in our experiments suggest that the Standard dropout approximation
can fail in some model architectures.

80 Uncertainty Quality

4.4.1 Model over-fitting

We evaluate the models’ tendency to over-fit on training sets decreasing in size. We use
the same experiment set-up as above, without changing the dropout ratio for smaller
datasets and without increasing model weight decay. We randomly split the MNIST
dataset into smaller training sets of sizes 1/4 and 1/32 fractions of the full set. We
evaluated the lenet-all model with MC dropout compared to lenet-ip with Standard
dropout—the standard approach in the field. We did not compare to lenet-none as it is
known to over-fit even on the full MNIST dataset.

The results are shown in fig. 4.11. For the entire MNIST dataset (figs. 4.11a and
4.11b) none of the models seem to over-fit (with lenet-ip performing worse than lenet-all).
It seems that even for a quarter of the MNIST dataset (15, 000 data points) the Standard
dropout technique starts over-fitting (fig. 4.11c). In comparison lenet-all performs well
on this dataset (obtaining better classification accuracy than the best result of Standard
dropout on lenet-ip). When using a smaller dataset with 1, 875 training examples it
seems that both techniques over-fit, and other forms of regularisation are needed.

4.4.2 MC dropout in standard convolutional neural networks

We next evaluate the use of Standard dropout compared to MC dropout on existing well
known5 CNN architectures in the literature. We evaluated two well known models that
have achieved state-of-the-art results on CIFAR-10 in the past several years. The first
is Network in network (NIN) [Lin et al., 2013]. The model was extended by [Lee et al.,
2014] who added multiple loss functions after some of the layers—in effect “encouraging”
the bottom layers to explain the data better. The new model was named a Deeply
supervised network (DSN). The same idea was used in [Szegedy et al., 2014] to achieve
state-of-the-art results on ImageNet.

We assessed these models on the CIFAR-10 dataset, as well as on an augmented
version of the dataset for the DSN model [Lee et al., 2014]. We replicated the experiment
set-up as it appeared in the original papers, and evaluated the models’ test error using
Standard dropout as well as using MC dropout, averaging T = 100 forward passes.
MC dropout testing gives us a noisy estimate, with potentially different test results
over different runs. To get faithful results one would need to repeat each experiment
several times to get a mean and standard deviation for the test error. We therefore
repeated the experiment 5 times and report the average test error. In table 4.3 we report
predictive mean, as well as the standard deviation resulting from the multiple repetitions

5Using http://rodrigob.github.io as a reference.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html#43494641522d3130

4.4 Bayesian convolutional neural networks 81

0 200000 400000 600000 800000 1000000

Batches

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

E
rr

o
r

(%
)

(a) Entire MNIST, Standard dropout+lenet-ip

0 200000 400000 600000 800000 1000000

Batches

0.45

0.50

0.55

0.60

0.65

0.70

0.75

E
rr

o
r

(%
)

(b) Entire MNIST, MC dropout+lenet-all

0 200000 400000 600000 800000 1000000

Batches

1.00

1.05

1.10

1.15

1.20

1.25

E
rr

o
r

(%
)

(c) 1/4 of MNIST, Standard dropout+lenet-ip

0 200000 400000 600000 800000 1000000

Batches

0.75

0.80

0.85

0.90

0.95

1.00

1.05
E
rr

o
r

(%
)

(d) 1/4 of MNIST, MC dropout+lenet-all

0 200000 400000 600000 800000 1000000

Batches

2.90

2.95

3.00

3.05

3.10

3.15

E
rr

o
r

(%
)

(e) 1/32 of MNIST, Standard dropout+lenet-ip

0 200000 400000 600000 800000 1000000

Batches

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

E
rr

o
r

(%
)

(f) 1/32 of MNIST, MC dropout+lenet-all

Fig. 4.11 Test error of LeNet trained on random subsets of MNIST decreasing
in size. To the left in green are networks with dropout applied after the last layer alone
(lenet-ip) and evaluated with Standard dropout (the standard approach in the field), to
the right in blue are networks with dropout applied after every weight layer (lenet-all)
and evaluated with MC dropout—our Bayesian CNN implementation. Lenet-ip starts
over-fitting even with a quarter of the dataset (also, note the different Y-axis scales).
With a small enough dataset, both models over-fit. MC dropout was used with 10
samples.

82 Uncertainty Quality

CIFAR Test Error (and Std.)
Model Standard Dropout MC Dropout

NIN 10.43 10.27± 0.05
DSN 9.37 9.32± 0.02

Augmented-DSN 7.95 7.71± 0.09

Table 4.3 Test error on CIFAR-10 with the same networks (model structure
and weights) evaluated using both Standard dropout as well as MC dropout
(T = 100, averaged with 5 repetitions and given with standard deviation). MC dropout
achieves consistent improvement in test error compared to Standard dropout.

of the experiment to see if the improvement is statistically significant. It seems that MC
dropout results in a statistically significant improvement for all three models (NIN, DSN,
and Augmented-DSN), with the largest increase for Augmented-DSN.

Remark. It is interesting to note that we observed no improvement on ImageNet
[Deng et al., 2009] using the same models. From initial experimentation, it seems
that the large number of classes in ImageNet results in a predictive mean for the
true class which is only slightly higher than the other softmax outputs. As a result,
the ranges of high uncertainty overlap considerably and MC dropout does not
perform well.

4.4.3 MC estimate convergence

Lastly, we assessed the usefulness of the proposed method in practice for applications
in which efficiency during test time is important. We give empirical results suggesting
that 20 samples are enough to improve performance on some datasets. We evaluated the
last model (Augmented-DSN) with MC dropout for T = 1, ..., 100 samples. We repeated
the experiment 5 times and averaged the results. In fig. 4.12 we see that within 20
samples the error is reduced by more than one standard deviation. Within 100 samples
the error converges to 7.71.

This replicates the experiment in [Srivastava et al., 2014, section 7.5], here with
the augmented CIFAR-10 dataset and the DSN CNN model. Compared to [Srivastava
et al., 2014, section 7.5] we obtained a significant reduction in test error. This might be
because CNNs exhibit different characteristics from standard NNs. We speculate that
the non-linear pooling layer affects the dropout approximation considerably.

4.5 Recurrent neural networks 83

0 20 40 60 80 100

MC samples

7.7

7.8

7.9

8.0

8.1

8.2

E
rr

o
r

(%
)

Standard dropout (DSN-aug)

MC dropout err (DSN-aug)

Fig. 4.12 Augmented-DSN test error for different number of averaged forward
passes in MC dropout (blue) averaged with 5 repetitions, shown with 1 standard
deviation. In green is test error with Standard dropout. MC dropout achieves a significant
improvement (more than 1 standard deviation) after 20 samples.

4.5 Recurrent neural networks

Extending on the work above with Bayesian CNNs, next we assess a second specialised
NN model—the Bayesian recurrent neural network (RNN). Here we take a different
approach though. We start with the Bayesian model developed in §3.4.2 and derive
a new SRT, or more specifically derive a new dropout variant. This is an interesting
use of the ideas above; existing literature in RNNs has established that dropout cannot
be applied in RNNs apart from the forward connections [Bayer et al., 2013; Bluche
et al., 2015; Pachitariu and Sahani, 2013; Pham et al., 2014; Zaremba et al., 2014]. In
these papers different network units are dropped at different time steps in the forward
connections, and no dropout is applied to the recurrent connections. However, based on
the developments in the previous chapter we propose a new dropout variant that can be
successfully applied in RNNs, and assess the model’s predictive mean.

We replicate the language modelling experiment of [Zaremba et al., 2014]. The
experiment uses the Penn Treebank, a standard benchmark in the natural language
processing field. This dataset is considered to be a small one in the community, with
887, 521 tokens (words) in total, making overfitting a considerable concern. Throughout
the experiments we refer to LSTMs with the dropout technique proposed following our
Bayesian interpretation in §3.4.2 as Variational LSTMs, and refer to existing dropout
techniques as naive dropout LSTMs (different masks at different steps, applied to the
input and output of the LSTM alone). We refer to LSTMs with no dropout as standard
LSTMs.

84 Uncertainty Quality

Medium LSTM Large LSTM
Validation Test WPS Validation Test WPS

Non-regularized (early stopping) 121.1 121.7 5.5K 128.3 127.4 2.5K
Zaremba et al. [2014] 86.2 82.7 5.5K 82.2 78.4 2.5K

Variational (tied weights) 81.8± 0.2 79.7± 0.1 4.7K 77.3± 0.2 75.0± 0.1 2.4K
Variational (tied weights, MC) − 79.0± 0.1 − − 74.1± 0.0 −

Variational (untied weights) 81.9± 0.2 79.7± 0.1 2.7K 77.9± 0.3 75.2± 0.2 1.6K
Variational (untied weights, MC) − 78.6± 0.1 − − 73.4± 0.0 −

Table 4.4 Single model perplexity (on test and validation sets) for the Penn Treebank
language modelling task. Two model sizes are compared (a medium and a large LSTM,
following [Zaremba et al., 2014]’s setup), with number of processed words per second
(WPS) reported. Both dropout approximation and MC dropout are given for the test set
with the Variational model. A common approach for regularisation is to reduce model
complexity (necessary with the non-regularised LSTM). With the Variational models
however, a significant reduction in perplexity is achieved by using larger models.

We implemented a Variational LSTM for both the medium model of [Zaremba et al.,
2014] (2 layers with 650 units in each layer) as well as their large model (2 layers with 1500
units in each layer)6. The only changes we have made to Zaremba et al. [2014]’s setting
are 1) using our proposed dropout variant instead of naive dropout, and 2) tuning weight
decay (which was chosen to be zero in [Zaremba et al., 2014]). All other hyper-parameters
are kept identical to [Zaremba et al., 2014]: learning rate decay was not tuned for our
setting and is used following Zaremba et al. [2014]. Dropout parameters were optimised
with grid search (tying the dropout probability over the embeddings together with the one
over the recurrent layers, and tying the dropout probability for the inputs and outputs
together as well). These are chosen to minimise validation perplexity7.

Our results are given in table 4.4. For the variational LSTM we give results using
both the tied weights model (eq. (3.23), Variational (tied weights)), and without weight
tying (eq. (3.22), Variational (untied weights)). For each model we report performance
using both the standard dropout approximation and using MC dropout (obtained by
performing dropout at test time 1000 times, denoted MC). For each model we report
average perplexity and standard deviation (each experiment was repeated 3 times with

6Full raw results and code are available online at https://github.com/yaringal/
BayesianRNN.

7Optimal probabilities are 0.3 and 0.5 respectively for the large model, compared [Zaremba et al.,
2014]’s 0.6 dropout probability, and 0.2 and 0.35 respectively for the medium model, compared [Zaremba
et al., 2014]’s 0.5 dropout probability.

https://github.com/yaringal/BayesianRNN
https://github.com/yaringal/BayesianRNN

4.6 Heteroscedastic uncertainty 85

different random seeds and the results were averaged). Model training time is given in
words per second (WPS).

It is interesting that using the dropout approximation, weight tying results in lower
validation error and test error than the untied weights model. But with MC dropout
the untied weights model performs much better. Validation perplexity for the large
model is improved from [Zaremba et al., 2014]’s 82.2 down to 77.3 (with weight tying),
or 77.9 without weight tying. Test perplexity is reduced from 78.4 down to 73.4 (with
MC dropout and untied weights).

Comparing our results to the non-regularised LSTM (evaluated with early stopping,
giving similar performance as the early stopping experiment in [Zaremba et al., 2014])
we see that for either model size an improvement can be obtained by using our dropout
variant. Comparing the medium sized Variational model to the large one we see that a
significant reduction in perplexity can be achieved by using a larger model. This cannot
be done with the non-regularised LSTM, where a larger model leads to worse results.
This shows that reducing the complexity of the model, a possible approach to avoid
overfitting, actually leads to a worse fit when using dropout.

We also see that the tied weights model achieves very close performance to that of
the untied weights one when using the dropout approximation. Assessing model run time
though (on a Titan X GPU), we see that tying the weights results in a more time-efficient
implementation. This is because the single matrix product is implemented as a single
GPU kernel, instead of the four smaller matrix products used in the untied weights
model (where four GPU kernels are called sequentially). Note though that a low level
implementation should give similar run times.

4.6 Heteroscedastic uncertainty

We finish this chapter with a discussion of homoscedastic versus heteroscedastic aleatoric
uncertainty. Homoscedastic regression assumes identical observation noise for every input
point x. Heteroscedastic regression, on the other hand, assumes that observation noise
can vary with input x [Le et al., 2005]. Heteroscedastic models are useful in cases where
parts of the observation space might have higher noise levels than others.

Using the developments in the previous chapter we obtained models with homoscedas-
tic aleatoric uncertainty. This can be seen from the model definition in eq. (2.1). The
likelihood in our derivations is defined as yi ∼ N(fω(xi), τ−1I) with fω(·) the network
output, dependent on the weights random variable ω. Here our model precision τ (which

86 Uncertainty Quality

is the same as the inverse observation noise) is a constant, which has to be tuned for the
data.

We can easily adapt the model to obtain data-dependent noise. This simply involves
making τ into a function of the data, very much like fω(·) is a function of the data. A
practical way to obtain this is to tie the two functions together, splitting the top layers
of a network between predictive mean fω(x) and model precision gω(x) (of course we
would want to re-parametrise this to make sure gω(·) is positive, and in the multivariate
case to make sure the precision matrix gω(·) is positive definite). Thus the new (now
heteroscedastic!) model likelihood is given by yi ∼ N (fω(xi),gω(xi)−1). We put a prior
over the weights used for the precision as well. The prior length-scale for these weights
(equivalently, weight decay) controls the precision smoothness. A long prior length-scale
for the precision weights would correspond to a slowly varying precision for example.

We can implement this new model by adapting the loss function of the original model,
changing eq. (1.1) to:

EW1,W2,b(x,y) := 1
2
(
y− fW1,W2,b(x)

)
gW1,W2,b(x)

(
y− fW1,W2,b(x)

)T
− 1

2 log det gW1,W2,b(x) + D

2 log 2π

= − logN (fω(xi),gω(xi)−1)

with D the output dimensionality8.
We estimate our predictive variance like before by averaging stochastic forward passes

through the model, both for fω(x) and for gω(x). We use the unbiased estimator:

Ṽar[y∗] := 1
T

T∑
t=1

gω̂t(x)I + f ω̂t(x∗)T f ω̂t(x∗)− Ẽ[y∗]T Ẽ[y∗]

−−−→
T→∞

Varq∗
θ

(y∗|x∗)[y∗]

which equals the sample variance of T stochastic forward passes through the NN plus
the averaged inverse model precision.

Predictive uncertainty for the heteroscedastic model compared to the homoscedastic
model9 (both with large fixed observation noise as well as small fixed observation noise)
is shown in fig. 4.13.

8 In the multivariate output case it is convenient to assume gW1,W2,b(x) to be a diagonal precision
matrix, in which case the log determinant would reduce to a sum of the logs over each element of
gW1,W2,b(x).

9Code is available online at
https://github.com/yaringal/HeteroscedasticDropoutUncertainty.

https://github.com/yaringal/HeteroscedasticDropoutUncertainty

4.6 Heteroscedastic uncertainty 87

(a) Homoscedastic model
with small observation
noise.

(b) Homoscedastic model
with large observation
noise.

(c) Heteroscedastic model
with data-dependent obser-
vation noise.

Fig. 4.13 Homoscedastic and heteroscedastic uncertainty with Bernoulli approximating
distributions (dropout). Here N = 24 data points are generated from the scalar function
y = x sin(x) with no observation noise, and 4 points with large noise are added on the
right-hand side. The homoscedastic models use l2 = 10 and p = 0.005, with τ−1 = 0 for
sub-figure 4.13a and τ = 1 for sub-figure 4.13b. The heteroscedastic model (sub-figure
4.13c) uses l2 = 0.1 and p = 0.05.

F • f

This experiment concludes our uncertainty quality assessment. We next examine
real-world applications relying on the developments above.

Chapter 5

Applications

In previous chapters we linked stochastic regularisation techniques (SRTs) to approximate
inference in Bayesian neural networks (NNs), and studied the resulting model uncertainty
for popular SRTs such as dropout. We have yet to give any real-world applications
stemming from this link though, leaving it somewhat in the realms of “theoretical work”.
But a theory is worth very little if we can’t use it to obtain new tools, or shed light
on existing ones. In this chapter we will survey recent literature making use of the
tools developed in the previous chapters in fields ranging from language processing to
computer vision to biomedical domains. This is followed by more use cases I have worked
on recently with the help of others. We will see how model uncertainty can be used to
choose what data to learn from (joint work with Riashat Islam as part of his Master’s
project). Switching to applications in deep reinforcement learning, we will see how model
uncertainty can help exploration. This is then followed by the development of a data
efficient framework in deep reinforcement learning (joint work with Rowan McAllister
and Carl Rasmussen). A study of the implications of this work on our understanding of
existing tools will be given in the next chapter.

5.1 Recent literature

We begin with a quick literature survey of applications making use of the tools brought
above (and presented previously in [Gal, 2015; Gal and Ghahramani, 2015a,b,c,d,
2016a,b,c]). This survey offers support to our main claim of the tools developed being
practical, and can be used as a starting point for further applications on related tasks.
The key contributions of each work will be given, and research reproducing our results
in previous chapters will be highlighted. We discuss research in three application areas:
language, biology and medicine, and computer vision.

5.1 Recent literature 89

5.1.1 Language applications

Working on machine translation as part of the WMT16 shared task, the Edinburgh
team [Sennrich et al., 2016] has made use of deep network architectures and specifically
recurrent NNs. Machine translation is a challenging task where we wish to build a system
to translate from one language to another, given only sentences in one language and
their translations in the other. Sennrich et al. [2016] found that using naive dropout in
RNNs their model would overfit, and reported that with the Bayesian variant of dropout
proposed in §3.4.2 the model did not. Sennrich et al. [2016]’s model achieved state-of-the-
art results on Czech–English, Romanian–English, and German–English language pairs,
beating the other 31 submissions in the shared task [Bojar et al., 2016].

It is worth mentioning the work of Press and Wolf [2016] as well. Press and Wolf
[2016], while working on language modelling, have reproduced our language modelling
results presented in §3.4.2. Our language modelling results were further reproduced in
the work of Léonard et al. [2015]—an open source Torch library for RNNs. Our dropout
variant for RNNs is included in this library, as well as in the TensorFlow and Keras
libraries [Abadi et al., 2015; Chollet, 2015] as the default RNN dropout implementation.

5.1.2 Medical diagnostics and bioinformatics

In medical diagnostics Yang et al. [2016] have worked on image registration. This task
involves “stitching” together images obtained from brain scans for example. This is a
challenging task as images might be taken at different points in time, and a patient’s
movement due to breathing for example could mean that the images would not be
aligned. As a result there is an inherent uncertainty in the reconstruction process. Yang
et al. [2016], relying on recent CNN tools, proposed a model that improved on existing
techniques. Relying on our tools developed in section §3.4.1, Yang et al. [2016] showed
how model uncertainty can be obtained in their setting, and empirically evaluated their
model. For example, stitching MRI brain scans, they showed how shape changes in the
anterior edge of the ventricle and the posterior brain cortex (changes due to blood flow
at different points in time for example) led to high uncertainty in those regions.

As another example, Angermueller and Stegle [2015] attempted to predict methylation
rate in embryonic stem cells. In DNA methylation, methyl groups are added to nucleotides
and affect the transcription of genes. This process controls gene regulation, and affects
the development of disease for example. Angermueller and Stegle [2015] fitted a neural
network to their data, and showed an improvement over standard techniques in the field.

90 Applications

Using the techniques developed in §3.3 they showed that model uncertainty increased in
genomic contexts which are hard to predict (e.g. LMR or H3K27me3).

5.1.3 Computer vision and autonomous driving

Numerous applications of the methods involving model uncertainty for image data
(introduced in §3.3–§3.4) have been developed in recent literature [Bulò et al., 2016;
Kendall and Cipolla, 2016], with specific attention paid to model uncertainty in image
segmentation [Furnari et al., 2016; Kampffmeyer et al., 2016; Kendall et al., 2015]. This
might be because model uncertainty is hard to obtain for image data, and with the tools
developed in §3.4.1 obtaining this information is easier than with previous tools. In this
section three main applications will be surveyed: new tools [Bulò et al., 2016], computer
vision systems for autonomous driving [Kendall and Cipolla, 2016; Kendall et al., 2015],
and image segmentation [Furnari et al., 2016; Kampffmeyer et al., 2016; Kendall et al.,
2015].

Bulò et al. [2016] developed tools to efficiently approximate MC dropout. Even
though MC dropout results in lower test RMSE, it comes with a price of prolonged test
time. This is because we need to evaluate the network stochastically multiple times and
average the results. Instead, Bulò et al. [2016] fit a secondary model to predict (with
a single forward pass) the MC output of the primary model. Bulò et al. [2016] further
reproduced our experimental results in §3.4.1 with the NiN model on CIFAR10. However
compared to our results with lenet-all (applying MC dropout after every convolution
layer on MNIST) where we observed a big improvement for MC dropout over standard
dropout, Bulò et al. [2016]’s results suggested similar performance for both techniques.

Working on autonomous driving applications, Kendall and Cipolla [2016] developed
tools for the localisation of a car given a photo taken from a front-facing camera installed
in the vehicle. This is an important application since GPS systems cannot always be
trusted and give low-accuracy localisation. When used in autonomous driving, this
localisation information can be used to get information such as the distance of the car
from the sidewalk for example. Kendall and Cipolla [2016] assessed model uncertainty
following the tools developed in the previous chapters, and found model uncertainty to
correlate to positional error. They found that test photos with strong occlusion from
vehicles, pedestrians, or other objects resulted in high uncertainty, with model uncertainty
showing a linear trend increasing with the distance from the training set (after calibration).
In further work Kendall et al. [2015] developed models for scene understanding, mapping
objects in the photos taken by the car to labels such as “pedestrian” or “cyclist” on

5.2 Active learning with image data 91

a pixel level. Extracting model uncertainty they showed that object edges have lower
model confidence for example.

One last application is image segmentation. Kampffmeyer et al. [2016] for example
looked at semantic segmentation in urban remote sensing images. They used CNNs with
the techniques described in §3.4.1 and analysed the resulting segmentation uncertainty.
Kampffmeyer et al. [2016] computed the standard deviation over the softmax outputs
of 10 Monte Carlo samples. They then averaged the standard deviation over all classes
to obtain a single scalar value1. They found that model uncertainty increased at object
boundaries and in regions where the model misclassified, validating the hypothesis that
pixels with high model confidence are classified correctly more often. Kampffmeyer et al.
[2016] further gave precision-recall plots showing that when pixels with higher uncertainty
were removed, classification accuracy increased. They concluded that uncertainty maps
are a good measure for the pixel-wise uncertainty of the segmented remote sensing images.

I next give a more in-depth review of several applications developed in collaboration
with others.

5.2 Active learning with image data

This has been joint work with Riashat Islam as part of his Master’s project.

A big challenge in many applications is obtaining labelled data. This can be a long
and laborious process, which often makes the development of an automated system
uneconomical. A framework where a system could learn from small amounts of data, and
choose by itself what data it would like the user to label, would make machine learning
applicable to a wider class of problems. Such a framework is referred to as active learning
[Cohn et al., 1996]. In this setting a model is trained on a small amount of data (the
initial training set), and an acquisition function (often based on the model’s uncertainty)
decides what data points to ask an external oracle for a label. The acquisition function
selects several points from a pool of data points, with the pool points lying outside of the
training set. An oracle (often a human expert) labels the selected data points, these are
added to the training set, and a new model is trained on the updated training set. This
process is then repeated, with the training set increasing in size over time.

Even though active learning forms an important pillar of machine learning, deep
learning tools are not prevalent within it. Deep learning poses several difficulties when

1Note that this is not necessarily the best uncertainty summary for classification, and the techniques
discussed in §3.3.1 might give more sensible results. We will get back to this problem in the next section.

92 Applications

used in an active learning setting. First, we have to handle small amounts of data. Second,
many acquisition functions rely on model uncertainty. Luckily Bayesian approaches to
deep learning make this task more practical. Even more exciting, taking advantage
of specialised models such as Bayesian convolutional neural networks, we can perform
active learning with image data. Here we will develop an active learning framework for
image data, a task which has been extremely challenging so far with very sparse existing
literature [Holub et al., 2008; Joshi et al., 2009; Li and Guo, 2013; Zhu et al., 2003].

To perform active learning with image data we make use of the Bayesian CNNs
developed in section §3.4.1. These work well with small amounts of data (as seen in
section §4.4.1), and possess uncertainty information that can be used with existing
acquisition functions. With regression, acquisition functions can be formed by looking
at the sample variance. But CNNs are often used in the context of classification, and
in this setting we shall make use of the uncertainty measures discussed in §3.3.1. More
specifically we will analyse acquisition functions based on a random acquisition (referred
to as Random), functions maximising the predictive entropy (referred to as Max Entropy,
[Shannon, 1948]), maximising the variation ratios [Freeman, 1965], and maximising the
mutual information between the predictions and the model posterior (referred to as
BALD, “Bayesian active learning by disagreement”, [Houlsby et al., 2011]).

Bayesian CNN approximate inference can be done using various approximating
distributions. We experiment with two approximating distributions: a product of
Bernoullis (implemented as dropout before each weight layer, referred to as Dropout), and
a delta approximating distribution (implemented as a standard CNN with a deterministic
softmax probability vector, referred to as Softmax). All acquisition functions are assessed
with the same model structure: convolution-relu-convolution-relu-max pooling-dropout-
dense-relu-dropout-dense-softmax, with 32 convolution kernels, 4x4 kernel size, 2x2
pooling, dense layer with 128 units, and dropout probabilities 0.25 and 0.5. All models
are trained on the MNIST dataset [LeCun and Cortes, 1998] with a (random but balanced)
initial training set of 20 data points, a validation set of 5K points, the standard test set
of 10K points, and the rest of the points used as a pool set. All models were assessed
after each acquisition using the dropout approximation, with the Softmax models using
the dropout approximation to evaluate model output for acquisition, and the Dropout
models using MC dropout to evaluate model output for acquisition. We repeated the
acquisition process 100 times, each time acquiring the 10 points that maximised the

5.2 Active learning with image data 93

200 400 600 800 1000
of labels acquired from pool set

0

5

10

15

20

25

30

T
e
st

 e
rr

o
r

(%
)

Dropout Random
Softmax BALD
Dropout BALD
Softmax Variation Ratios
Dropout Variation Ratios

Fig. 5.1 Test error on MNIST as a function of number of labels acquired
from the pool set. Two acquisition functions (BALD and Variation Ratios) evaluated
with two approximating distributions—delta (Softmax) and Bernoulli (Dropout)—are
compared to a random acquisition function.

200 400 600 800 1000
of labels acquired from pool set

0

5

10

15

20

25

30

T
e
st

 e
rr

o
r

(%
)

Dropout Random
Dropout BALD
Dropout Variation Ratios
Dropout Max Entropy

Fig. 5.2 Test error on MNIST as a function of number of labels acquired from
the pool set. Four acquisition functions are shown (Random, BALD, Variation Ratios,
and Max Entropy) evaluated with a Bernoulli approximating distribution (Dropout).

94 Applications

Random Max Entropy Variation Ratios BALD
Softmax 4.57 2.18 4.02 3.83
Dropout NA 1.74 1.64 1.72

Table 5.1 Model error (%) on MNIST with 1000 training points for different acquisition
functions.

acquisition function over the pool set. Each experiment was repeated 3 times and the
results averaged2.

A comparison of the Dropout acquisition functions to the Softmax acquisition functions
for Variation Ratios and BALD is given in fig. 5.1. Both acquisition functions (BALD and
Variation Ratios) were evaluated with both approximating distributions and compared
to a random acquisition function where new points are sampled uniformly at random
from within the pool set. The Dropout acquisition functions, propagating uncertainty
throughout the model, attain a smaller error early on, and converge to a lower error rate
overall. This demonstrates that the uncertainty propagated throughout the Bayesian
models has a significant effect on the acquisition functions’ measure of model confidence.
Variation Ratios seems to obtain lower test error faster than BALD for acquisition points
ranging between 150 and 400, but BALD outperforms Variation Ratios on the range 0 to
150 (not shown).

Random Max Entropy Variation Ratios BALD
Softmax 90 53 76 68
Dropout NA 35 32 36

Table 5.2 Number of acquisition steps to get to model error of 5% on MNIST, for
different acquisition functions.

We further compared the acquisition functions Random, Variation Ratios, and BALD
to an acquisition function based on the predictive entropy (Max Entropy). We found
Random to under-perform compared to BALD, Variation Ratios, and Max Entropy
(figure 5.2). The converged test error for all acquisition functions after the acquisition of
1000 training points is given in table 5.1.

Lastly, in table 5.2 we give the number of acquisition steps needed to get to test error
of 5%. As can be seen, Dropout Max Entropy, Dropout Variation Ratios and Dropout

2The code for these experiments is available at https://github.com/Riashat/
Active-Learning-Bayesian-Convolutional-Neural-Networks/tree/master/
ConvNets/FINAL_Averaged_Experiments/Final_Experiments_Run.

https://github.com/Riashat/Active-Learning-Bayesian-Convolutional-Neural-Networks/tree/master/ConvNets/FINAL_Averaged_Experiments/Final_Experiments_Run
https://github.com/Riashat/Active-Learning-Bayesian-Convolutional-Neural-Networks/tree/master/ConvNets/FINAL_Averaged_Experiments/Final_Experiments_Run
https://github.com/Riashat/Active-Learning-Bayesian-Convolutional-Neural-Networks/tree/master/ConvNets/FINAL_Averaged_Experiments/Final_Experiments_Run

5.3 Exploration in deep reinforcement learning 95

BALD attain test error of 5% within a much smaller number of acquisitions than their
Softmax equivalents.

We next switch to the use of model uncertainty in the setting of reinforcement learning,
on a task similar to that used in [Mnih et al., 2015].

5.3 Exploration in deep reinforcement learning

In reinforcement learning an agent receives various rewards from different states, and
its aim is to maximise its expected reward over time. The agent tries to learn to avoid
transitioning into states with low rewards, and to pick actions that lead to better states
instead. Uncertainty is of great importance in this task—with uncertainty information
an agent can decide when to exploit rewards it knows of, and when to explore its
environment.

Recent advances in RL have made use of NNs to estimate agents’ Q-value functions
(referred to as Q-networks), a function that estimates the quality of different actions
an agent can take at different states. This has led to impressive results on Atari game
simulations, where agents superseded human performance on a variety of games [Mnih
et al., 2015]. Epsilon greedy search was used in this setting, where the agent selects
the best action following its current Q-function estimation with some probability, and
explores otherwise. With our uncertainty estimates given by a dropout Q-network we
can use techniques such as Thompson sampling [Thompson, 1933] to converge faster
than with epsilon greedy while avoiding over-fitting.

We use code by Karpathy et al. [2014–2015] that replicated the results by Mnih
et al. [2015] with a simpler 2D setting. We simulate an agent in a 2D world with 9 eyes
pointing in different angles ahead (depicted in fig. 5.3). Each eye can sense a single
pixel intensity of 3 colours. The agent navigates by using one of 5 actions controlling
two motors at its base. An action turns the motors at different angles and different
speeds. The environment consists of red circles which give the agent a positive reward
for reaching, and green circles which result in a negative reward. The agent is further
rewarded for not looking at (white) walls, and for walking in a straight line3.

We trained the original model, and an additional model with dropout with probability
0.1 applied before every weight layer. Note that both agents use the same network
structure in this experiment for comparison purposes. In a real world scenario using
dropout we would use a larger model (as the original model was intentially selected to

3The code for this experiment is given at
https://github.com/yaringal/DropoutUncertaintyDemos.

https://github.com/yaringal/DropoutUncertaintyDemos

96 Applications

be small to avoid over-fitting). To make use of the dropout Q-network’s uncertainty
estimates, we use Thompson sampling instead of epsilon greedy. In effect this means
that we perform a single stochastic forward pass through the network every time we
need to take an action. In replay, we perform a single stochastic forward pass and then
back-propagate with the sampled Bernoulli random variables.

In fig. 5.4 we show a plot of the average reward as a function of learning time (on a
log scale) obtained by both the original implementation (in green) and our approach (in
blue). Not plotted is the burn-in intervals of 25 batches (random moves). Thompson
sampling gets reward larger than 1 within 25 batches from burn-in. Epsilon greedy takes
175 batches to achieve the same performance4.

Fig. 5.3 Depiction of the reinforcement
learning problem used in the experi-
ments. The agent is in the lower left
part of the maze, facing north-west.

102 103

Batches

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
A

v
e
ra

g
e
 r

e
w

a
rd

Thompson sampling
(using uncertainty)

Epsilon greedy

Fig. 5.4 Log plot of average reward
obtained by both epsilon greedy (in
green) and our approach (in blue), as a
function of the number of batches.

Remark. We presented these results initially in [Gal and Ghahramani, 2015c].
Stadie et al. [2015] have reproduced our experiments while comparing to their model-
based exploration technique (using an auto-encoder to encode the states). They
compared to our model-free Thompson sampling, the epsilon greedy based DQN
[Mnih et al., 2015], as well as to Boltzmann exploration (which samples an action
from the softmax output, annealing the probabilities to smoothly transition from

4 It is interesting to note that our approach seems to stop improving after 1K batches. This is because
we are still sampling random moves, whereas epsilon greedy only exploits at this stage.

5.4 Data efficiency in deep reinforcement learning 97

exploration to exploitation: a ∼ Categorical(exp(Q(s, a)/τ)/(∑a exp(Q(s, a)/τ))
with τ → 0).
Stadie et al. [2015] experimented with the Atari framework, in which they chose sev-
eral games that existing methods found challenging, and where human performance
superseded that of DQN. They found that after 100 epochs their model-based
approach outperformed existing model-free techniques. Comparing DQN to our
Thompson technique, they found DQN to get higher scores than Thompson on
6 games, whereas Thompson got higher scores than DQN on 7 games. Looking
at the area under the curve (AUC) for the first 100 epochs—a measure of how
quickly an agent learns—Thompson beat DQN on 8 games, whereas DQN beat
Thompson on 5 games, emphasising the data efficiency of Thompson sampling
compared to epsilon greedy. Thompson achieved best score out of all approaches
on one of the games. It is interesting that Boltzmann exploration outperformed
Thompson sampling quite considerably: on 4 games Thompson got better score
than Boltzmann, whereas Boltzmann got better results on 8 games. Assessing
AUC, Thompson beat Boltzmann on 3 games, with Boltzmann beating Thompson
on 9 games. This might be because Thompson sampling still explores after 100
epochs, whereas Boltzmann exploration exploits by then. It would be interesting
to combine the two techniques, and sample from an annealed probability obtained
from a Bayesian NN.

5.4 Data efficiency in deep reinforcement learning

This has been joint work with Rowan McAllister and Carl Rasmussen [Gal,
McAllister, and Rasmussen, 2016].

Compared to the previous model-free approach, PILCO is a model-based policy search
RL algorithm [Deisenroth and Rasmussen, 2011]. PILCO achieved unprecedented data-
efficiency of several control benchmarks including the cartpole swing-up task. But PILCO
is limited by its use of a Gaussian process (GP) to model its distribution over model
dynamics. GPs are hard to scale to large quantities of data and high dimensional data
[Gal et al., 2014]. Instead, we might want to replace the GP with a Bayesian NN. But
this task poses several interesting difficulties. First, we have to handle small data, and
neural networks are notoriously known for their tendency to overfit. Furthermore, we
must retain PILCO’s ability to capture 1) dynamics model output uncertainty and 2)

98 Applications

input uncertainty. Output uncertainty can be captured with a Bayesian neural network
(BNN), but end-to-end inference poses a challenge. Input uncertainty in PILCO is
obtained by analytically propagating a state distribution through the dynamics model.
But this can neither be done analytically with NNs nor with BNNs. Our solution
to handling output uncertainty relies on dropout as a Bayesian approximation to the
dynamics model posterior. This allows us to use techniques proven to work well in the
field, while following their probabilistic Bayesian interpretation. Input uncertainty in the
dynamics model is captured using particle techniques. To do this we solve the difficulties
encountered by McHutchon [2014] when attempting this particle technique with PILCO
in the past. Interestingly, unlike PILCO, our approach allows us to sample dynamics
functions, required for accurate variance estimates of future state distributions.

Our approach has several benefits compared to the existing PILCO framework. First,
as we require lower time complexity (linear in trials and observation space dimensionality),
we can scale our algorithm well to tasks that necessitate more trials for learning. Second,
unlike PILCO we can sample dynamics function realisations. The use of a NN dynamics
model comes at a price though, where we need to use a slightly higher number of trials
than PILCO. Lastly, our model can be seen as a Bayesian approach to performing data
efficient deep RL. In section §5.4.3 we compare our approach to that of recent deep
RL algorithms [Gu et al., 2016; Lillicrap et al., 2015], showing orders of magnitude
improvement in data efficiency on these.

5.4.1 PILCO

PILCO is summarised by Algorithm 3. A policy π’s functional form is chosen by
the user (step 1), whose parameters ψ are initialised randomly (step 2). Thereafter

Algorithm 3 PILCO
1: Define policy’s functional form: π : zt × ψ → ut.
2: Initialise policy parameters ψ randomly.
3: repeat
4: Execute system, record data.
5: Learn dynamics model.
6: Predict system trajectories from p(X0) to p(XT).
7: Evaluate policy:

J(ψ) = ∑T
t=0 γ

tEX [cost(Xt)|ψ].
8: Optimise policy:

ψ ← arg min
ψ

J(ψ).

9: until policy parameters ψ converge

5.4 Data efficiency in deep reinforcement learning 99

PILCO executes the current policy from an initial state (sampled from initial distribution
p(X0)) until the time horizon T (defined as one trial, step 4). Observed transitions
are recorded, and appended to the total training data. Given the additional training
data, the dynamics model is re-trained (step 5). Using its probabilistic transition model,
PILCO then analytically predicts state distributions from an initial state distribution
p(X0) to p(X1) etc. until time horizon p(XT) making a joint Gaussian assumption (step
6). Prediction of future state distribution follows the generative model seen in Figure 5.5,
where each system-state Xt defines an action Ut according to policy π, which determines
the new state Xt+1 according to the dynamics f . I.e. Xt+1 = f(Xt, Ut), where we train a
GP model of f given all previous observed transition tuples {Xt, Ut, Xt+1}. Given the
multi-state distribution p({X0, ..., XT}), the expected cost EX [cost(Xt)] is computed for
each state distribution using a user-supplied cost function. The sum of expected costs
is our minimisation objective J (step 7). Gradient information is also computed w.r.t.
policy parameters dJ/dψ. Finally, the objective J is optimised using gradient decent
according to dJ/dψ (step 8). The algorithm then loops back to step 4 and executes the
newly-optimised policy, which is locally optimal given all the data observed thus far.

PILCO’s data-efficiency success can be attributed to its probabilistic dynamics model.
Probabilistic models help avoid model bias—a problem that arises from selecting only a
single dynamics model f̂ from a large possible set and assuming that f̂ is the correct
model with certainty [Deisenroth et al., 2015]. Whilst such approaches can provide
accurate short term state predictions e.g. p(X1), their longterm predictions (e.g. p(XT))
are inaccurate due to the compounding effects of T -many prediction errors from f̂ .
Since inaccurate predictions of p(XT) are made with high-confidence, changes in policy
parameters ψ are (falsely) predicted to have significant effect on the expected cost at
time T . Since optimising total expected cost J must balance the expected costs of states,
including p(X1) and p(XT), the optimisation will compromise on the cost of p(X1) based
on perceived cost of p(XT)—even though the prediction p(XT) is effectively random noise
with p(XT) having a broad distribution almost invariant to policy π. Such undesirable
behaviour hampers data efficiency. Optimising data-efficiency exacerbates the negative
effects of model bias even further, since the smaller the data, the larger the set of plausible
models that can describe that data. PILCO uses probabilistic models to avoid model bias
by considering all plausible dynamics models in prediction of all future states. In cases
as the above, PILCO optimises the policy based only on the states Xt it can predict well.

100 Applications

Xt Xt+1

Ut Ut+1

π π

f

Fig. 5.5 Prediction model of system
trajectories (step 6 in Algorithm 3). The
system state Xt generates action Ut ac-
cording to policy π, both of which result
in a new state Xt+1 as predicted by dy-
namics model f (a model trained given all
previously observed X and U).

mc

mp

l

θ

xc

yp

xp

l

u

Fig. 5.6 The cartpole swing-up task.
A pendulum of length l is attached to a
cart by a frictionless pivot. The system
begins with cart at position xc = 0 and
pendulum hanging down: θ = π. The goal
is to accelerate the cart by applying hori-
zontal force ut at each timestep t to invert
then stabilise the pendulum’s endpoint at
the goal (black cross).

5.4.2 Deep PILCO

We now describe our method—Deep PILCO—for data-efficient deep RL. Our method
is similar to PILCO: both methods follow Algorithm 3. The main difference of Deep
PILCO is its dynamics model. PILCO uses a Gaussian process which can model the
dynamics’ output uncertainty, but cannot scale to high dimensional observation spaces. In
contrast, Deep PILCO uses a deep neural network capable of scaling to high dimensional
observations spaces. Like PILCO, our policy-search algorithm alternates between fitting
a dynamics model to observed transitions data, evaluating the policy using dynamics
model predictions of future states and costs, and then improving the policy.

Replacing PILCO’s GP with a deep network is a surprisingly complicated endeavour
though, as we wish our dynamics model to maintain its probabilistic nature, capturing
1) output uncertainty, and 2) input uncertainty.

Output uncertainty

First, we require output uncertainty from our dynamics model, critical to PILCO’s
data-efficiency. Simple NN models cannot express output model uncertainty, and thus
cannot capture our ignorance of the latent system dynamics. To solve this we use
the developments presented in §3.4.2. We interpret dropout as a variational Bayesian

5.4 Data efficiency in deep reinforcement learning 101

approximation, and use the uncertainty in the weights to induce prediction uncertainty.
This amounts to the regular dropout procedure only with dropout also applied at test
time, giving us output uncertainty from our dynamics model.

This approach also offers insights into the use of NNs with small data. Eq. (3.14)
for example shows that the network’s weight decay can be parametrised as a function
of dataset size, dropout probability, and observation noise. Together with adaptive
learning-rate optimisation techniques, the number of parameters requiring tuning becomes
negligible.

Input uncertainty

A second difficulty with NN dynamics models is handling input uncertainty. To plan under
dynamics uncertainty, PILCO analytically propagates state distributions through the
dynamics model (step 6 in Algorithm 3, depicted in Figure 5.5). To do so, the dynamics
model must pass uncertain dynamics outputs from a given time step as uncertain input
into the dynamics model in the next time step. This handling of input uncertainty cannot
be done analytically with NNs, as is done with Gaussian processes in PILCO.

To feed a distribution into the dynamics model, we resort to particle methods
(Algorithm 4). This involves sampling a set of particles from the input distribution (step
2 in Algorithm 4), passing these particles through the BNN dynamics model (step 8 in
Algorithm 4), which yields an output distribution of particles.

Algorithm 4 Step 6 of Algorithm 3: Predict system trajectories from p(X0) to p(XT)
1: Define time horizon T .
2: Initialise set of K particles xk0 ∼ P (X0).
3: for k = 1 to K do
4: Sample BNN dynamics model weights W k.
5: end for
6: for time t = 1 to T do
7: for each particle x1

t to xKt do
8: Evaluate BNN with weights W k and input particle xkt , obtain output ykt .
9: end for

10: Calculate mean µt and standard deviation σ2
t of {y1

t , ..., y
K
t }.

11: Sample set of K particles xkt+1 ∼ N (µt, σ2
t).

12: end for

This approach was attempted unsuccessfully in the past with PILCO [McHutchon,
2014]. McHutchon [2014] encountered several problems optimising the policy with particle
methods, the main problem being the abundance of local optima in the optimisation
surface, impeding his BFGS optimisation method. McHutchon [2014] suggested that this

102 Applications

might be due to the finite number of particles used and their deterministic optimisation.
To avoid these issues, we randomly re-sample a new set of particles at each optimisation
step, giving us an unbiased estimator for the objective (step 7 in Algorithm 3). We then
use the stochastic optimisation procedure Adam [Kingma and Ba, 2014] instead of BFGS.

We found that fitting a Gaussian distribution to the output state distribution at
each time step, as PILCO does, is of crucial importance (steps 10-11 in Algorithm
4). This moment matching avoids multi-modality in the dynamics model. Fitting a
multi-modal distribution with a (wide) Gaussian causes the objective to average over the
many high-cost states the Gaussian spans [Deisenroth et al., 2015]. By forcing a unimodal
fit, the algorithm penalises policies that cause the predictive states to bifurcate, often a
precursor to a loss of control. This can alternatively be seen as smoothing the gradients
of the expected cost when bifurcation happens, simplifying controller optimisation. We
hypothesised this to be an important modelling choice done in PILCO.

Sampling functions from the dynamics model

Unlike PILCO, our approach allows sampling individual functions from the dynamics
model and following a single function throughout an entire trial. This is because a
repeated application of the BNN dynamics model above can be seen as a simple Bayesian
recurrent neural network (RNN, where an input is only given at the first time step).
Approximate inference in the Bayesian RNN is done by sampling function weights once
for the dynamics model, and using the same weights at all time steps (steps 4 and 8
in Algorithm 4). With dropout, this is done by sampling and fixing the dropout mask
for all time steps during the rollout (§3.4.2). PILCO does not consider such temporal
correlation in model uncertainty between successive state transitions, which results in
PILCO underestimating state uncertainty at future time steps [Deisenroth et al., 2015].

Another consequence of viewing our dynamics model as a Bayesian RNN is that the
model could be easily extended to more interesting RNNs such as Bayesian LSTMs,
capturing long-term dependencies between states. This is important for non-Markovian
system dynamics, which can arise with observation noise for example. Here we restrict
the model to Markovian system dynamics, where a simple Bayesian recurrent neural
network model suffices to predict a single output state given a single input state.

5.4.3 Experiment

To compare our technique to PILCO we experimented with the cartpole swing-up task—a
standard benchmark for nonlinear control. Lillicrap et al. [2015] and Gu et al. [2016]

5.4 Data efficiency in deep reinforcement learning 103

use this benchmark as well, assessing their approach on the four-dimensional state-space
task.

Figure 5.7 shows the average cost of 40 random runs (with two standard errors denoted
by two shades for each plot). Deep PILCO successfully balances the pendulum in most
experiment repetitions within 20-25 trials, compared to PILCO’s 6-7 trials. Figure 5.8
shows the progression of deep PILCO’s fitting as more data is collected.

Our model can be seen as a Bayesian approach to data efficient deep RL. We compare
to recent deep RL algorithms (Lillicrap et al. [2015] and Gu et al. [2016]). Lillicrap et al.
[2015] use an actor-critic model-free algorithm based on deterministic policy gradients.
Gu et al. [2016] train a continuous version of model-free deep Q-learning using imagined
trials generated with a learnt model. For their low dimensional cartpole swing-up task
Lillicrap et al. [2015] require approximately 2.5×105 steps to achieve good results. This is
equivalent to approximately 2.5× 103 trials of data, based on Figure 2 in [Lillicrap et al.,
2015] (note that [Lillicrap et al., 2015] used time horizon T = 2s and time discretisation
∆t = 0.02s, slightly different from ours; they also normalised their reward, which does
not allow us to compare to their converged reward directly). Gu et al. [2016] require
approximately 400 trials for model convergence. These two results are denoted with
vertical lines in Figure 5.7 (as the respective papers do not provide high resolution
trial-cost plots).

Lastly, we report model run time for both Deep PILCO as well as PILCO. Deep PILCO
can leverage GPU architecture, and took 5.85 hours to run for the first 40 iterations. This
is with constant time complexity w.r.t. the number of trials, and linear time complexity
in input dimensionality Q and output dimensionality D. PILCO (running on the CPU)
took 20.7 hours for the 40 trials, and scales with O(N2Q2D2) time complexity, with N

number of trials. With more trials PILCO will become much slower to run. Consequently,
PILCO is unsuited for tasks requiring a large number of trials or high-dimensional state
tasks.

F • f

We surveyed research in three application areas: language, biology and medicine,
and computer vision, and gave example applications in RL and active learning, lending
support to our main claim of the tools developed in chapter 3 being practical. We next go
in depth into some more theoretical questions analysing the developments of the previous
chapters.

104 Applications

100 101 102 103

Trials (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e

C
o
st

Gu et al. (2016) Lillicrap et al. (2016)PILCO Deep PILCO

PILCO

Deep PILCO

Fig. 5.7 Average cost per trial with standard error (on log scale) for PILCO and Deep
PILCO on the cartpole swing-up task, averaging 40 experiment repetitions for both
models. Vertical lines show estimates of number of trials required for model convergence
(successfully balancing the pendulum with most experiment repetitions) for PILCO
(yellow, 5 trials), Deep PILCO (blue, 42 trials), Gu et al. [2016] (purple, ∼ 400 trials)
and Lillicrap et al. [2015] (green, ∼ 2, 500 trials).

(a) Trial 1 (b) Trial 10 (c) Trial 20 (d) Trial 26

Fig. 5.8 Progression of model fitting and controller optimisation as more trials
of data are collected. Each x-axis is timestep t, and each y-axis is the pendulum
angle θ in radians (see Figure 5.6). The goal is to swing the pendulum up such that
mod(θ, 2π) ≈ 0. The green lines are samples from the ground truth dynamics. The blue
distribution is our Gaussian-fitted predictive distribution of states at each timestep. (a)
After the first trial the model fit (blue) does not yet have enough data to accurately
capture the true dynamics (green). Thus the policy performs poorly: the pendulum
remains downwards swinging between 2π and 4π. (b) After 10 trials, the model fit
(blue) predicts very well for the fist 13 time steps before separating from the true rollouts
(green). The controller has stabilised the pendulum at 0π for about 10 time steps (1
second). (c) After 20 trials the model fit and policy are slightly improved. (d) From
trial 26 onward, the dynamics model successfully captured the true dynamics and the
policy successfully stabilises the pendulum upright at 0π radians most trials.

Chapter 6

Deep Insights

Until now we have mostly studied the proposed approximate inference techniques empiri-
cally. In this chapter we turn to a more theoretical analysis, and concentrate mostly on
the case of dropout, as it seems to be the most widely used among the various stochastic
regularisation techniques. We begin by suggesting practical considerations for getting
good uncertainty estimates, followed by a review of what affects predictive uncertainty
characteristics. We then offer an analytical analysis in the linear case, answering many
higher-level questions about the behaviour of the inference, and analyse dropout’s evi-
dence lower bound (ELBO) correlation with test log likelihood. We continue by discussing
various alternative priors to the standard Gaussian prior: we discuss the properties of
a discrete prior, and (approximately) derive the optimal variational posterior with a
spike and slab prior. The latter, quite surprisingly, turns out to be closely related to
the structure of the dropout approximating distribution. We finish the chapter with a
more philosophical discussion, examining the different types of uncertainty available to
us from the dropout neural networks, and suggest a new tool to optimise the dropout
probabilities under the variational setting.

6.1 Practical considerations for getting good uncer-
tainty estimates

I will suggest some “tricks of the trade” to get good predictive uncertainty estimates.
First, it seems that “over-parametrised” models result in better uncertainty estimates than
smaller models. Models with a large number of parameters can capture a larger class of
functions, leading to more ways of explaining the data, and as a result larger uncertainty
estimates further from the data. Similar behaviour was noted in [Neal, 1995] with regard

106 Deep Insights

to model size. In the dropout case, this conforms with the observation that better RMSE
can be obtained when a large number of parameters is used (larger than when dropout
is not used as discussed in §4.5). The dropout probability is important as well, with
larger models requiring a larger dropout probability: varying the dropout probability p
(through either grid-search or Bayesian optimisation) we have that large models (large
K) push p towards 0.5, since the weight of the entropy w.r.t. p (eq. (A.1)) is scaled
by K. For a fixed model size K, smaller probabilities p result in decreasing predictive
uncertainty. Further, short model length-scale results in more erratic functions drawn
from the posterior hence higher uncertainty values. Intuitively, high model precision
(large τ) and large amounts of data (large N) give the expected log likelihood a higher
weight than the prior KL, resulting in models that can fit the data well but might overfit
(this can be seen in eq. (3.14)). On the other hand, long prior length-scale (large l)
gives the prior KL a higher weight than the expected log likelihood, resulting in heavily
regularised models that might not fit the data as well (this can be seen in eq. (6.6) below).
The prior length-scale, model precision, and dropout probability can be optimised using
Bayesian optimisation and cross validation over test log likelihood (as was done in §4.3).
Lastly, it seems that model structure affects predictive uncertainty considerably. Many
existing models were designed and developed in order to obtain good RMSE, but the
same model structure might not be ideal to get good uncertainty estimates. Adapting
model structure to result in good uncertainty estimates as well as RMSE might be helpful
in improving test log likelihood. The reason for this is discussed next.

6.2 What determines what our uncertainty looks
like?

Predictive uncertainty is determined through a combination of model structure, model
prior, and approximating distribution. This is similar to Gaussian processes (GPs), where
the choice of covariance function is determined by our prior belief as to the properties
of the predictive uncertainty we expect to observe. Choosing a squared exponential
covariance function for example corresponds to a prior belief that predictive uncertainty
increases far away from the data, and a choice of a “neural network” covariance function
corresponds to a prior belief that the predictive mean does not collapse to zero far away
from the data [Rasmussen and Williams, 2006]. Bayesian NNs can be seen as Gaussian
process approximations [Gal and Turner, 2015; Neal, 1995; Williams, 1997], where the
GP’s covariance function is determined by the Bayesian NN non-linearity and prior.

6.3 Analytical analysis in Bayesian linear regression 107

Since we are approximating the Bayesian NN posterior with an approximating
distribution q(·), this also affects our resulting predictive uncertainty. In section §4.2
we saw that the resulting predictive uncertainty depends heavily on the non-linearity
and model prior (through the prior length-scale l). It seemed to be less affected by the
approximating distribution q(·), with dropout, multiplicative Gaussian noise, and others
resulting in similar predictive uncertainty.

6.3 Analytical analysis in Bayesian linear regression

We next study some of dropout’s properties through its view as an approximating distri-
bution in VI. Some interesting questions we answer include: 1) is dropout’s regularisation
data dependent? 2) does the dropout probability collapse to the MAP solution with
finite data? and 3) does the approximate posterior collapse to a point mass in the limit
of data? These questions can be answered through an analytical analysis in the special
case of Bayesian linear regression. Even though we don’t need VI in Bayesian linear
regression, we can see what dropout VI looks like as we can solve everything analytically
in this case. An empirical analysis of these questions for deep models is given later in
§6.7.

We start with Bayesian linear regression with N data points, mapping Q-dimensional
inputs X ∈ RN×Q to D dimensional outputs Y ∈ RN×D,

Y = Xw + ϵ.

Here we assume observation noise ϵ ∼ N (0, I) and place a standard normal prior over
the weights w ∼ N (0, I). For simplicity we shall assume that D = 1, hence w ∈ RQ×1 is
a column vector.

We can find the posterior distribution p(w|X,Y) analytically for this model:

p(w|X,Y) = p(Y|X,w)p(w)/p(Y|X)
= N

(
w; (XTX + I)−1XTY, (XTX + I)−1

)
(6.1)

The MAP estimate is thus

w = (XTX + I)−1XTY. (6.2)

In the linear case, the dropout variational distribution can be derived analytically
as well. This approximate posterior distribution can then be compared to the exact

108 Deep Insights

posterior. Define qm,p(w) = ∏Q
i=1 qmq ,p(wq) with

qmq ,p(wq) = pδ(wq −mq) + (1− p)δ(wq − 0)

given some variational parameters m and retain probability1 p. This can be rewritten as
wq = mqϵq with ϵq ∼ Bern(p), and in vector form w = diag([ϵi]Qi=1) ·m. We shall write
q(w) for qm,p(w) for brevity.

Evaluating the log evidence lower bound (ELBO) in the variational case amounts to:

log p(Y|X) = log
∫
p(Y|X,w)p(w)dw

≥
∫
q(w) log p(Y|X,w)dw−KL

(
q(w)||p(w)

)
∝

N∑
n=1

(
− 1

2y
2
n + ynxnEq[w]− 1

2xnEq[wwT]xTn
)
−KL

(
q(w)||p(w)

)
.

Following the definition of q(w), we know that Eq[w] = pm. Further, Eq[wwT] =
Covq[w]+Eq[w]Eq[w]T = p(1−p)diag([m2

i]
Q
i=1)+p2mmT since each element of w ∼ q(w)

is a product of a scalar and an i.i.d. Bernoulli (remember that m is a row vector, therefore
mmT is a matrix).

The log evidence can thus be bounded by:

log p(Y|X) ≥
N∑
n=1

(
− 1

2y
2
n + pynxnm− p2

2 xnmmTxTn −
p(1− p)

2 xndiag([m2
i]
Q
i=1)xTn

)
−KL

(
q(w)||p(w)

)
∝

N∑
n=1

(
− 1

2(yn − pxnm)2 − p(1− p)
2 xndiag([m2

i]
Q
i=1)xTn

)
−KL

(
q(w)||p(w)

)
= −1

2 ||Y − pXm||2 − p(1− p)
2

∑
n

xndiag([m2
i]
Q
i=1)xTn −KL

(
q(w)||p(w)

)
.

This last expression can be simplified by noting that diag([m2
i]
Q
i=1) = diag([mi]Qi=1)2 thus

xndiag([m2
i]
Q
i=1)xTn = Tr

(
xndiag(m)2xTn

)
= Tr

(
diag(m)xTnxndiag(m)

)
.

1Note that here we denote dropout probability as 1− p instead of p.

6.3 Analytical analysis in Bayesian linear regression 109

Summing these over n we obtain

∑
n

xndiag([m2
i]
Q
i=1)xTn = Tr

(
diag(m)XTXdiag(m)

)
= mTdiag(XTX)m.

Following appendix A, we approximate the KL between q(w) and a standard Gaussian
prior p(w) = N (w; 0, I) as

KL
(
q(w)||p(w)

)
=

Q∑
i=1

KL
(
q(wi)||p(wi)

)
≈ p

2mTm−QH(p) + C, (6.3)

defining H(p) = −p log p− (1− p) log(1− p), and with a constant C.
Maximising the ELBO can be written as a minimisation objective:

L(m, p) = ||Y − pXm||2 + p(1− p)mTdiag(XTX)m︸ ︷︷ ︸
likelihood terms

+ pmTm− 2QH(p)︸ ︷︷ ︸
prior terms

.

Remark (Is dropout’s regularisation data dependent?). It was suggested in [Sri-
vastava et al., 2014, section 9.1] that the term p(1 − p)mTdiag(XTX)m in the
equation above is a regularisation term dependent on the data. Following the
interpretation of dropout as approximate inference with our specific distribution
q(·) and a standard Gaussian prior we have that the term is derived from the
likelihood contribution, i.e. the term is part of the generative model. But one could
claim that this result follows from our ad hoc choice for q(·). Below we will see
an alternative prior under which we can (approximately) derive the variational
distribution structure optimally. For that alternative prior we recover an optimal
q(·) with a distribution structure similar to the dropout variational distribution.
Apart from suggesting why the dropout approximating distribution structure is
sensible, the new objective will also possess similar properties to the ones studied
here.

The solution to this last minimisation objective can be found analytically. We rewrite
the objective as

L(m, p) =
N∑
n=1

(y2
n − 2pynxnm + p2mTxTnxnm) + mT

(
p(1− p)diag(XTX) + pI

)
m

− 2QH(p) (6.4)

110 Deep Insights

=
N∑
n=1

(y2
n − 2pynxnm) + mT

(
p2XTX + p(1− p)diag(XTX) + pI

)
m− 2QH(p)

Differentiating w.r.t. m we have

∂L(m, p)
∂m

= −2pXTY + 2
(
p2XTX + p(1− p)diag(XTX) + pI

)
m

Setting ∂L(m,p)
∂m = 0 leads to optimal m∗ (under the constraint p > 0):

m∗ =
(
pNΣ + (1− p)NΛ + I

)−1

XTY (6.5)

with Σ = XTX/N and Λ = diag(XTX)/N . This effectively shrinks the off-diagonal
covariance terms, reducing the sensitivity of linear regression to colinear inputs2.

Remark (Does the dropout probability collapse to the MAP solution with finite
data?). Here we see that the optimal variational parameter m∗ equals the MAP
estimate given in eq. (6.2) only for p = 1 or for Λ constant. We will next see that
in the limit of data, optimal p∗ is indeed 1.

Plugging m∗ into L(m, p) we obtain:

L(m∗, p) = YTY − 2pYTXm∗ + pm∗T
(
pNΣ + (1− p)NΛ + I

)
m∗ − 2QH(p)

= YTY − pYTX
(
pNΣ + (1− p)NΛ + I

)−1

XTY − 2QH(p).

In the limit of data we have (assuming that the limit exists)

L(m∗, p)
N

= YTY
N
− pYTX

N

(
pΣ + (1− p)Λ + I

N

)−1 XTY
N
− 2QH(p)

N

−−−→
N→∞

a− bT
(
Σ + (p−1 − 1)Λ

)−1
b

=: L̄(p),

with a = limN→∞ YTY/N and b = limN→∞ XTY/N .
2Equation (6.5) was previously presented in [Srivastava et al., 2014; Wager et al., 2013; Wang and

Manning, 2013], where the dropout objective was interpreted as a form of ridge regression with the
design matrix columns normalized. Dropout in linear networks was also studied in [Baldi and Sadowski,
2013].

6.4 ELBO correlation with test log likelihood 111

Remark (Does the approximate posterior collapse to a point mass in the limit of
data?). We have that p = 1 (no dropout) is a minimiser of L̄(p) (and the only one
when Λ is positive definite): Σ and Λ are positive semi-definite (PSD). For p < 1,
we have p−1 − 1 > 0, therefore (p−1 − 1)Λ is PSD, and so is Σ + (p−1 − 1)Λ. Since
Σ ⪯ Σ + (p−1 − 1)Λ, we have

(
Σ + (p−1 − 1)Λ

)−1
⪯ Σ−1, and from the definition

of PSD: bT
(
Σ + (p−1 − 1)Λ

)−1
b ≤ bTΣ−1b. As a result,

a− bT
(
Σ + (p−1 − 1)Λ

)−1
b ≥ a− bTΣ−1b,

resulting in L̄(p) ≥ L̄(1) for all p ∈ (0, 1). For Λ positive definite the inequalities
above are strict, leading to L̄(p) > L̄(1) for all p ∈ (0, 1), i.e. p∗ = 1 (no dropout) is
the unique minimiser of our optimisation objective, and the approximate posterior
collapses to a point mass in the limit of data.

6.4 ELBO correlation with test log likelihood

This has been joint work with Mark van der Wilk.

In an attempt to maximise model performance, it might be tempting to optimise
dropout’s probability p as a variational parameter following its VI interpretation. In-
terestingly enough, optimising the dropout probability can give mixed results. In this
section we analyse this behaviour. We plot model ELBO versus test log likelihood for
different dropout probabilities, and assess the correlation between the ELBO and the
test log likelihood.

We repeat the experiment setup of §4.2 and use ReLU models with 4 hidden layers
and 1024 units in each layer evaluated on Snelson and Ghahramani [2005]’s dataset with
N = 5000 training points. We set model precision to τ = 50 and assess model ELBO and
test log likelihood at the end of optimisation for various probabilities3 p of the weights
to be set to zero. Each experiment was repeated three times. These can be seen in fig.
6.1. As can be seen, the ELBO correlates strongly with the test log likelihood—as the
ELBO increases so does the test log likelihood. In fig. 6.2 we can see how models with
dropout probability p = 0 (no dropout) cannot capture the full range of noise of the
data, whereas by increasing the dropout probability we manage to model the noise better
and better. For too large dropout probability (p = 0.75) the model starts underfitting.

3We performed a grid-search over p since we want to plot model performance for different p values.

112 Deep Insights

It is worth mentioning that for p = 0.9 the model does not converge at all. It is also
interesting to note that test RMSE does not seem to correlate to the ELBO as is seen in
fig. 6.3. The test log likelihood is composed of the test RMSE scaled by the uncertainty
with an added uncertainty “penalty” term. This means that predictive uncertainty forms
an important factor in the ELBO correlation with the test log likelihood. Repeating this
experiment with τ = 20 gives very similar results.

Repeating the same experiment with a different model precision value τ = 10 we
observe very different results though. Figure 6.4 shows that in this model when we set
the dropout probability to p = 0.5 we obtain a worse test log likelihood than setting
p = 0, even though the ELBO for the former is still higher than that of the latter. Note
though that the model fits well with no dropout in this setting, and adding dropout
with a large probability leads to deteriorated results (fig. 6.5). This might stem from the
ELBO being too loose in some model setups, explaining why some attempts at optimising
the dropout probability have failed in the past. However, for models in which the bound
is tight enough, dropout optimisation can be done fairly well. This is explored in §6.7.

Remark (Model selection and bound tightness). In a wider context, this last result
above suggests some interesting questions. The assumption underlying variational
inference is that models with higher ELBO correspond to “better” models (better
according to what metric is a different question though). This is because the higher
the ELBO, the lower the KL divergence between the approximate posterior and the
true posterior would become. This fact is what drives us to look for the variational
parameters that maximise the ELBO, and in turn minimise this notion of “distance”
between our approximation and the true posterior. Since in our setting above the
dropout probability p is a variational parameter, we would assume that maximising
the ELBO w.r.t. p would lead to improved model performance. The fact that this
is the case for some models (τ = 20, 50) but not others (τ = 10) is perplexing.
These results are related to the concept of bound tightness. MacKay [1992a]
approximated the model evidence (which our ELBO is a lower bound to) and showed
positive correlation between the evidence and test RMSE. He then performed model
selection by choosing the model with the highest evidence. In VI the ELBO is often
used as a proxy to the model evidence when the ELBO is tight enough [Rasmussen
and Williams, 2006] (i.e. models with higher model evidence are assumed to have
higher bound to that evidence). When changing model precision, different model
precision values τ correspond to different models, and therefore each ELBO is a
bound to a different (constant) model evidence. In Gaussian process approximations

6.4 ELBO correlation with test log likelihood 113

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

21900

21800

21700

21600

21500

E
LB

O
 /

 N

(a) ELBO as a function of dropout p

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

te
st

 l
l

(b) Test log likelihood as a function of p

2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
test ll

21900

21800

21700

21600

21500

E
LB

O
 /

 N

(c) ELBO as a function of test log likelihood for various p (darker = lower probability).

Fig. 6.1 ELBO (per training point) and test log likelihood (per test point) for various
values of dropout probability for a model with 4 hidden layers, 1024 units, and model
precision τ = 50.

114 Deep Insights

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) p = 0
2 1 0 1 2 3 4

3

2

1

0

1

2

3

(b) p = 0.1
2 1 0 1 2 3 4

3

2

1

0

1

2

3

(c) p = 0.25

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) p = 0.5
2 1 0 1 2 3 4

3

2

1

0

1

2

3

(e) p = 0.75

Fig. 6.2 Model fit for model precision τ = 50 with various dropout probabilities

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
test rmse

21900

21800

21700

21600

21500

E
LB

O
 /

 N

Fig. 6.3 ELBO as a function of test
RMSE for τ = 50

6.4 ELBO correlation with test log likelihood 115

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

21900

21800

21700

21600

21500

E
LB

O
 /

 N

(a) ELBO as a function of dropout p

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

te
st

 l
l

(b) Test log likelihood as a function of p

0.800.750.700.650.600.550.500.450.40
test ll

21900

21800

21700

21600

21500

E
LB

O
 /

 N

(c) ELBO as a function of test log likelihood for various p (darker = lower probability).

Fig. 6.4 ELBO (per training point) and test log likelihood (per test point) for various
values of dropout probability for a model with 4 hidden layers, 1024 units, and model
precision τ = 10.

116 Deep Insights

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) p = 0
2 1 0 1 2 3 4

3

2

1

0

1

2

3

(b) p = 0.1
2 1 0 1 2 3 4

3

2

1

0

1

2

3

(c) p = 0.25

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) p = 0.5
2 1 0 1 2 3 4

3

2

1

0

1

2

3

(e) p = 0.75

Fig. 6.5 Model fit for model precision τ = 10 with various dropout probabilities

for example the bound is empirically observed to be tight enough to allow us to
choose a model precision τ based on the ELBO. In our setting the ELBO seems to
not be indicative of what model we should choose in some cases (fig. 6.6 shows the
ELBO for all models above, with highest ELBO obtained at p = 0.5; further, fig.
6.7 shows that τ = 10 has slightly higher ELBO than τ = 20 and than τ = 50).
This suggests that the bound is not as tight as in the GP case.
Attempting to explain the above, there are several possible hypotheses one could
propose:

1. The prior might dominate the optimisation objective in some models because
there is not enough data compared to model size. The entropy in p stemming
from the KL contribution (eq. (A.1)), which gives the ELBO its parabola-like
shape, is scaled by the model size. In the limit of data this term would vanish.
This interpretation is supported by the results in fig. 6.8 where the experiment
with τ = 10 above is repeated with 50 · 106 data points instead of 50 · 103, and
resulting in positive correlation. Note that in this setting τ = 50 has a “kink”
in the ELBO-test log likelihood plot, but in both cases ELBO-test RMSE is
highly correlated (not shown).

6.4 ELBO correlation with test log likelihood 117

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

21900

21850

21800

21750

21700

21650

21600

21550

21500

21450

E
LB

O
 /

 N

50.0,0.0

50.0,1.020.0,1.050.0,1.0

50.0,0.0

10.0,1.020.0,0.0

20.0,0.010.0,2.050.0,0.020.0,2.0

20.0,0.0

20.0,1.0

50.0,1.0

50.0,0.020.0,0.0

10.0,0.0

20.0,2.0

10.0,2.0

10.0,2.0

10.0,2.0

10.0,1.050.0,1.020.0,1.0

10.0,0.0

20.0,1.0

50.0,2.0

10.0,1.0

20.0,2.020.0,0.0

10.0,1.050.0,2.0

10.0,2.0

10.0,0.0

20.0,1.0

50.0,2.020.0,2.0

50.0,1.0

50.0,0.0 20.0,2.0

10.0,0.0

50.0,2.010.0,1.0

10.0,0.0

50.0,2.0

Fig. 6.6 ELBO as a function of dropout
p for all model precision values τ =
10, 20, 50

Fig. 6.7 ELBO as a function of
dropout p for all model precision
values τ = 10, 20, 50, zoomed in
at p = 0.5 (with labels of the form
(τ , repetition number))

0.9 0.8 0.7 0.6 0.5 0.4
test ll

3.6

3.4

3.2

3.0

2.8

2.6

E
LB

O
 /

 N

Fig. 6.8 ELBO as a function of test log
likelihood for various p (darker = lower
probability), with 4 hidden layers, 1024
units, and model precision τ = 10 with
50 · 106 data points.

118 Deep Insights

2. The model might be misspecified (as discussed in [MacKay, 1992a, section 3.4]).
MacKay [1992a] showed that when using inappropriate prior distributions a
“kink” appeared in his evidence-test RMSE plots; he solved this by changing
his prior. A lack of correlation between model evidence and test RMSE would
lead to a lack of correlation between the ELBO and test RMSE even if the
bound is tight.

3. The ELBO constant terms might not be specified correctly. The KL condition
in appendix A only requires us to specify a q(ω) and p(ω) s.t. the derivatives
of the ELBO and the dropout optimisation objective agree w.r.t. W. The
terms w.r.t. p however can change arbitrarily.

4. Lastly, the dropout probability might not be a variational parameter at all but
rather a model parameter. Changing the dropout probability might change
the model evidence—the quantity we bound.

Hypotheses 2 and 3 suggest that various terms apart from W in p(ω) might be
affecting the optimisation objective. For example, specifying a different prior s.t.
the KL condition is still satisfied w.r.t. the same approximating distribution q(ω)
results in a different ELBO (as we will see next). Hypothesis 4 relates to prior
selection as well. As we will see in a later section in this chapter, under some priors
the dropout probability will be determined by our prior hyper-parameters, hence
changing the dropout probability would change the evidence we bound (explaining
the peculiar behaviour above).
In the final sections of this chapter we give some evidence in support of the various
possible hypotheses suggested above. Further study of these hypotheses is left for
future research.

6.5 Discrete prior models

In the previous chapters we attempted to use a discrete approximating distribution
q(wk) = pδ(wk − 0) + (1 − p)δ(wk − mk) to recover dropout. But our prior had a
continuous probability density function (a standard Gaussian distribution). We were
therefore forced to approximate the KL between the approximating distribution and
the prior by embedding the approximating distribution in a continuous space using a
mixture of two Gaussians with small standard deviations σ (appendix A). But for a

6.5 Discrete prior models 119

fixed small σ the constant in the KL to the prior (eq. (A.1)) is rather large, making the
lower bound quite loose. This bound becomes looser and looser for smaller and smaller
σ, and diverges to negative infinity at σ = 0. This raises issues when we attempt to
optimise the ELBO w.r.t. model hyper-parameters such as the length-scale for example4.
More specifically, we will look at the bound when the prior above is set as N (0, l−2I).
For this prior the constant C contains the terms −l2σ2 + log l2σ2. If we maximise the
ELBO w.r.t. length-scale l, we would choose (with a very small fixed σ2) a very large l.
In fact, we can make the model completely ignore the likelihood term by setting σ2 to
be small enough: for every fixed number of points N there exists a σ2 value such that
log l2 dominates ∑n

τ
2 (µ− yn)2 with µ being the mean of the data5. Because σ is held

constant and identical in all models, if we perform model comparison based on the ELBO
we would prefer the model with the longer length-scale l2.

This suggests that the model might be misspecified w.r.t. our choice of approximating
distribution (which we chose in order to recover dropout). Model misspecification is often
discussed with respect to model evidence—when the evidence does not correlate to test
error (see for example [MacKay, 1992a]). But in our case we compare log evidence lower
bounds, and are interested to define a model in which a given approximating distribution
specifies a tight bound.

A possible way to fix this issue is to specify an alternative prior, inducing a slightly
altered model. Instead of using a continuous probability density function pl(w) =
N (0, l−2I), we will use a discrete probability mass function pl(w) ∝ e− l2

2 wT w defined over
a finite space w ∈ X (a similar approach of quantising the space was used in [Hinton and
Van Camp, 1993]). A continuous prior forced us to embed the discrete approximating
distribution q(·) in a continuous space in order for the KL between the two to be properly
defined. We did this using a mixture of Gaussians with small standard deviations σ.
But this approach has led to our increasingly loose bound as the standard deviation σ

decreased. The use of a discrete prior instead allows us to evaluate the KL divergence of
both distributions over a finite space X.

In our case, since we optimise model parameters w on a computer, we define the
space X to be a finite vector space defined over the finite field of numbers representable
on a computer (for example numbers up to a certain precision). To ensure parameter
gradients are properly defined, we relax the objective and embed the parameters in a
continuous space for optimisation.

4This can be circumvented by grid-searching w.r.t. validation log likelihood instead of the ELBO.
5For large enough l2 the optimal model parameters would be zero because of the − l2p

2 mT m term in
the prior; this leads to the model predicting the mean of the data denoted µ here.

120 Deep Insights

Given the discrete approximating distribution q(wk) = pδ(wk−0)+(1−p)δ(wk−mk)
the expected log likelihood terms stay the same as before, and the KL to the discrete
prior distribution above is given by:

KL(q(w)||pl(w)) =
∑

w∈X
q(w) log q(w)

pl(w)

=
∑

w∈X
q(w) log q(w)

e− l2
2 wT w

+ logZl

= p log p1 + (1− p) log 1− p
e− l2

2 mT m
+ logZl

+
∑

w∈X/{0,m}
0 log 0

e− l2
2 wT w

= −H(p) + l2(1− p)
2 mTm + logZl

with H(p) = −p log p−(1−p) log(1−p) and with the last transition following the identity
0 log 0 = 0. Since Zl is the normaliser of pl(w):

Zl =
∑

w∈X
e− l2

2 wT w ≈ |∆w|−1(2πl−2)K/2

with K being the dimensionality of the vector w and |∆w| the quantisation interval of
the space X, we have:

logZl ≈ −K log l − log |∆w|+ K

2 log 2π.

This leads to

KL(q(w)||pl(w)) ≈ l2(1− p)
2 mTm−K log l + K

2 log 2π −H(p)− log |∆w|. (6.6)

Surprisingly perhaps, the derivatives of this KL is identical to the one we used before (eq.
(A.1)) for the terms m and p, but unlike before, there are no additional terms that diverge
to infinity (terms dependent on σ). This means that approximate inference with this
prior following the setting of §4.2 would give the same results observed in that chapter,
where the only difference is the bound being more tight. An alternative interesting prior
is discussed next, a prior that sheds light on dropout’s peculiar structure.

6.6 Dropout as a proxy posterior in spike and slab prior models 121

6.6 Dropout as a proxy posterior in spike and slab
prior models

I thank Nilesh Tripuraneni for suggesting the relation between dropout and
spike and slab priors.

In his thesis from 1992, David MacKay discussed the possibility of placing a spike
and slab prior over a neural network’s weights [MacKay, 1992a, section 7.4]. MacKay
recalled personal communication with Geoff Hinton, who suggested that an ideal prior in
BNNs would set part of the weights to be exactly zero6. Many works at the time tried to
approximate inference in similarly motivated models to varying degrees of success [Ji
et al., 1990; Nowlan and Hinton, 1992; Weigend et al., 1991], none of which survived to
modern day. In the following we will develop approximate inference in BNNs with spike
and slab priors relying on recent VI advances, in effect formalising these ideas from 25
years ago. We will approximate the optimal structure of the approximating distribution,
which as we will see turns out to be closely related to dropout’s structure.

6.6.1 Historical context

MacKay [1992a]’s comments mentioned above were made with respect to an early draft
of Nowlan and Hinton [1992], which extended on the work of Weigend et al. [1991].

Weigend et al. [1991] relied on MDL to motivate the addition of a regularisation term
to the optimisation objective of a NN, in order to penalise complex models. They offered
a Bayesian interpretation to their objective as maximising the log likelihood plus log
prior (MAP) with a mixture prior over the weights, where the mixture was of a wide
uniform and a Gaussian centred at zero, with the Gaussian’s width being learnt.

Nowlan and Hinton [1992], following the Bayesian interpretation of the weight decay
as a Gaussian prior, claimed that a Gaussian prior can be used to eliminate small weights.
But at the same time it forces other weights to contract to the origin as well, weights
that are needed to “explain the data as well” and thus should not be forced to the origin
(the demand for a prior to contract “unneeded” weights to zero might have stemmed
from the MDL interpretation of model complexity, but was not justified in the paper).
Nowlan and Hinton [1992] proposed to use a mixture of a narrow Gaussian together with
a wide Gaussian. They implemented this by placing a mixture of Gaussians prior and
optimising the MAP over the means and standard deviations of the Gaussians.

6Note that the prior is constructed to be sparse here rather than the posterior as in dropout.

122 Deep Insights

MacKay [1992a], repeating the desire to set part of the weights to be exactly zero,
commented on the work of Nowlan and Hinton [1992]. MacKay [1992a] said that the
non-zero width of the narrow Gaussian was a consequence of computational practicality,
thus Nowlan and Hinton [1992]’s approach of inferring the width of the narrow Gaussian
was not appropriate. MacKay [1992a] concluded that it will be interesting to see if a
priori setting part of the weights to be exactly zero could be formalised, leading to a
“well-founded” technique.

6.6.2 Spike and slab prior models

The desire to set a subset of weights to be exactly zero a priori can be materialised
by placing a spike and slab prior over the weights. Spike and slab distributions return
realisations which are identically zero with some probability (the spike) or sampled from
a wide Gaussian otherwise (the slab), and have been used in the context of variable
selection for example [Chipman; George and McCulloch, 1993, 1997; Ishwaran and Rao,
2005; Madigan and Raftery, 1994; Mitchell and Beauchamp, 1988]. We start by placing a
spike and slab prior over each row of each weight matrix wik, and assume that the rows
are a priori independent of each other:

p(wik) = fδ(wik − 0) + (1− f)N (wik; 0, l−2I) (6.7)

with prior probability f and prior length-scale l. The first component is a point mass at a
vector of zeros, setting an entire weight matrix row to zero with probability f (a priori).
The second component draws a weight vector from a multivariate Gaussian distribution
with probability 1− f . Draws from this distribution will give high frequencies for short
length-scale l (resulting in erratic functions), and low frequencies for long length-scales
(resulting in smooth functions). Placing the distribution over the rows of the matrix W
captures correlations over the function’s frequencies (W’s columns, §3.2.3).

Given the prior above, we use a Gaussian likelihood for regression:

p(y|x,ω) = N (hL−1(...h1(x)...)WL, τ
−1I)

with hi(x) = σ(xWi), L layers, ω = {Wi}Li=1 a set of random matrices, and observation
noise τ−1.

6.6 Dropout as a proxy posterior in spike and slab prior models 123

6.6.3 Related work

Some of the techniques above have been revisited in other modern literature [Blundell
et al., 2015; Goodfellow et al., 2012; Louizos, 2015; Titsias and Lázaro-Gredilla, 2011].
Blundell et al. [2015] for example use a BNN prior which resembles that of Nowlan and
Hinton [1992]. Louizos [2015] looks at a spike and slab prior distribution in a VI setting,
but makes use of a loose lower bound in order to evaluate the KL divergence between a
spike and slab approximate posterior and the prior.

6.6.4 Approximate inference with free-form variational distri-
butions

The posterior distribution over ω given observed data X,Y is difficult to evaluate.
Instead, we use variational inference and approximate it with a variational distribution
q(ω). We define the approximating distribution to factorise over the rows of the weight
matrices wik:

q(ω) =
L∏
i=1

K∏
k=1

q(wik)

with Wi composed of k rows.
Unlike previous work, here we will not specify a structure for q(·), but rather find the

optimal variational distribution structure using calculus of variations. This can be done
using the following lemma and the corollary following it:

Lemma 1. Let p(W) and q(W) be two distributions defined over the same space
W ∈ W. Further, assume the distribution q(W) factorises over W = [w1, ...,wK]:
q(W) = ∏

k q(wk).
The optimal distribution q∗(wk) minimising KL(q(W)||p(W)) is given by:

q∗(wk) ∝ eEq(W)/q(wk)[log p(W)].

Proof. Using calculus of variations,

∂

∂q(wk)

(
KL(q(W)||p(W)) + λ

(∫
q(wk)dwk − 1

))

=
∫ q(W)
q(wk)

log q(W)
p(W)d(wi) ̸=k + λ

= −Eq(W)/q(wk)[log p(W)] +
∫ q(W)
q(wk)

log q(W)
q(wk)

d(wi)̸=k + log q(wk) + λ

124 Deep Insights

Setting this last quantity to zero we obtain

log q(wk) = −λ− Eq(W)/q(wk)[log q(W)/q(wk)] + Eq(W)/q(wk)[log p(W)]

which leads to

q∗(wk) ∝ eEq(W)/q(wk)[log p(W)].

This result is known in the literature. From this lemma we can derive the following
corollary:

Corollary 1. Given a prior of the form p(W) = ∏
k p(wk) and likelihood p(Y |W),

the posterior p(W |Y) can be approximated with an optimal factorised distribution
q∗(W) = ∏

k q
∗(wk) given by

q∗(wk) ∝ eEq(W)/q(wk)[log p(Y |W)]p(wk).

This last equation is fundamental in variational message passing for example [Winn
and Bishop, 2005].

6.6.5 Proxy optimal approximating distribution

In our BNN case above, the optimal approximating distribution can be split into two
terms:

q∗(wik) ∝ eEq(ω)/q(wik)[log p(Y|X,ω)]︸ ︷︷ ︸
Nasty distribution

p(wik)︸ ︷︷ ︸
Nice dist.

.

The nasty distribution term can be evaluated analytically for linear models. But for
deep networks this distribution becomes rather complex. Instead, we will moment-match
the nasty distribution. We fit it with a Gaussian parametrised with mean mik and
diagonal variance σ2

ikI. This alters the optimal approximating distribution structure to

qmik,σik
(wik) ∝ N (wik; mik, σ

2
ikI)p(wik).

We then maximise the ELBO w.r.t. the variational parameters mik, σik for each approxi-
mating distribution qmik,σik

(wik).

6.6 Dropout as a proxy posterior in spike and slab prior models 125

The structure of the approximating distribution for the spike and slab prior (eq. (6.7))
can be evaluated analytically now:

qmik,σik
(wik) ∝ N (wik; mik, σ

2
ikI)

(
fδ(wik − 0) + (1− f)N (wik; 0, l−2I)

)

∝ fC1δ(wik − 0) + (1− f)C2N
(

wik;
mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

)

with C1 = N (0; mik, σ
2
ikI) and C2 = N (0; mik, (σ2

ik + l−2)I).
The normaliser for this distribution is given by

Zq =
∫
fC1δ(wik − 0) + (1− f)C2N

(
wik;

mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

)
dwik

= fN (0; mik, σ
2
ikI) + (1− f)N (0; mik, (σ2

ik + l−2)I).

Writing

α(mik, σik, f) = fN (0; mik, σ
2
ikI)

(1− f)N (0; mik, (σ2
ik + l−2)I)

= f

(1− f)(1 + l−2σ−2
ik)K/2e− 1

2 (l2σ4
ik+σ2

ik)−1mT
ikmik (6.8)

we have

qmik,σik
(wik) = α

α + 1δ(wik − 0) + 1
α + 1N

(
wik;

mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

)
. (6.9)

This approximating distribution sets each weight row to zero with probability α/(α+1),
which is determined by the magnitude of the variational parameters and the prior
probability f . With probability 1/(α + 1), a row’s weight is drawn from a normal
distribution centred around mean mik scaled by 1/(1 + l2σ2

ik), and with variance σ2
ik/(1 +

l2σ2
ik). For a large prior probability f tending towards 1, we have that α will tend towards

infinity, and q(·) will tend towards a point estimate at 0. For small prior probability
f , the distribution q(·) will tend towards a multivariate Gaussian distribution. Further,
letting σik tend towards 0 we recover dropout’s “spike and spike” behaviour (but with
data dependent dropout probability, which tends towards 1). On the other hand, by
increasing σik, the variance of the Gaussian component will tend towards l−2.

126 Deep Insights

6.6.6 Spike and slab and dropout

Evaluating the ELBO with our approximating distribution, we get the following objective:

log p(Y|X) ≥
N∑
i=1
−τ2

∫
q(ω)||yi − µω(xi)||2dω

+ KL(q(ω)||p(ω)) + D

2 log τ − D

2 log 2π

=: L

defining µω(xi) = hL−1(...h1(x)...)WL with D output dimensions. This last quantity
can be approximated by Monte Carlo integration with a single draw ω̂i ∼ q(ω) for each
integral in the summation:

L̂ :=
N∑
i=1
−τ2 ||yi − µ

ω̂i(xi)||2 + KL(q(ω)||p(ω)) + D

2 log τ − D

2 log 2π

with L̂ forming an unbiased estimator to the exact ELBO, Eq(ω)[L̂] = L. In appendix C
we evaluate the KL divergence between the approximating distribution and the prior
analytically, which results in a term similar to L2 regularisation.

Dropout can be seen as a proxy to this last objective. Evaluating the last objective
is identical to performing a stochastic forward pass through the deep model, where
each weight row is dropped with probability determined by the magnitude of the row.
Gaussian noise is added to rows which are not dropped. Apart from the added noise,
this is similar to dropout, which sets each weight row to zero with a certain probability.
But unlike dropout, the probability of a row being dropped is determined by the data7.
Performing a grid-search over the dropout probabilities mimics this to a certain extent.

Remark (Dropout’s probability as a model parameter). Note that with this spike
and slab prior, the dropout probability p = α(M,σ, f)/(α(M,σ, f) + 1) is not a
variational parameter and cannot be optimised directly, but only by changing M
and f . However, changing the prior probability f changes the model and hence the
model evidence. This means that for a fixed M if we were to change the posterior
dropout probability p (which depends on the variational parameter M and model
hyper parameter f) we would effectively be changing the model evidence—hence

7Note that α
α+1 ̸= f due to the second term in eq. (6.8).

6.7 Epistemic, Aleatoric, and Predictive uncertainties 127

obtain bounds to different constant quantities! This can be seen as evidence towards
hypothesis 4 in §6.4.

This approximate inference cannot be easily implemented because the parameter α
depends on the exponent of −mTm which can be numerically unstable (as it decreases
to zero very quickly). We leave further work on this to future research. Concentrating on
the previous prior then, we next explore the dropout probability’s effects on the model’s
epistemic uncertainty.

6.7 Epistemic, Aleatoric, and Predictive uncertain-
ties

I thank Jiri Hron for contributing the code for the Concrete distribution
used in this section.

We finish this chapter with a more philosophical discussion of the different types of
uncertainty available to us, and ground our discussion in the development of new tools
to better understand these. In section 1.2 we discussed the different types of uncertainty
encountered in Bayesian modelling: epistemic uncertainty which captures our ignorance
about the models most suitable to explain our data, aleatoric uncertainty which captures
noise inherent in the environment, and predictive uncertainty which conveys the model’s
uncertainty in its output.

Epistemic uncertainty reduces as the amount of observed data increases—hence its
alternative name “reducible uncertainty”. When dealing with models over functions, this
uncertainty can be captured through the range of possible functions and the probability
given to each function. This uncertainty is often depicted by generating function
realisations from our distribution and estimating the variance in the set of functions (for
example over a finite input set X). Aleatoric uncertainty captures noise sources such
as measurement noise—noises which cannot be explained away even if more data were
available (although this uncertainty can be reduced through the use of higher precision
sensors for example). This uncertainty is often modelled as part of the likelihood, at the
top of the model, where we place some noise corruption process on the model output.
Gaussian corrupting noise is often assumed in regression, although other noise sources
are popular as well such as Laplace noise. By inferring the Gaussian likelihood’s precision
parameter τ for example we can estimate the amount of aleatoric noise inherent in the
data.

128 Deep Insights

It can be difficult to distinguish different types of noise in a single model though, and
in section 4.6 we proposed a possible model to do this. In that model we learnt both the
aleatoric noise by optimising the (per point) model precision, and captured the epistemic
uncertainty using dropout through a grid-search over the dropout probability (note that
we could have searched over the model precision as well instead of optimising it, and
indeed standard practice in the field of deep learning is to grid-search over it indirectly
as part of the NN’s weight decay).

Combining both types of uncertainty gives us the predictive uncertainty—the model’s
confidence in its prediction taking into account noise it can explain away and noise it
cannot. This uncertainty is often obtained by generating multiple functions from our
model and corrupting them with noise (with precision τ). Calculating the variance of
these outputs on multiple inputs of interest we obtain the model’s predictive uncertainty.
This uncertainty has different properties for different inputs. Inputs near the training
data will have a smaller epistemic uncertainty component, while inputs far away from the
training data will have higher epistemic uncertainty. Similarly, some parts of the input
space might have larger aleatoric uncertainty than others, with these inputs producing
larger measurement error for example. These different types of uncertainty are of great
importance in fields such as AI safety [Amodei et al., 2016] and autonomous decision
making, where the model’s epistemic uncertainty can be used to avoid making uninformed
decisions with potentially life-threatening implications.

When using dropout NN (or any other SRT), we need to optimise over both the
dropout probability p and the model weight decay parameters λ. This is in order to
find the epistemic uncertainty and aleatoric uncertainty, respectively. This optimisation
can be done by performing a grid-search over both quantities (which we performed in
section 4.3 for example w.r.t. validation log-likelihood). But one of the difficulties with
the approach above is that grid-searching over both parameters can be expensive and
time consuming, especially when done with large models. Even worse, when operating in
a continuous learning setting such as reinforcement learning, the model should collapse
its epistemic uncertainty as it collects more data. This means that the data has to be
set-aside such that a new model could be trained with a smaller dropout probability
when the dataset is large enough. This is infeasible in many RL tasks. Instead, the model
precision and dropout probability parameters can be optimised with gradient methods,
where we seek to minimise some objective w.r.t. to these parameters.

In section 4.6 we specified a heteroscedastic loss which led to the optimisation objective

L̂dropout(M1,M2,b, τ) := 1
M

∑
i∈S

EŴi
1,Ŵ

i
2,b(xi,yi) + λ1||M1||2 + λ2||M2||2 + λ3||b||2,

6.7 Epistemic, Aleatoric, and Predictive uncertainties 129

EW1,W2,b(x,y) := τ

2
∣∣∣∣∣∣y− fW1,W2,b(x)

∣∣∣∣∣∣2
2
− D

2 log τ

λi = l2i (1− pi)
2N

with D the output dimensionality, and where we optimise the objective w.r.t. τ as well
as the weights to find the model’s aleatoric uncertainty. This objective was derived from
eq. (3.7) with a Gaussian likelihood with precision τ , and written in the form of eq.
(3.9). Compared to eq. (3.9), our optimisation objective is scaled by τ and has an added
“regularisation” term − log τ , a term derived from the likelihood definition which would
be omitted when the precision need not be optimised (since τ is constant w.r.t. model
weights W).

Similar to this, we can optimise our objective in eq. (3.7) w.r.t. the dropout probability
to find the epistemic uncertainty as well. The KL contribution term between the
approximate posterior and the prior depends on p through the entropy (eq. (6.6)):

H(p) := −p log p− (1− p) log(1− p)

which results in an added dropout regulariser term to our objective in eq. (3.9). To
obtain the KL contribution term between the approximate posterior and the prior over
all weights we sum the KL per weight row in each weight matrix. The term is then
divided by the number of training points in the objective (§3.2.3) to obtain the dropout
regulariser in the form of eq. (3.9):

1
N

KL(q(W)||p(W)) ∝ l2(1− p)
2N ||M||2 − K

N
H(p)

with K the input dimensionality of the layer and N the number of data points. This
regularisation term depends on the dropout probability p alone, which means that the
term is constant w.r.t. model weights (thus omitted when the dropout probability is
not optimised, but crucial when it is optimised). The entropy of the Bernoulli random
variable with probability p pushes the dropout probability towards 0.5—the highest it
can attain. The scaling of the regularisation term means that large models will push the
dropout probability towards 0.5 much more than smaller models, but as the amount of
data increases the dropout probability will be pushed towards 0.

An issue arises when gradient methods are used for the dropout probability optimi-
sation. The Bernoulli distribution which is used in dropout NNs in the expected log

130 Deep Insights

likelihood term (first term in equation (3.7)):

L̂MC(θ) = −N
M

∑
i∈S

log p(yi|f g(θ,ϵ)(xi)) + KL(qθ(ω)||p(ω))

depends on p. The Bernoulli distribution is non-differentiable with respect to its parameter
p, which means that the pathwise derivative estimator cannot be used with it (forcing
us to use the high variance score function estimator). Instead we use the Concrete
distribution relaxation [Jang et al., 2016; Maddison et al., 2016] to approximate the
Bernoulli distribution when generating the dropout masks. Instead of sampling our
dropout masks from the Bernoulli distribution (generating zeros and ones) we sample
realisations from the Concrete distribution with temperature t = 1/10 which results
in masks with values in the interval [0, 1]. This distribution concentrates most mass
on the boundaries of the interval 0 and 1. In fact, for the one dimensional case here
with the Bernoulli distribution, the Concrete distribution relaxation z̃ of the Bernoulli
random variable z reduces to a simple sigmoid distribution which has a convenient
parametrisation:

z̃ = sigmoid
(

1
t
·
(

log p− log(1− p) + log u− log(1− u)
))

with uniform u ∼ Unif(0, 1).
These tools allow us to find both epistemic and aleatoric uncertainties with ease. To

assess how different uncertainties behave with different amounts of data, we optimise
both the dropout probability p as well as the (per point) model precision τ . We generated
synthetic data from the function y = 2x + 8 + ϵ with ϵ ∼ N (0, 1) (i.e. corrupting the
observations with noise with a fixed standard deviation 1), creating datasets increasing
in size ranging from 10 data points (example in figure 6.9) up to 10, 000 data points
(example in figure 6.10). We used models with three hidden layers of size 1024 and relu
non-linearities, and repeated each experiment three times, averaging the experiments’
results. Figure 6.11 shows the epistemic uncertainty (in standard deviation) decreasing
as the amount of data increases. This uncertainty was computed by generating multiple
function draws and evaluating the functions over a test set generated from the same
data distribution. Figure 6.12 shows that the model obtains an increasingly improved
estimate to the model precision (aleatoric uncertainty) as more data is given. Finally,
figure 6.13 shows the predictive uncertainty obtained by combining the variances of both
plots above. This uncertainty seems to converge towards a constant trend.

6.7 Epistemic, Aleatoric, and Predictive uncertainties 131

Lastly, the optimised dropout probabilities corresponding to the various dataset sizes
are given in figure 6.14. As can be seen, the optimal dropout probability in each layer
decreases as more data is observed, starting from the smallest dataset with near 0.5
probabilities in all layers but the first (input layer, #1), and converging to values ranging
between 0.1 and 0.2 when 10,000 data points are given to the model. Further, the
dropout probability of the first layer converges to a near-zero value for all data sizes,
supporting our observations in §4.2.1. This empirical observation further confirms with
our theoretical analysis in section 6.3.

132 Deep Insights

1 0 1

6

8

10

12

Fig. 6.9 Example dataset with 10 data
points.

Fig. 6.10 Example dataset with 10, 000
data points.

101 102 103 104

Number of data points (N)

0.6

0.7

0.8

0.9

1.0

1.1

Ep
ist

em
ic

un
ce

rta
in

ty
 (s

td
)

Fig. 6.11 Epistemic uncertainty (in std)
as the number of data points increases.

101 102 103 104

Number of data points (N)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Al
ea

to
ric

 u
nc

er
ta

in
ty

 (s
td

)

Fig. 6.12 Aleatoric uncertainty (in std)
as the number of data points increases.

101 102 103 104

Number of data points (N)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pr
ed

ict
iv

e
un

ce
rta

in
ty

 (s
td

)

Fig. 6.13 Predictive uncertainty (in std)
as the number of data points increases.

101 102 103 104

Number of data points (N)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Dr
op

ou
t p

ro
ba

bi
lit

y

Layer #1
Layer #2
Layer #3
Layer #4

Fig. 6.14 Optimised dropout probability
values (per layer) as the number of data
points increases.

Chapter 7

Future Research

Bayesian modelling and deep learning have traditionally been regarded as fairly antipodal
to each other: one pushed forward by theoreticians, while the other by practitioners.
Bayesian modelling is based on the vast theory of Bayesian statistics, in which we aim
to capture the processes assumed to have generated our data. This often results in
interpretable models that can explain the data well, at least when we can perform
inference in the models. Deep learning on the other hand is mostly driven by pragmatic
developments of tractable models, and has fundamentally affected the way machine learn-
ing is used in real-world applications. But unlike Bayesian modelling, deep learning lacks
a solid mathematical formalism, and many developments are very weakly mathematically
justified. Deep learning’s success is often explained by various metaphors which do not
shed much light on the reasons models are built in certain ways.

In dropout for example the network’s units are multiplied by Bernoulli random
variables. This slows down training but circumvents over-fitting and improves model
accuracy considerably. Such techniques have had tremendous success in deep learning
and are used in almost all modern models [Srivastava et al., 2014]. But why do these
work so well? In [Srivastava et al., 2014] dropout is suggested to work well following a
sexual reproduction metaphor. But then why would multiplying a network’s units by a
Gaussian distribution N (1, 1) instead of Bernoulli random variables result in the same
model performance?

Perhaps surprisingly, we gave a possible answer to the questions above using Bayesian
statistics and variational inference. We have shown that dropout in deep NNs can be
cast as a variational approximation in Bayesian neural networks. The implications of
this result are far-reaching. Since many modern deep learning tools make use of some
form of stochastic regularisation, this means that many modern deep learning systems
perform approximate Bayesian inference, capturing the stochastic processes underlying

134 Future Research

the observed data. This link opens the vast literature of Bayesian statistics to deep
learning, explaining many deep learning phenomena with a mathematically rigorous
theory, and extending existing tools in a principled way. We can use variational inference
in deep learning, combining deep learning tools and Bayesian models in a compositional
fashion. We can even assess model uncertainty in deep learning and build interpretable
deep learning tools.

There are many open leads for future research:
Deep learning can be extended in a principled way. Understanding the

underlying principles leading to good models allows us to improve upon them. For
example, alternative approximating distributions to the ones discussed above would
translate to new stochastic regularisation techniques. These can range from simple
distributions to complex ones. Model compression can be achieved by forcing weights to
take values from a discrete distribution over a continuous base measure of “hyper-weights”
for example.

Deep learning uncertainty. Initial research above assessed the performance of
dropout in terms of the predictive mean and variance. Even though the Bernoulli
approximating distribution is a crude one, the model outperformed its equivalents in
the field. But different non-linearity–regularisation combinations correspond to different
Gaussian process covariance functions, and these have different characteristics in terms
of the predictive uncertainty. Understanding the behaviour of different model structures
and the resulting predictive mean and variance are of crucial importance to practitioners
making use of dropout’s uncertainty.

Deep learning can make use of Bayesian models. A much more interesting
application of the theory above is the combination of techniques from the two fields:
deep learning and Bayesian modelling. Bayesian models, often used in data analysis,
strive to describe data in an interpretable way—a property that most deep learning
models lack. Using the theory above we can combine deep learning with interpretable
Bayesian models and build hybrid models that draw from the best that both worlds have
to offer. For example, in the fields of computational linguistics and language processing
we often look for models that can explain the linguistic phenomena underlying our
data. Current deep learning methods work well modelling the data and have improved
considerably on previous research—partly due to their tractability and ability to go
beyond the bag-of-words assumptions. But the models are extremely opaque and have
not been able to explain the linguistic principles they use. Interleaving Bayesian models
with deep ones we could answer many of these open problems.

135

Bayesian models can make use of deep learning. The field of Bayesian mod-
elling can benefit immensely from the simple data representations obtained from deep
learning models. Sequence data, image data, high dimensional data—these are structures
that traditional Bayesian techniques find difficult to handle. Many unjustified simplify-
ing assumptions are often used with these data structures: bag-of-words assumptions,
reducing the dimensionality of the data, etc. By interpreting deep learning models as
Bayesian ones, we can combine these easily and in a principled way. Further, models can
be built in a compositional fashion by propagating derivatives, forming small building
blocks that can be assembled together by non-experts.

Unsupervised deep learning. One last problem discussed here is the design of
unsupervised models. Bayesian statistics lends itself naturally to data analysis and
unsupervised data modelling. With the Bayesian interpretation of modern deep learning
new horizons open and new tools become available to solve this laborious task.

F • f

It is my hope that the framework presented in this thesis will lay the foundations of a
new and exciting field of study, combining modern deep learning and Bayesian techniques
in a principled and practical way.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mane. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

C Angermueller and O Stegle. Multi-task deep neural network to predict CpG methylation
profiles from low-coverage sequencing data. In NIPS MLCB workshop, 2015.

O Anjos, C Iglesias, F Peres, J Martínez, Á García, and J Taboada. Neural networks
applied to discriminate botanical origin of honeys. Food chemistry, 175:128–136, 2015.

Christopher Atkeson and Juan Santamaria. A comparison of direct and model-based
reinforcement learning. In In International Conference on Robotics and Automation.
Citeseer, 1997.

Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In
Advances in Neural Information Processing Systems, pages 3084–3092, 2013.

P Baldi, P Sadowski, and D Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5, 2014.

Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural
Information Processing Systems, pages 2814–2822, 2013.

David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks.
NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 168:215–238, 1998.

Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan Chen, Sebastian Urban,
and Patrick van der Smagt. On fast dropout and its applicability to recurrent networks.
arXiv preprint arXiv:1311.0701, 2013.

http://tensorflow.org/

138 References

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. Large-scale
kernel machines, 34(5), 2007.

S Bergmann, S Stelzer, and S Strassburger. On the use of artificial neural networks in
simulation-based manufacturing control. Journal of Simulation, 8(1):76–90, 2014.

James Bergstra et al. Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference (SciPy), June 2010. Oral
Presentation.

Chris M Bishop. Training with noise is equivalent to Tikhonov regularization. Neural
computation, 7(1):108–116, 1995.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387310738.

Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour. Where to apply
dropout in recurrent neural networks for handwriting recognition? In ICDAR. IEEE,
2015.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In ICML, 2015.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof
Monz, Matteo Negri, Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael
Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. Findings of the 2016 conference on machine translation. In Proceedings of
the First Conference on Machine Translation, pages 131–198, Berlin, Germany, August
2016. Association for Computational Linguistics.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Thang D Bui, Daniel Hernández-Lobato, Yingzhen Li, José Miguel Hernández-Lobato,
and Richard E Turner. Deep Gaussian processes for regression using approximate
expectation propagation. ICML, 2016.

Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. Dropout distillation. In
Proceedings of The 33rd International Conference on Machine Learning, pages 99–107,
2016.

Theophilos Cacoullos. On upper and lower bounds for the variance of a function of a
random variable. The Annals of Probability, pages 799–809, 1982.

Hugh Chipman. Bayesian variable selection with related predictors.

Kyunghyun Cho et al. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In EMNLP, Doha, Qatar, October 2014. ACL.

References 139

François Chollet. Keras, 2015. URL https://github.com/fchollet/keras. GitHub reposi-
tory.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. Journal of artificial intelligence research, 1996.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

Marc Deisenroth and Carl Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on machine
learning (ICML-11), pages 465–472, 2011.

Marc Deisenroth, Dieter Fox, and Carl Rasmussen. Gaussian processes for data-efficient
learning in robotics and control. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 37(2):408–423, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

John Denker and Yann LeCun. Transforming neural-net output levels to probability
distributions. In Advances in Neural Information Processing Systems 3. Citeseer, 1991.

John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, Richard Howard, Lawrence
Jackel, and John Hopfield. Large automatic learning, rule extraction, and generalization.
Complex systems, 1(5):877–922, 1987.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Learning and policy search in stochastic dynamical systems with Bayesian neural
networks. arXiv preprint arXiv:1605.07127, 2016.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid
Monte Carlo. Physics letters B, 195(2):216–222, 1987.

Linton G Freeman. Elementary applied statistics, 1965.

Michael C. Fu. Chapter 19 gradient estimation. In Shane G. Henderson and Barry L.
Nelson, editors, Simulation, volume 13 of Handbooks in Operations Research and
Management Science, pages 575 – 616. Elsevier, 2006.

Antonino Furnari, Giovanni Maria Farinella, and Sebastiano Battiato. Segmenting
egocentric videos to highlight personal locations of interest. 2016.

Yarin Gal. A theoretically grounded application of dropout in recurrent neural networks.
arXiv:1512.05287, 2015.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli
approximate variational inference. arXiv:1506.02158, 2015a.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Insights and
applications. In Deep Learning Workshop, ICML, 2015b.

https://github.com/fchollet/keras

140 References

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. arXiv:1506.02142, 2015c.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Appendix.
arXiv:1506.02157, 2015d.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli
approximate variational inference. ICLR workshop track, 2016a.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. NIPS, 2016b.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. ICML, 2016c.

Yarin Gal and Richard Turner. Improving the Gaussian process sparse spectrum approx-
imation by representing uncertainty in frequency inputs. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), 2015.

Yarin Gal, Mark van der Wilk, and Carl Rasmussen. Distributed variational inference
in sparse Gaussian process regression and latent variable models. In Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 3257–3265. Curran Associates, Inc.,
2014.

Yarin Gal, Rowan McAllister, and Carl E. Rasmussen. Improving PILCO with Bayesian
neural network dynamics models. Data-Efficient Machine Learning workshop, ICML,
April, 2016.

Carl Friedrich Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Ambientium. 1809.

Edward I George and Robert E McCulloch. Variable selection via gibbs sampling. Journal
of the American Statistical Association, 88(423):881–889, 1993.

Edward I George and Robert E McCulloch. Approaches for Bayesian variable selection.
Statistica sinica, pages 339–373, 1997.

J.D Gergonne. Application de la méthode des moindre quarrés a l’interpolation des
suites. Annales des Math Pures et Appl, 6:242–252, 1815.

Z Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521
(7553), 2015.

Z. Ghahramani and H. Attias. Online variational Bayesian learning. Slides from talk
presented at NIPS 2000 Workshop on Online learning, 2000.

Ryan J Giordano, Tamara Broderick, and Michael I Jordan. Linear response methods
for accurate covariance estimates from mean field variational Bayes. In Advances in
Neural Information Processing Systems, pages 1441–1449, 2015.

Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer
Science & Business Media, 2013.

References 141

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communi-
cations of the ACM, 33(10):75–84, 1990.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in preparation
for MIT Press, 2016. URL http://www.deeplearningbook.org.

Ian J Goodfellow, Aaron Courville, and Yoshua Bengio. Spike-and-slab sparse coding for
unsupervised feature discovery. arXiv preprint arXiv:1201.3382, 2012.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In ICASSP. IEEE, 2013.

Alex Graves. Practical variational inference for neural networks. In NIPS, 2011.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep
Q-learning with model-based acceleration. ICML, 2016.

Jose Miguel Hernandez-Lobato and Ryan Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In ICML, 2015.

José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, and
Richard E Turner. Black-box alpha divergence minimization. In Proceedings of The
33rd International Conference on Machine Learning, pages 1511–1520, 2016.

S Herzog and D Ostwald. Experimental biology: Sometimes Bayesian statistics are better.
Nature, 494, 2013.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In COLT, pages 5–13. ACM, 1993.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8), 1997.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. JMLR, 2013.

Alex Holub, Pietro Perona, and Michael C Burl. Entropy-based active learning for
object recognition. In Computer Vision and Pattern Recognition Workshops, 2008.
CVPRW’08. IEEE Computer Society Conference on, pages 1–8. IEEE, 2008.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active
learning for classification and preference learning. arXiv preprint arXiv:1112.5745,
2011.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks
with stochastic depth. arXiv preprint arXiv:1603.09382, 2016.

http://www.deeplearningbook.org

142 References

Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and
Bayesian strategies. Annals of Statistics, pages 730–773, 2005.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-
softmax. In Bayesian Deep Learning workshop, NIPS, 2016.

Chuanyi Ji, Robert R Snapp, and Demetri Psaltis. Generalizing smoothness constraints
from discrete samples. Neural Computation, 2(2):188–197, 1990.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):
183–233, 1999.

Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning
for image classification. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 2372–2379. IEEE, 2009.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In
EMNLP, 2013.

Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. Semantic segmentation
of small objects and modeling of uncertainty in urban remote sensing images using
deep convolutional neural networks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2016.

A Karpathy et al. A Javascript implementation of neural networks. https://github.com/
karpathy/convnetjs, 2014–2015.

C.D. Keeling, T.P. Whorf, and the Carbon Dioxide Research Group. Atmospheric
CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna
Loa Observatory, Hawaii. Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA 92093-0444, June 2004.

Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera
relocalization. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 4762–4769. IEEE, 2016.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene understanding.
arXiv preprint arXiv:1511.02680, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

https://github.com/karpathy/convnetjs
https://github.com/karpathy/convnetjs

References 143

Diederik P Kingma and Max Welling. Stochastic gradient VB and the variational
auto-encoder. 2nd International Conference on Learning Representationsm (ICLR),
2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In NIPS. Curran Associates, Inc., 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas,
Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville,
et al. Zoneout: Regularizing RNNs by randomly preserving hidden activations. arXiv
preprint arXiv:1606.01305, 2016.

M Krzywinski and N Altman. Points of significance: Importance of being uncertain.
Nature methods, 10(9), 2013.

Solomon Kullback. Information theory and statistics. John Wiley & Sons, 1959.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

Quoc V Le, Alex J Smola, and Stéphane Canu. Heteroscedastic Gaussian process
regression. In Proceedings of the 22nd international conference on Machine learning,
pages 489–496. ACM, 2005.

J. Lean. Solar irradiance reconstruction. NOAA/NGDC Paleoclimatology Program,
Boulder CO, USA, 2004. IGBP PAGES/World Data Center for Paleoclimatology. Data
Contribution Series 2004-035.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits, 1998.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. arXiv preprint arXiv:1409.5185, 2014.

Adrien Marie Legendre. Nouvelles Methodes pour la Determination des Orbites des
Come’tes. Paris, 1805.

Nicholas Léonard, Sagar Waghmare, and Yang Wang. RNN: Recurrent library for Torch.
arXiv preprint arXiv:1511.07889, 2015.

144 References

Xin Li and Yuhong Guo. Adaptive active learning for image classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 859–866,
2013.

Yingzhen Li and Richard E Turner. Variational inference with r\’enyi divergence. arXiv
preprint arXiv:1602.02311, 2016.

Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

O Linda, T Vollmer, and M Manic. Neural network based intrusion detection system for
critical infrastructures. In Neural Networks, 2009. IJCNN 2009. International Joint
Conference on. IEEE, 2009.

Christos Louizos. Smart regularization of deep architectures, 2015.

David MacKay. Bayesian methods for adaptive models. PhD thesis, California Institute
of Technology, 1992a.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural
Computation, 4(3):448–472, 1992b.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete distribution:
A continuous relaxation of discrete random variables. In Bayesian Deep Learning
workshop, NIPS, 2016.

David Madigan and Adrian E Raftery. Model selection and accounting for model
uncertainty in graphical models using Occam’s window. Journal of the American
Statistical Association, 89(428):1535–1546, 1994.

Shin-ichi Maeda. A Bayesian encourages dropout. arXiv preprint arXiv:1412.7003, 2014.

Andrew McHutchon. Nonlinear modelling and control using Gaussian processes. PhD
thesis, University of Cambridge, 2014.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Eleventh Annual Conference of
the International Speech Communication Association, 2010.

Tom Minka. Divergence measures and message passing. Technical report, Microsoft
Research, 2005.

Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 83(404):1023–1032, 1988.

V Mnih, K Kavukcuoglu, D Silver, A A Rusu, J Veness, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

References 145

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Taesup Moon, Heeyoul Choi, Hoshik Lee, and Inchul Song. RnnDrop: A Novel Dropout
for RNNs in ASR. In ASRU Workshop, 2015.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of
Toronto, 1995.

Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2:113–162, 2011.

Isaac Newton. Philosophiae naturalis principia mathematica, volume Adv.b.39.1. Jussu
Societatis Regiæ ac Typis Joseph Streater, Londini, 1687. (in Latin).

NHTSA. PE 16-007. Technical report, U.S. Department of Transportation, National
Highway Traffic Safety Administration, Jan 2017. Tesla Crash Preliminary Evaluation
Report.

Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft weight-
sharing. Neural computation, 4(4):473–493, 1992.

Regina Nuzzo. Statistical errors. Nature, 506(13):150–152, 2014.

Manfred Opper and Cédric Archambeau. The variational Gaussian approximation
revisited. Neural Computation, 21(3):786–792, 2009.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped DQN. In Advances In Neural Information Processing Systems,
pages 4026–4034, 2016.

Marius Pachitariu and Maneesh Sahani. Regularization and nonlinearities for neural
language models: when are they needed? arXiv preprint arXiv:1301.5650, 2013.

John Paisley, David Blei, and Michael Jordan. Variational Bayesian inference with
stochastic search. ICML, 2012.

Vu Pham, Theodore Bluche, Christopher Kermorvant, and Jerome Louradour. Dropout
improves recurrent neural networks for handwriting recognition. In ICFHR. IEEE,
2014.

Ofir Press and Lior Wolf. Using the output embedding to improve language models.
arXiv preprint arXiv:1608.05859, 2016.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2006. ISBN
026218253X.

Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:
Contributions to the Theory of Statistics. The Regents of the University of California,
1961.

146 References

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. In ICML, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

Donald B Rubin. The Bayesian bootstrap. The annals of statistics, 9(1):130–134, 1981.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, DTIC Document, 1985.

Masa-Aki Sato. Online model selection based on the variational Bayes. Neural Computa-
tion, 13(7):1649–1681, 2001.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. In Advances in Neural Information Processing
Systems, pages 3528–3536, 2015.

Hilary L Seal. Studies in the history of probability and statistics. XXIX – The discovery
of the method of least squares. Biometrika, 54(1-2):1–24, 1967.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine transla-
tion systems for wmt 16. In Proceedings of the First Conference on Machine Translation,
pages 371–376, Berlin, Germany, August 2016. Association for Computational Linguis-
tics.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52
(55-66):11, 2010.

Claude Elwood Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble of
deep architectures. NIPS, 2016.

Kirstine Smith. On the standard deviations of adjusted and interpolated values of an
observed polynomial function and its constants and the guidance they give towards a
proper choice of the distribution of the observations. Biometrika, 12:1–85, 1918.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs.
In Advances in neural information processing systems, pages 1257–1264, 2005.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems,
pages 2951–2959, 2012.

Jasper Snoek et al. Spearmint. https://github.com/JasperSnoek/spearmint, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR,
2014.

https://github.com/JasperSnoek/spearmint

References 147

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in rein-
forcement learning with deep predictive models. arXiv preprint arXiv:1507.00814,
2015.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for
language modeling. In INTERSPEECH, 2012.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with
neural networks. In NIPS, 2014.

Richard Sutton and Andrew Barto. Reinforcement learning: An introduction. MIT press,
1998.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. arXiv preprint arXiv:1409.4842, 2014.

William R Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, pages 285–294, 1933.

Naftali Tishby, Esther Levin, and Sara A Solla. Consistent inference of probabilities in
layered networks: Predictions and generalizations. In Neural Networks, 1989. IJCNN.,
International Joint Conference on, pages 403–409. IEEE, 1989.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for non-
conjugate inference. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1971–1979, 2014.

Michalis K Titsias and Miguel Lázaro-Gredilla. Spike and slab variational inference for
multi-task and multiple kernel learning. In Advances in neural information processing
systems, pages 2339–2347, 2011.

D Trafimow and M Marks. Editorial. Basic and Applied Social Psychology, 37(1), 2015.

R. E. Turner and M. Sahani. Two problems with variational expectation maximisation
for time-series models. In Bayesian Time series models, chapter 5, pages 109–130.
Cambridge University Press, 2011.

Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization.
In Advances in Neural Information Processing Systems, pages 351–359, 2013.

L Wan, M Zeiler, S Zhang, Y LeCun, and R Fergus. Regularization of neural networks
using dropconnect. In ICML-13, 2013.

S Wang and C Manning. Fast dropout training. ICML, 2013.

Andreas S Weigend, David E Rumelhart, and Bernardo A Huberman. Generalization by
weight-elimination with application to forecasting. In Advances in Neural Information
Processing Systems, pages 875–882, 1991.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 681–688, 2011.

148 References

Paul J Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural Networks, 1(4):339–356, 1988.

Christopher KI Williams. Computing with infinite networks. Advances in neural infor-
mation processing systems, pages 295–301, 1997.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

John Winn and Christopher M Bishop. Variational message passing. Journal of Machine
Learning Research, 6(Apr):661–694, 2005.

Xiao Yang, Roland Kwitt, and Marc Niethammer. Fast predictive image registration.
arXiv preprint arXiv:1607.02504, 2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regular-
ization. arXiv preprint arXiv:1409.2329, 2014.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and
semi-supervised learning using Gaussian fields and harmonic functions. In ICML 2003
workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and
Data Mining, 2003.

Appendix A

KL condition

We show that in the dropout case, the KL condition (eq. (3.12)) holds for a large enough
number of hidden units when we specify the model prior to be a product of uncorrelated
Gaussian distributions over each weight1:

p(ω) =
L∏
i=1

p(Wi) =
L∏
i=1
MN (Wi; 0, I/l2i , I).

We set the approximating distribution to be qθ(ω) =
∫
qθ(ω|ϵ)p(ϵ)dϵ where qθ(ω|ϵ) =

δ(ω − g(θ, ϵ)), with g(θ, ϵ) = {diag(ϵ1)M1, diag(ϵ2)M2,b}, θ = {M1,M2,b}, and p(ϵi)
defined as a product of Bernoulli distributions (ϵi is a vector of draws from the Bernoulli
distribution). Since we assumed qθ(ω) to factorise over the layers and over the rows of
each weight matrix, we have

KL(qθ(ω)||p(ω)) =
∑
i,k

KL(qθi,k
(wi,k)||p(wi,k))

with i summing over the layers and k summing over the rows in each layers’ weight
matrix.

We approximate each qθi,k
(wi,k|ϵ) = δ(wi,k − g(θi,k, ϵi,k)) as a narrow Gaussian with

a small standard deviation Σ = σ2I. This means that marginally qθi,k
(wi,k) is a mixture

of two Gaussians with small standard deviations, and one component fixed at zero. For
large enough models, the KL condition follows from this general proposition:

Proposition 4. Fix K,L ∈ N, a probability vector p = (p1, ..., pL), and Σi ∈ RK×K

diagonal positive-definite for i = 1, ..., L, with the elements of each Σi not dependent on
1Here MN (0, I, I) is the standard matrix Gaussian distribution.

150 KL condition

K. Let

q(x) =
L∑
i=1

piN (x; µi,Σi)

be a mixture of Gaussians with L components and µi ∈ RK, let p(x) = N (0, IK), and
further assume that µi − µj ∼ N (0, I) for all i, j.

The KL divergence between q(x) and p(x) can be approximated as:

KL(q(x)||p(x)) ≈
L∑
i=1

pi
2
(
µT
i µi + tr(Σi)−K(1 + log 2π)− log |Σi|

)
−H(p) (A.1)

with H(p) := −∑L
i=1 pi log pi for large enough K.

Before we prove the proposition, we observe that a direct result from it is the following:

Corollary 2. The KL condition (eq. (3.12)) holds for a large enough number of hidden
units when we specify the model prior to be

p(ω) =
L∏
i=1

p(Wi) =
L∏
i=1
MN (Wi; 0, I/l2i , I)

and the approximating distribution to be a dropout variational distribution.

Proof.

∂

∂mi,k

KL(qθ(ω)||p(ω)) = ∂

∂mi,k

KL(qθi,k
(wi,k)||p(wi,k))

≈ (1− pi)l2i
2

∂

∂mi,k

mT
i,kmi,k

= ∂

∂mi,k

Nτ(λ1||M1||2 + λ2||M2||2 + λ3||b||2)

for λi = (1−pi)l2i
2Nτ .

Next we prove proposition 4.

Proof. We have

KL(q(x)||p(x)) =
∫
q(x) log q(x)

p(x)dx

=
∫
q(x) log q(x)dx−

∫
q(x) log p(x)dx

151

= −H(q(x))−
∫
q(x) log p(x)dx (A.2)

—a sum of the entropy of q(x) (H(q(x))) and the expected log probability of x. The
expected log probability can be evaluated analytically, but the entropy term has to be
approximated.

We begin by approximating the entropy term. We write

H(q(x)) = −
L∑
i=1

pi

∫
N (x; µi,Σi) log q(x)dx

= −
L∑
i=1

pi

∫
N (ϵi; 0, I) log q(µi + Liϵi)dϵi

using a change of variables x = µi + Liϵi with LiLT
i = Σi and ϵi ∼ N (0, I).

Now, the term inside the logarithm can be written as

q(µi + Liϵi) =
L∑
j=1

piN (µi + Liϵi; µj,Σj)

=
L∑
j=1

pi(2π)−K/2|Σj|−1/2 exp
{
− 1

2 ||µj − µi − Liϵi||2Σj

}

where || · ||Σ is the Mahalanobis distance. Since µi,µj are assumed to be normally
distributed, the quantity µj−µi−Liϵi is also normally distributed2. Since the expectation
of a generalised χ2 distribution with K degrees of freedom increases with K, we have that3

K ≫ 0 implies that ||µj − µi − Liϵi||2Σj
≫ 0 for i ̸= j (since the elements of Σj do not

depend on K). Finally, we have for i = j that ||µi−µi−Liϵi||2Σi
= ϵTi LT

i L−T
i L−1

i Liϵi =
ϵTi ϵi. Therefore the last equation can be approximated as

q(µi + Liϵi) ≈ pi(2π)−K/2|Σi|−1/2 exp
{
− 1

2ϵTi ϵi
}
.

I.e., in high dimensions the mixture components will not overlap. This gives us

H(q(x)) ≈ −
L∑
i=1

pi

∫
N (ϵi; 0, I) log

(
pi(2π)−K/2|Σi|−1/2 exp

{
− 1

2ϵTi ϵi
})

dϵi

=
L∑
i=1

pi
2

(
log |Σi|+

∫
N (ϵi; 0, I)ϵTi ϵidϵi +K log 2π

)
+H(p)

2With mean zero and variance Var(µj − µi − Liϵi) = 2I + Σi.
3To be exact, for diagonal matrices Λ, ∆ and v ∼ N (0, Λ), we have E[||v||∆] = E[vT ∆−1v] =∑K

k=1 E[∆−1
k v2

k] =
∑K

k=1 ∆−1
k Λk.

152 KL condition

where H(p) := −∑L
i=1 pi log pi. Since ϵTi ϵi distributes according to a χ2 distribution, its

expectation is K, and the entropy can be approximated as

H(q(x)) ≈
L∑
i=1

pi
2
(

log |Σi|+K(1 + log 2π)
)

+H(p). (A.3)

Next, evaluating the expected log probability term of the KL divergence we get

∫
q(x) log p(x)dx =

L∑
i=1

pi

∫
N (x; µi,Σi) log p(x)dx

for p(x) = N (0, IK) it is easy to show that

∫
q(x) log p(x)dx = −1

2

L∑
i=1

pi
(
µT
i µi + tr(Σi)

)
. (A.4)

Finally, combining eq. (A.3) and eq. (A.4) as in (A.2) we get:

KL(q(x)||p(x)) ≈
L∑
i=1

pi
2
(
µT
i µi + tr(Σi)−K(1 + log 2π)− log |Σi|

)
−H(p),

as required to show.

Appendix B

Figures

154 Figures

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2

1

0

1

2

3 1e3

(a) l = 0.1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3 1e1

(b) l = 1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

(c) l = 5, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3 1e4

(d) l = 0.1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3 1e2

(e) l = 1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.01e1

(f) l = 5, K = 4096

(g) ReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.51e2

(h) l = 0.1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.01e1

(i) l = 1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

(j) l = 5, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.51e3

(k) l = 0.1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.51e2

(l) l = 1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.51e1

(m) l = 5, K = 4096

(n) TanH

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.51e2

(o) l = 0.1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.51e1

(p) l = 1, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(q) l = 5, K = 32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.01e3

(r) l = 0.1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8 1e2

(s) l = 1, K = 4096

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.01e1

(t) l = 5, K = 4096

(u) Sigmoid

Fig. B.1 Draws from Bayesian neural network prior with L = 1 hidden layers. Here l is
the prior length-scale and K is the number of units.

155

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(b) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) L = 4, K = 1024

(e) ReLU

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(f) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(g) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(h) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(i) L = 4, K = 1024

(j) TanH

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(k) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(l) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(m) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(n) L = 4, K = 1024

(o) Sigmoid

Fig. B.2 Draws from a Bayesian neural network posterior with dropout approximating
distribution; shown are predictive mean (thick blue line), predictive uncertainty (shaded
area, showing 2 standard deviations), and draws from the posterior (thin black lines).
Scattered are training points. Best viewed on a computer screen. Here L is the number
of network hidden layers and K is the number of units in each hidden layer.

156 Figures

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(b) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) L = 4, K = 1024

(e) ReLU

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(f) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(g) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(h) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(i) L = 4, K = 1024

(j) TanH

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(k) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(l) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(m) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(n) L = 4, K = 1024

(o) Sigmoid

Fig. B.3 Draws from a Bayesian neural network posterior with multiplicative Gaussian
noise (MGN) approximating distribution; shown are predictive mean (thick blue
line), predictive uncertainty (shaded area, showing 2 standard deviations), and draws
from the posterior (thin black lines). Scattered are training points. Best viewed on a
computer screen. Here L is the number of network hidden layers and K is the number of
units in each hidden layer.

157

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(b) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) L = 4, K = 1024

(e) ReLU

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(f) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(g) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(h) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(i) L = 4, K = 1024

(j) TanH

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(k) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(l) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(m) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(n) L = 4, K = 1024

(o) Sigmoid

Fig. B.4 Draws from a Bayesian neural network posterior with a factorised Gaussian
approximating distribution; shown are predictive mean (thick blue line), predictive
uncertainty (shaded area, showing 2 standard deviations), and draws from the posterior
(thin black lines). Scattered are training points. Best viewed on a computer screen. Here
L is the number of network hidden layers and K is the number of units in each hidden
layer.

158 Figures

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(a) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(b) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(d) L = 4, K = 1024

(e) ReLU

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(f) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(g) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(h) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(i) L = 4, K = 1024

(j) TanH

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(k) L = 1, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(l) L = 1, K = 1024

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(m) L = 4, K = 128

2 1 0 1 2 3 4
3

2

1

0

1

2

3

(n) L = 4, K = 1024

(o) Sigmoid

Fig. B.5 Draws from a Bayesian neural network posterior with a mixture of Gaussians
(MoG, row-wise) approximating distribution; shown are predictive mean (thick
blue line), predictive uncertainty (shaded area, showing 2 standard deviations), and
draws from the posterior (thin black lines). Scattered in are training points. Best viewed
on a computer screen. Here L is the number of network hidden layers and K is the
number of units in each hidden layer.

Appendix C

Spike and slab prior KL

We can evaluate the KL divergence between the approximating distribution of section
§6.6.5 and the spike and slab prior analytically:

KL(q(ω)||p(ω)) =
∑
ik

KL(q(wik)||p(wik))

with

KL(q(wik)||p(wik)) =
∫
q(wik) log q(wik)

p(wik)
dwik

=
∫
q(wik) log N (wik; mik, σ

2
ikI)p(wik)/Zq

p(wik)
dwik

=
∫
q(wik) logN (wik; mik, σ

2
ikI)dwik − logZq

=
∫ (

α

α + 1δ0 + 1
α + 1N

(
wik;

mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

))
· logN (wik; mik, σ

2
ikI)dwik − logZq

= α

α + 1 logN (0; mik, σ
2
ikI) + 1

α + 1

∫
N
(

wik;
mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

)
· logN (wik; mik, σ

2
ikI)dwik − logZq

Note that the KL is properly defined since for every measurable set q(·) has mass on,
p(·) has mass on as well (including the singleton set {0}!).

We evaluate the last integral as follows:

∫
N
(

wik;
mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

)
logN (wik; mik, σ

2
ikI)dwik

160 Spike and slab prior KL

=
∫
N
(

wik;
mik

1 + l2σ2
ik

,
σ2
ik

1 + l2σ2
ik

I

)(
− 1

2σ2
ik

(wT
ikwik − 2wT

ikmik + mT
ikmik)

− K

2 log(2πσ2
ik)
)

dwik

= − l4σ2
ik

(1 + l2σ2
ik)2

mT
ikmik

2 − K

2(1 + l2σ2
ik)
− K

2 log(2πσ2
ik)

leading to an analytical solution. Note that Zq depends on the variational parameters,
and thus was not omitted. This derivation results in an L2 like regularisation, depending
on the magnitude of m, but through α as well.

	Table of contents
	Nomenclature
	1 Introduction: The Importance of Knowing What We Don't Know
	1.1 Deep learning
	1.2 Model uncertainty
	1.3 Model uncertainty and AI safety
	1.3.1 Physician diagnosing a patient
	1.3.2 Autonomous vehicles
	1.3.3 Critical systems and high frequency trading

	1.4 Applications of model uncertainty
	1.4.1 Active learning
	1.4.2 Efficient exploration in deep reinforcement learning

	1.5 Model uncertainty in deep learning
	1.6 Thesis structure

	2 The Language of Uncertainty
	2.1 Bayesian modelling
	2.1.1 Variational inference

	2.2 Bayesian neural networks
	2.2.1 Brief history
	2.2.2 Modern approximate inference
	2.2.3 Challenges

	3 Bayesian Deep Learning
	3.1 Advanced techniques in variational inference
	3.1.1 Monte Carlo estimators in variational inference
	3.1.2 Variance analysis of Monte Carlo estimators in variational inference

	3.2 Practical inference in Bayesian neural networks
	3.2.1 Stochastic regularisation techniques
	3.2.2 Stochastic regularisation techniques as approximate inference
	3.2.3 KL condition

	3.3 Model uncertainty in Bayesian neural networks
	3.3.1 Uncertainty in classification
	3.3.2 Difficulties with the approach

	3.4 Approximate inference in complex models
	3.4.1 Bayesian convolutional neural networks
	3.4.2 Bayesian recurrent neural networks

	4 Uncertainty Quality
	4.1 Effects of model structure on uncertainty
	4.2 Effects of approximate posterior on uncertainty
	4.2.1 Regression
	4.2.2 Classification

	4.3 Quantitative comparison
	4.4 Bayesian convolutional neural networks
	4.4.1 Model over-fitting
	4.4.2 MC dropout in standard convolutional neural networks
	4.4.3 MC estimate convergence

	4.5 Recurrent neural networks
	4.6 Heteroscedastic uncertainty

	5 Applications
	5.1 Recent literature
	5.1.1 Language applications
	5.1.2 Medical diagnostics and bioinformatics
	5.1.3 Computer vision and autonomous driving

	5.2 Active learning with image data
	5.3 Exploration in deep reinforcement learning
	5.4 Data efficiency in deep reinforcement learning
	5.4.1 PILCO
	5.4.2 Deep PILCO
	5.4.3 Experiment

	6 Deep Insights
	6.1 Practical considerations for getting good uncertainty estimates
	6.2 What determines what our uncertainty looks like?
	6.3 Analytical analysis in Bayesian linear regression
	6.4 ELBO correlation with test log likelihood
	6.5 Discrete prior models
	6.6 Dropout as a proxy posterior in spike and slab prior models
	6.6.1 Historical context
	6.6.2 Spike and slab prior models
	6.6.3 Related work
	6.6.4 Approximate inference with free-form variational distributions
	6.6.5 Proxy optimal approximating distribution
	6.6.6 Spike and slab and dropout

	6.7 Epistemic, Aleatoric, and Predictive uncertainties

	7 Future Research
	References
	Appendix A KL condition
	Appendix B Figures
	Appendix C Spike and slab prior KL

