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Why should I care about uncertainty?

I We train a model to recognise dog breeds

I And are given a cat to classify

I What would you want your model to do?

I Similar problems in decision making, physics, life science, etc.1

I For the practitioner: model debugging, specialised models,
critical systems

I We need a way to tell what our model knows and what not.

I Luckily, if you use dropout you already have this information.
You just ignored it so far.

1Complete references at end of slides
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Dropout

I Used in most modern deep learning models

I It circumvents over-fitting

I And improves performance

I Training time: drop units, test time: don’t drop

3 of 22



How do we get uncertainty?
Bayesian modelling:

I Observed inputs X = {xi}Ni=1 and outputs Y = {yi}Ni=1

I Capture distribution believed to have generated outputs

I Look at the first two moments:
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What to this and dropout?

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate...

I Can define simple distribution qθ(·) and approximate
qθ(W) ≈ p

(
W|X,Y

)
.

I Inference with
qθ(W) := M · diag(Bernoulli)

and parameter M

= Dropout training.
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What does this mean

The theory above means that with dropout we:

I capture distribution that generated observed data

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network
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Bayesian evaluation techniques

We fit a distribution...
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Bayesian evaluation techniques

We fit a distribution...
I Use first moment for predictions:

E
(
y∗) ≈ 1

T

T∑
t=1

ŷt

with ŷt ∼ DropoutNetwork(x∗).

I Use second moment for uncertainty (in regression):

Var
(
y∗) ≈ 1

T

T∑
t=1

ŷT
t ŷt − E(y∗)TE(y∗) + τ−1I

with ŷt ∼ DropoutNetwork(x∗).
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Bayesian eval. – some code

In more practical terms, given point x :2

I drop units at test time

I repeat 10 times

I and look at mean and sample variance.

I Or in Python:

1 y = []
2 for _ in xrange(10):
3 y.append(model.output(x, dropout=True))
4 y_mean = numpy.mean(y)
5 y_var = numpy.var(y)

2Friendly introduction given in yarin.co/blog
8 of 22
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Using the first moment

CIFAR Test Error (and Std.)

Model Standard Dropout Bayesian technique

NIN 10.43 (Lin et al., 2013) 10.27± 0.05
DSN 9.37 (Lee et al., 2014) 9.32± 0.02

Augmented-DSN 7.95 (Lee et al., 2014) 7.71± 0.09

Table : Bayesian techniques with existing state-of-the-art
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Using the second moment

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

I Normal dropout (weight averaging, 5 layers, ReLU units):

I Same network, Bayesian perspective:
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Online training

[Online demo] 3

3yarin.co/blog
11 of 22
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How good is our uncertainty estimate?
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Applications
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Deep Reinforcement Learning

I We have a “Roomba”4

I Penalised −5 for walking into a wall, +10 reward for collecting
dirt

I Our environment is stochastic and ever changing

I We want a net to learn what actions to do in different situations

4Code based on Karpathy and authors. github.com/karpathy/convnetjs
14 of 22
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Deep Reinforcement Learning

Behavioural policies:
I Epsilon-greedy – take random actions with probability ε and

optimal actions otherwise

I Using uncertainty we can learn faster

I Thompson sampling – draw realisation from current belief
over world, choose action with highest value

I In practice: simulate a stochastic forward pass through the
dropout network and choose action with highest value
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Deep Reinforcement Learning

[Online demo] 5

5yarin.co/blog
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Deep Reinforcement Learning
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Camera pose estimation

I Where was a picture taken? (Kendall and Cipolla, 2015)6

I With Bayesian techniques above: 10–15% improvement on
state-of-the-art

I Uncertainty increases as a test photo diverges from training
distribution

I Test photos with high uncertainty (strong occlusion from
vehicles, pedestrians or other objects)

I Localisation error correlates with uncertainty
6Figures used with author permission
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Image segmentation
I Scene understanding: what’s in a photo and where? (Kendall,

Badrinarayanan, and Cipolla, 2015)7

7Figures used with author permission
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Model confidence in bioinformatics
I Angermueller and Stegle (2015) fit a network to predict DNA

methylation – controls gene regulation

I Look at methylation rate of different embryonic stem cells.
Uncertainty increases in genomic contexts that are hard to
predict (e.g. LMR or H3K27me3)
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What’s next

If you use dropout you already have uncertainty information =
practical deep learning uncertainty.

I Applications: capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

I Tools: weight uncertainty for model debugging?
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What’s next

If you use dropout you already have uncertainty information =
practical deep learning uncertainty.

I Applications: capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

I Tools: weight uncertainty for model debugging?

Work in progress!
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New horizons

Most exciting is work to come:
I Practical uncertainty in deep learning applications

I Principled extensions to deep learning tools

I Hybrid deep learning – Bayesian models

and much, much, more.
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New horizons

Most exciting is work to come:
I Practical uncertainty in deep learning applications

I Principled extensions to deep learning tools

I Hybrid deep learning – Bayesian models

and much, much, more.
Thank you for listening.
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