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» We train a model to recognise dog breeds

» And are given a cat to classify

» What would you want your model to do?

» Similar problems in decision making, physics, life science, etc.

» For the practitioner: model debugging, specialised models,
critical systems

» We need a way to tell what our model knows and what not.

» Luckily, if you use dropout you already have this information.
You just ignored it so far.

"Complete references at end of slides
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» Used in most modern deep learning models
» It circumvents over-fitting

» And improves performance

» Training time: drop units, test time: don’t drop
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Bayesian modelling:
» Observed inputs X = {x;}"¥ , and outputs Y = {y;}",

» Capture distribution believed to have generated outputs

» Look at the first two moments:
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What to this and dropout?

v

Place prior p(W) dist. on weights, making these r.v.s

v

Given dataset X, Y, the r.v. W has a posterior: p(W|X,Y)

Which is difficult to evaluate...

v

\{

Can define simple distribution gy(-) and approximate
(W) ~ p(WIX,Y).

Inference with

v

go(W) := M - diag(Bernoulli)
and parameter M
= Dropout training.
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What does this mean CAMBRIDGE

The theory above means that with dropout we:

» capture distribution that generated observed data

» can combine model with Bayesian techniques in a practical
way...

» have uncertainty estimates in the network

6 of 22
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We fit a distribution...
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E(y*) ~ szt
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with y; ~ DropoutNetwork(x*).
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We fit a distribution...
» Use first moment for predictions:

17
~ TZVI
t=1

with y; ~ DropoutNetwork(x*).

» Use second moment for uncertainty (in regression):
T
Var(y Z (Ve —E(y) Ey*) + 77l

with y; ~ DropoutNetwork(x*).
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In more practical terms, given point x:2

» drop units at test time
» repeat 10 times
» and look at mean and sample variance.

» Or in Python:

y = []
for _ in xrange (10):
y.append (model.output (x, dropout=True))
y_mean = numpy.mean (y)
y_var = numpy.var (y)

a b~ wnn =

2Friendly introduction given in yarin.co/blog
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CIFAR Test Error (and Std.)

Model Standard Dropout Bayesian technique
NIN 10.43 (Lin et al., 2013) 10.27 + 0.05
DSN 9.37 (Lee et al., 2014) 9.32 +0.02
Augmented-DSN  7.95 (Lee et al., 2014) 7.71+0.09

Table : Bayesian techniques with existing state-of-the-art

Gt RN O P D P
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What would be the CO, concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

» Normal dropout (weight averaging, 5 layers, ReLU units):

i

1
L .
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]
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average loss: 0.1617707281779054

[Online demo] 3

3yarin.co/blog
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Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Dataset VI PBP Dropout VI PBP Dropout

Boston Housing 4324029 3.01 £0.18 2.97 £0.85 -2.90£0.07 -2.57 £0.09 -2.46 +£0.25
Concrete Strength 7.19 £0.12 5.67 £0.09 5.23 +0.53  -3.39 £0.02 -3.16 £0.02 -3.04 +0.09
Energy Efficiency 2.65 £0.08 1.80 £0.05 1.66 +£0.19 -2.39 £0.03 -2.04 +0.02 -1.99 +0.09
Kin8nm 0.10 £0.00 0.10 +£0.00 0.10 £0.00  0.90 £0.01 0.90 £0.01 0.95 +0.03
Naval Propulsion 0.01 +0.00 0.01 £0.00 0.01 £0.00  3.73 £0.12 3.73 £0.01 3.80 +0.05
Power Plant 433 +0.04 4.12 +0.03 4.02 +0.18 -2.890 £0.01 -2.84 £0.01 -2.80 +0.05
Protein Structure 4.84 +0.03 4.73 +0.01 4.36 +0.04 -2.99 £0.01 -2.97 £0.00 -2.89 +0.01
‘Wine Quality Red 0.65 £0.01 0.64 £0.01 0.62 +0.04 -0.98 £0.01 -0.97 £0.01 -0.93 +0.06

Yacht Hydrodynamics ~ 6.89 £0.67 1.02 +0.05 1.11 £0.38 -343£0.16 -1.63+0.02 -1.55+0.12
Year Prediction MSD  9.034 £NA 8.879 +£NA 8.849 +NA  -3.622 +NA -3.603 =NA -3.588 +NA

Table 1: Average test performance in RMSE and predictive log likelihood for a popular varia-
tional inference method (VI, Graves [20]), Probabilistic back-propagation (PBP, Herndndez-Lobato
and Adams [27]), and dropout uncertainty (Dropout).
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Deep Reinforcement Learning

» We have a “Roomba™

» Penalised —5 for walking into a wall, +10 reward for collecting
dirt

» Our environment is stochastic and ever changing

» We want a net to learn what actions to do in different situations

]
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4Code based on Karpathy and authors. github.com/karpathy/convnetjs
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Behavioural policies:

» Epsilon-greedy — take random actions with probability ¢ and
optimal actions otherwise
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Behavioural policies:
» Epsilon-greedy — take random actions with probability ¢ and
optimal actions otherwise

» Using uncertainty we can learn faster

» Thompson sampling — draw realisation from current belief
over world, choose action with highest value

» In practice: simulate a stochastic forward pass through the
dropout network and choose action with highest value
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=

Greedy
t _Thompsen
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START STOP GO FAST GO VERY FAST

[Online demo] °

Syarin.co/blog
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» Where was a picture taken? (Kendall and Cipolla, 2015)8

Single RGB
Input Image

from Bayesian

Stochastic Pose Samples N
Convolutional Network

'|6-DOF Camera Pose
with Uncertainty |
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» Where was a picture taken? (Kendall and Cipolla, 2015)8

» With Bayesian techniques above: 10—-15% improvement on
state-of-the-art

f
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®Figures used with author permission
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» Where was a picture taken? (Kendall and Cipolla, 2015)8

» With Bayesian techniques above: 10—-15% improvement on
state-of-the-art

» Uncertainty increases as a test photo diverges from training
distribution
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» Where was a picture taken? (Kendall and Cipolla, 2015)8

v

With Bayesian techniques above: 10-15% improvement on
state-of-the-art

Uncertainty increases as a test photo diverges from training
distribution

v

Test photos with high uncertainty (strong occlusion from
vehicles, pedestrians or other objects)
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» Scene understanding: what’s in a photo and where? (Kendall,
Badrinarayanan, and Cipolla, 2015)”

Input Images

Lo

"Figures used with author permission
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» Scene understanding: what’s in a photo and where? (Kendall,
Badrinarayanan, and Cipolla, 2015)”

Convolutional Encoder-Decoder Stochastic Dropout | >€gmentation

Samples

Model Uncertainty
¥

RGB Image I Conv + Batch Normalisation + RelU
I oropout Il Pooling/Upsampling Softmax

"Figures used with author permission
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» Scene understanding: what’s in a photo and where? (Kendall,
Badrinarayanan, and Cipolla, 2015)”

Bayesian SegNet Segmentation Output

=
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"Figures used with author permission
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» Angermueller and Stegle (2015) fit a network to predict DNA
methylation — controls gene regulation

» Look at methylation rate of different embryonic stem cells.
Uncertainty increases in genomic contexts that are hard to
predict (e.g. LMR or H3K27me3)
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» Angermueller and Stegle (2015) fit a network to predict DNA
methylation — controls gene regulation

» Look at methylation rate of different embryonic stem cells.
Uncertainty increases in genomic contexts that are hard to
predict (e.g. LMR or H3K27me3)

task ~ CSC4_8F + CSC4_8G = CSC4_9F
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If you use dropout you already have uncertainty information =
practical deep learning uncertainty.

Echt dicke Kiste
Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

» Tools: weight uncertainty for model debugging?
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What’s next CAMBRIDGE

If you use dropout you already have uncertainty information =
practical deep learning uncertainty.

» Applications: capture language ambiguity?

Echt dicke Kiste
Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

» Tools: weight uncertainty for model debugging?

Work in progress!
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Most exciting is work to come:
» Practical uncertainty in deep learning applications

» Principled extensions to deep learning tools

» Hybrid deep learning — Bayesian models

and much, much, more.
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Most exciting is work to come:
» Practical uncertainty in deep learning applications

» Principled extensions to deep learning tools

» Hybrid deep learning — Bayesian models

and much, much, more.
Thank you for listening.
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