

What my deep model doesn't know...

Yarin Gal

yg279@cam.ac.uk

Unless specified otherwise, photos are either original work or taken from Wikimedia, under Creative Commons license

We train a model to recognise dog breeds

CAMBRIDGE

- We train a model to recognise dog breeds
- And are given a cat to classify

CAMBRIDGE

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?

CAMBRI

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.¹

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.¹
- For the practitioner: model debugging, specialised models, critical systems

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.¹
- For the practitioner: model debugging, specialised models, critical systems
- ► We need a way to tell what our model knows and what not.
- Luckily, if you use **dropout** you already have this information. You just **ignored** it so far.

¹Complete references at end of slides

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.¹
- For the practitioner: model debugging, specialised models, critical systems
- ► We need a way to tell what our model knows and what not.
- Luckily, if you use **dropout** you already have this information. You just **ignored** it so far.

¹Complete references at end of slides

Dropout

- Used in most modern deep learning models
- It circumvents over-fitting
- And improves performance

Training time: drop units, test time: don't drop

Bayesian modelling:

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^N}$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}_{i=1}^N}$
- Capture distribution believed to have generated outputs
- Look at the first two moments:

Place prior p(W) dist. on weights, making these r.v.s

• Given dataset X, Y, the r.v. W has a posterior: p(W|X, Y)

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: $p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$
- Which is difficult to evaluate...
- ► Can define simple distribution $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$
- ► Inference with

 $q_{\theta}(\mathbf{W}) := \mathbf{M} \cdot \text{diag}(\text{Bernoulli})$

and parameter M

= Dropout training.

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: $p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$
- Which is difficult to evaluate...
- ► Can define simple distribution $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$
- ► Inference with

 $q_{\theta}(\mathbf{W}) := \mathbf{M} \cdot \text{diag}(\text{Bernoulli})$

and parameter M

= Dropout training.

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: p(W|X, Y)
- Which is difficult to evaluate...
- ► Can define **simple distribution** $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: p(W|X, Y)
- Which is difficult to evaluate...
- ► Can define **simple distribution** $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: p(W|X, Y)
- Which is difficult to evaluate...
- ► Can define **simple distribution** $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: p(W|X, Y)
- Which is difficult to evaluate...
- ► Can define **simple distribution** $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: $p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$
- Which is difficult to evaluate...
- ► Can define **simple distribution** $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx p(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$

- ► Place **prior** p(W) dist. on weights, making these r.v.s
- Given dataset **X**, **Y**, the r.v. **W** has a **posterior**: $p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$
- Which is difficult to evaluate...
- ► Can define simple distribution $q_{\theta}(\cdot)$ and approximate $q_{\theta}(\mathbf{W}) \approx \rho(\mathbf{W}|\mathbf{X}, \mathbf{Y}).$
- ► Inference with

 $q_{\theta}(\mathbf{W}) := \mathbf{M} \cdot \text{diag}(\text{Bernoulli})$

and parameter M

= Dropout training.

The theory above means that with dropout we:

- capture distribution that generated observed data
- can combine model with Bayesian techniques in a practical way...
- ► have **uncertainty estimates** in the network

The theory above means that with dropout we:

- capture distribution that generated observed data
- can combine model with Bayesian techniques in a practical way...
- have uncertainty estimates in the network

The theory above means that with dropout we:

- capture distribution that generated observed data
- can combine model with Bayesian techniques in a practical way...
- ► have **uncertainty estimates** in the network

Bayesian evaluation techniques

We fit a distribution ...

We fit a distribution ...

► Use first moment for **predictions**:

$$\mathbb{E}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^T \widehat{\mathbf{y}}_t$$

with $\widehat{\mathbf{y}}_t \sim \text{DropoutNetwork}(\mathbf{x}^*)$.

Use second moment for uncertainty (in regression):

$$\mathsf{Var}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}_t^T \widehat{\mathbf{y}}_t - \mathbb{E}(\mathbf{y}^*)^T \mathbb{E}(\mathbf{y}^*) + \tau^{-1} \mathbf{I}$$

with $\widehat{\mathbf{y}}_t \sim \text{DropoutNetwork}(\mathbf{x}^*)$.

We fit a distribution ...

► Use first moment for **predictions**:

$$\mathbb{E}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^T \widehat{\mathbf{y}}_t$$

with $\widehat{\mathbf{y}}_t \sim \text{DropoutNetwork}(\mathbf{x}^*)$.

► Use second moment for **uncertainty** (in regression):

$$\mathsf{Var}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}_t^T \widehat{\mathbf{y}}_t - \mathbb{E}(\mathbf{y}^*)^T \mathbb{E}(\mathbf{y}^*) + \tau^{-1} \mathbf{I}$$

with $\widehat{\mathbf{y}}_t \sim \text{DropoutNetwork}(\mathbf{x}^*)$.

In more practical terms, given point x:²

- drop units at test time
- repeat 10 times
- and look at mean and sample variance.
- Or in Python:

```
1 | y = []
2 for _ in xrange(10):
3 y.append(model.output(x, dropout=True))
4 y_mean = numpy.mean(y)
5 y_var = numpy.var(y)
```

²Friendly introduction given in yarin.co/blog

CIFAR Test Error (and Std.)

Model	Standard Dropout	Bayesian technique
NIN	10.43 (Lin et al., 2013)	$\textbf{10.27} \pm \textbf{0.05}$
DSN	9.37 (Lee et al., 2014)	$\textbf{9.32} \pm \textbf{0.02}$
Augmented-DSN	7.95 (Lee et al., 2014)	$\textbf{7.71} \pm \textbf{0.09}$

Table : Bayesian techniques with existing state-of-the-art

Using the second moment

What would be the CO₂ concentration level in Mauna Loa, Hawaii, *in 20 years' time*?

Normal dropout (weight averaging, 5 layers, ReLU units):

Same network, Bayesian perspective:

Using the second moment

What would be the CO₂ concentration level in Mauna Loa, Hawaii, *in 20 years' time*?

Normal dropout (weight averaging, 5 layers, ReLU units):

Same network, Bayesian perspective:

Online training

[Online demo] ³

³yarin.co/blog

	Avg. Test RMSE and Std. Errors			Avg. Test LL and Std. Errors		
Dataset	VĪ	PBP	Dropout	VI	PBP	Dropout
Boston Housing	4.32 ± 0.29	3.01 ± 0.18	$\textbf{2.97} \pm \textbf{0.85}$	-2.90 ± 0.07	-2.57 ± 0.09	-2.46 ±0.25
Concrete Strength	7.19 ± 0.12	5.67 ± 0.09	5.23 ± 0.53	-3.39 ± 0.02	-3.16 ± 0.02	-3.04 ±0.09
Energy Efficiency	2.65 ± 0.08	1.80 ± 0.05	1.66 ± 0.19	-2.39 ± 0.03	-2.04 ± 0.02	-1.99 ±0.09
Kin8nm	0.10 ± 0.00	$\textbf{0.10} \pm \textbf{0.00}$	0.10 ± 0.00	0.90 ± 0.01	0.90 ± 0.01	0.95 ± 0.03
Naval Propulsion	0.01 ± 0.00	$\textbf{0.01} \pm \textbf{0.00}$	0.01 ± 0.00	3.73 ± 0.12	3.73 ± 0.01	3.80 ± 0.05
Power Plant	4.33 ± 0.04	4.12 ± 0.03	4.02 ± 0.18	-2.89 ± 0.01	-2.84 ± 0.01	-2.80 ± 0.05
Protein Structure	4.84 ± 0.03	4.73 ± 0.01	4.36 ± 0.04	-2.99 ± 0.01	-2.97 ± 0.00	$\textbf{-2.89} \pm \textbf{0.01}$
Wine Quality Red	0.65 ± 0.01	0.64 ± 0.01	0.62 ± 0.04	-0.98 ± 0.01	-0.97 ± 0.01	-0.93 ±0.06
Yacht Hydrodynamics	6.89 ± 0.67	1.02 ± 0.05	1.11 ± 0.38	-3.43 ± 0.16	-1.63 ± 0.02	-1.55 ±0.12
Year Prediction MSD	$9.034 \pm NA$	$8.879 \pm NA$	$8.849 \pm NA$	$-3.622 \pm NA$	$-3.603 \pm NA$	-3.588 ±NA

Table 1: Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves [20]), Probabilistic back-propagation (PBP, Hernández-Lobato and Adams [27]), and dropout uncertainty (Dropout).

Applications

- We have a "Roomba"⁴
- Penalised –5 for walking into a wall, +10 reward for collecting dirt
- Our environment is stochastic and ever changing
- We want a net to learn what actions to do in different situations

⁴Code based on Karpathy and authors. github.com/karpathy/convnetjs

- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

Deep Reinforcement Learning

⁵yarin.co/blog

Deep Reinforcement Learning

Average reward over time (log scale)

Camera pose estimation

Where was a picture taken? (Kendall and Cipolla, 2015)⁶

- With Bayesian techniques above: 10–15% improvement on state-of-the-art
- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)

Camera pose estimation

- ▶ Where was a picture taken? (Kendall and Cipolla, 2015)⁶
- With Bayesian techniques above: 10–15% improvement on state-of-the-art

- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)
- Localisation error correlates with uncertainty

⁶Figures used with author permission

- ▶ Where was a picture taken? (Kendall and Cipolla, 2015)⁶
- With Bayesian techniques above: 10–15% improvement on state-of-the-art
- Uncertainty increases as a test photo diverges from training distribution

- ▶ Where was a picture taken? (Kendall and Cipolla, 2015)⁶
- With Bayesian techniques above: 10–15% improvement on state-of-the-art
- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)

Localisation error correlates with uncertainty

- ▶ Where was a picture taken? (Kendall and Cipolla, 2015)⁶
- With Bayesian techniques above: 10–15% improvement on state-of-the-art
- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)
- Localisation error correlates with uncertainty

Image segmentation

Scene understanding: what's in a photo and where? (Kendall, Badrinarayanan, and Cipolla, 2015)⁷

Input Images

Bayesian SegNet Segmentation Output

⁷Figures used with author permission

CAMBRIDGE

 Scene understanding: what's in a photo and where? (Kendall, Badrinarayanan, and Cipolla, 2015)⁷

⁷Figures used with author permission

Scene understanding: what's in a photo and where? (Kendall, Badrinarayanan, and Cipolla, 2015)⁷

Bayesian SegNet Segmentation Output

Bayesian SegNet Model Uncertainty Output

⁷Figures used with author permission

Model confidence in bioinformatics

Angermueller and Stegle (2015) fit a network to predict DNA methylation – controls gene regulation

 Look at methylation rate of different embryonic stem cells.
 Uncertainty increases in genomic contexts that are hard to predict (e.g. LMR or H3K27me3)

Model confidence in bioinformatics

- Angermueller and Stegle (2015) fit a network to predict DNA methylation – controls gene regulation
- Look at methylation rate of different embryonic stem cells.
 Uncertainty increases in genomic contexts that are hard to predict (e.g. LMR or H3K27me3)

task 🛨 CSC4_8F 🛨 CSC4_8G 🛨 CSC4_9F

MBRID

What's next

If you use **dropout** you already have uncertainty information = **practical** deep learning uncertainty.

Applications: capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Tools: weight uncertainty for model debugging?

If you use **dropout** you already have uncertainty information = **practical** deep learning uncertainty.

Applications: capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Tools: weight uncertainty for model debugging?

Work in progress!

New horizons

Most exciting is work to come:

- Practical uncertainty in deep learning applications
- Principled extensions to deep learning tools
- ► Hybrid deep learning Bayesian models

and much, much, more.

New horizons

Most exciting is work to come:

- Practical uncertainty in deep learning applications
- Principled extensions to deep learning tools
- ► Hybrid deep learning Bayesian models

and much, much, more.

Thank you for listening.

References

- Y Gal, Z Ghahramani, "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning", arXiv preprint, arXiv:1506.02142 (2015).
- Y Gal, Z Ghahramani, "Dropout as a Bayesian Approximation: Appendix", arXiv preprint, arXiv:1506.02157 (2015).
- ► Y Gal, Z Ghahramani, "Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference", arXiv preprint, arXiv:1506.02158 (2015).
- A Kendall, R Cipolla, "Modelling Uncertainty in Deep Learning for Camera Relocalization", arXiv preprint, arXiv:1509.05909 (2015)
- C Angermueller and O Stegle, "Multi-task deep neural network to predict CpG methylation profiles from low-coverage sequencing data", NIPS MLCB workshop (2015).
- JM Hernndez-Lobato, RP Adams, "Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks", ICML (2015).
- DP Kingma, T Salimans, M Welling, "Variational Dropout and the Local Reparameterization Trick", NIPS (2015).
- DJ Rezende, S Mohamed, D Wierstra, "Stochastic Backpropagation and Approximate Inference in Deep Generative Models", ICML (2014).

- Krzywinski and Altman, "Points of significance: Importance of being uncertain", Nature Methods (2013).
- Herzog and Ostwald, "Experimental biology: Sometimes Bayesian statistics are better", Nature (2013).
- ► Nuzzo, "Scientific method: Statistical errors", Nature (2014).
- ► Woolston, "Psychology journal bans P values", Nature (2015).
- Ghahramani, "Probabilistic machine learning and artificial intelligence", Nature (2015).