

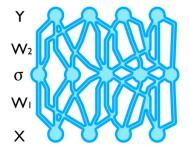
Modern Deep Learning through Bayesian Eyes

Yarin Gal

yg279@cam.ac.uk

To keep things interesting, a photo or an equation in every slide! (unless specified otherwise, photos are either original work or taken from Wikimedia, under Creative Commons license)

Modern deep learning



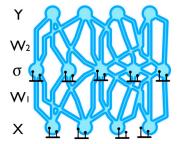
Conceptually simple models...

- Attracts tremendous attention from popular media,
- Fundamentally affected the way ML is used in industry,
- Driven by pragmatic developments...
- ► of tractable models...
- ► that work well...
- ▶ and scale well.

Why does my model work

We don't understand many of the tools that we use...

E.g. stochastic reg. techniques (*dropout*, MGN¹) are used in most deep learning models to avoid over-fitting. Why do they work?



What does my model know?

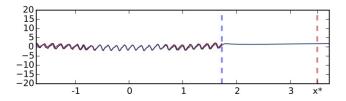
Why does my model predict this and not that?

¹Wager et al. (2013) and Baldi and Sadowski (2013) attempt to explain dropout as sparse regularisation but cannot generalise to other techniques.

- Why does my model work
- What does my model know?

We can't tell whether our models are certain or not...

E.g. what would be the CO₂ concentration level in Mauna Loa, Hawaii, *in 20 years' time*?



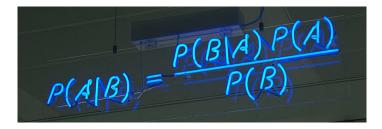
Why does my model predict this and not that?

- Why does my model work
- What does my model know?
- Why does my model predict this and not that?

Our models are black boxes and not interpretable...

Physicians and others need to understand *why* a model predicts an output.

- Why does my model work
- What does my model know?
- Why does my model predict this and not that?



Surprisingly, we can use **Bayesian modelling** to answer the questions above

Many unanswered questions

- Why does my model work?
- What does my model know?
- Why does my model predict this and not that, and other open problems
- Conclusions

Many unanswered questions

- Why does my model work?
 - Bayesian modelling and neural networks
 - Modern deep learning as approximate inference
 - Real-world implications
- What does my model know?
- Why does my model predict this and not that, and other open problems
- Conclusions

Bayesian modelling and inference

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}}_{i=1}^N$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^N$
- Capture stochastic process believed to have generated outputs
- Def. ω model parameters as r.v.
- Prior dist. over ω : $p(\omega)$
- Likelihood: $p(\mathbf{Y}|\boldsymbol{\omega}, \mathbf{X})$
- ► Posterior: $p(\omega | \mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y} | \omega, \mathbf{X}) p(\omega)}{p(\mathbf{Y} | \mathbf{X})}$ (Bayes' theorem)
- Predictive distribution given new input x*

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega) \underbrace{p(\omega|\mathbf{X}, \mathbf{Y})}_{\text{posterior}} d\omega$$

• But... $p(\omega | \mathbf{X}, \mathbf{Y})$ is often intractable

Bayesian modelling and inference

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}}_{i=1}^N$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^N$
- Capture stochastic process believed to have generated outputs
- Def. ω model parameters as r.v.
- Prior dist. over ω : $p(\omega)$
- Likelihood: $p(\mathbf{Y}|\boldsymbol{\omega}, \mathbf{X})$
- ► Posterior: $p(\omega | \mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y} | \omega, \mathbf{X}) p(\omega)}{p(\mathbf{Y} | \mathbf{X})}$ (Bayes' theorem)
- Predictive distribution given new input x*

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^* | \mathbf{x}^*, \omega) \underbrace{p(\omega | \mathbf{X}, \mathbf{Y})}_{\text{posterior}} d\omega$$

▶ But... $p(\omega | \mathbf{X}, \mathbf{Y})$ is often intractable

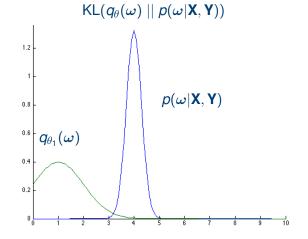
Bayesian modelling and inference

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}}_{i=1}^N$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^N$
- Capture stochastic process believed to have generated outputs
- Def. ω model parameters as r.v.
- Prior dist. over ω : $p(\omega)$
- Likelihood: $p(\mathbf{Y}|\boldsymbol{\omega}, \mathbf{X})$
- ► Posterior: $p(\omega | \mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y} | \omega, \mathbf{X}) p(\omega)}{p(\mathbf{Y} | \mathbf{X})}$ (Bayes' theorem)
- Predictive distribution given new input x*

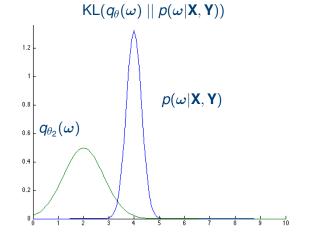
$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega) \underbrace{p(\omega|\mathbf{X}, \mathbf{Y})}_{\text{posterior}} d\omega$$

• But... $p(\omega | \mathbf{X}, \mathbf{Y})$ is often intractable

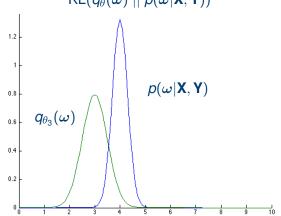
- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ



- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ

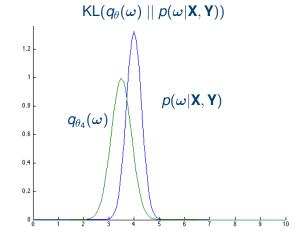


- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ

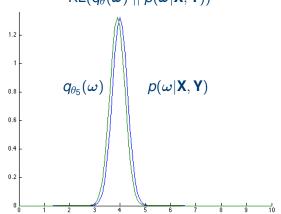


 $\mathsf{KL}(q_{\theta}(\omega) || p(\omega | \mathbf{X}, \mathbf{Y}))$

- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ



- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ



 $\mathsf{KL}(q_{\theta}(\omega) || p(\omega | \mathbf{X}, \mathbf{Y}))$

- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ

 $\mathsf{KL}(q_{ heta}(\omega) \mid\mid p(\omega \mid \mathbf{X}, \mathbf{Y}))$

Identical to minimising

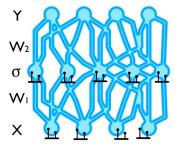
$$\mathcal{L}_{\mathsf{VI}}(\theta) := -\int q_{\theta}(\omega) \log \overbrace{p(\mathbf{Y}|\mathbf{X},\omega)}^{\mathsf{likelihood}} \mathsf{d}\omega + \mathsf{KL}(q_{\theta}(\omega)||\overbrace{p(\omega)}^{\mathsf{prior}})$$

We can approximate the predictive distribution

$$q_{ heta}(\mathbf{y}^*|\mathbf{x}^*) = \int
ho(\mathbf{y}^*|\mathbf{x}^*,\omega) q_{ heta}(\omega) \mathsf{d}\omega.$$

We'll look at dropout specifically:

Used in most modern deep learning models



- It somehow circumvents over-fitting
- And improves performance

With Bayesian modelling we can explain why

UNIVERSITY OF CAMBRIDGE

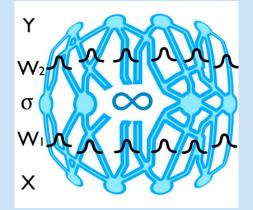
The link —

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

$$\mathbf{W}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).



The link —

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

 $\bm{W}_i \sim \mathcal{N}(0,\bm{I})$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

- Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$
- Softmax likelihood for class.: ρ(y|x,ω) = softmax (f(x,ω)) or a Gaussian for regression: ρ(y|x,ω) = N (y; f(x,ω), τ⁻¹I)
- ► But difficult to evaluate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$

Many have tried...

The link —

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

 $\bm{W}_i \sim \mathcal{N}(0,\bm{I})$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

- Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$
- Softmax likelihood for class.: p(y|x, ω) = softmax (f(x, ω)) or a Gaussian for regression: p(y|x, ω) = N (y; f(x, ω), τ⁻¹I).
- ► But difficult to evaluate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$

Many have tried...

The link —

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

 $\mathbf{W}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

- Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$
- Softmax likelihood for class.: p(y|x, ω) = softmax (f(x, ω)) or a Gaussian for regression: p(y|x, ω) = N (y; f(x, ω), τ⁻¹I).
- But difficult to evaluate posterior

 $p(\boldsymbol{\omega}|\mathbf{X},\mathbf{Y}).$

Many have tried...

Long history¹

- Denker, Schwartz, Wittner, Solla, Howard, Jackel, Hopfield (1987)
- Denker and LeCun (1991)
- MacKay (1992)
- Hinton and van Camp (1993)
- ► Neal (1995)
- Barber and Bishop (1998)

And more recently...

- ► Graves (2011)
- Blundell, Cornebise, Kavukcuoglu, and Wierstra (2015)
- Hernandez-Lobato and Adam (2015)

But we don't use these... do we?

¹Complete references at end of slides

Many unanswered questions

- Why does my model work?
 - Bayesian modelling and neural networks
 - Modern deep learning as approximate inference
 - Real-world implications
- What does my model know?
- Why does my model predict this and not that, and other open problems
- Conclusions

Approximate inference in Bayesian NNs

- ▶ Def $q_{\theta}(\omega)$ to approximate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$
- ► KL divergence to minimise: KL($q_{\theta}(\omega) || p(\omega | \mathbf{X}, \mathbf{Y})$)

$$\propto \left[-\int q_{ heta}(\omega) \log p(\mathbf{Y}|\mathbf{X},\omega) \mathsf{d}\omega \right] + \mathsf{KL}(q_{ heta}(\omega) \mid\mid p(\omega))$$

 $=: \mathcal{L}(\theta)$

► Approximate the integral with MC integration $\widehat{\omega} \sim q_{\theta}(\omega)$: $\widehat{\mathcal{L}}(\theta) := -\log p(\mathbf{Y}|\mathbf{X}, \widehat{\omega}) + \mathsf{KL}(q_{\theta}(\omega) || p(\omega))$

Approximate inference in Bayesian NNs

- ▶ Def $q_{\theta}(\omega)$ to approximate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$
- KL divergence to minimise:

 $\mathsf{KL}ig(q_{ heta}ig(\omegaig) \mid\mid pig(\omega \mid \mathbf{X}, \mathbf{Y}ig)ig)$

$$\propto \boxed{-\int q_{\theta}(\omega) \log p(\mathbf{Y}|\mathbf{X}, \omega) d\omega} + \mathsf{KL}(q_{\theta}(\omega) || p(\omega))$$

=: $\mathcal{L}(\theta)$

• Approximate the integral with MC integration $\widehat{\omega} \sim q_{\theta}(\omega)$: $\widehat{\mathcal{L}}(\theta) := -\log p(\mathbf{Y}|\mathbf{X}, \widehat{\omega}) + \mathrm{KL}(q_{\theta}(\omega) || p(\omega))$

Approximate inference in Bayesian NNs

- Def $q_{ heta}(\omega)$ to approximate posterior $p(\omega|\mathbf{X},\mathbf{Y})$
- KL divergence to minimise:

 $\mathsf{KL}\big(q_{\boldsymbol{\theta}}\big(\boldsymbol{\omega}\big) \mid\mid \boldsymbol{p}\big(\boldsymbol{\omega} | \mathbf{X}, \mathbf{Y}\big)\big)$

$$\propto \boxed{-\int q_{ heta}(\omega) \log p(\mathbf{Y}|\mathbf{X}, \omega) d\omega} + \mathsf{KL}(q_{ heta}(\omega) \mid\mid p(\omega))$$

=: $\mathcal{L}(heta)$

• Approximate the integral with MC integration $\widehat{\omega} \sim q_{\theta}(\omega)$:

 $\widehat{\mathcal{L}}(heta) := -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}) \mid\mid pig(oldsymbol{\omega}ig)ig)$

Stochastic approx. inference in Bayesian NNs

Unbiased estimator:

$$\mathsf{E}_{\widehat{\boldsymbol{\omega}}\sim \mathsf{q}_{ heta}(\boldsymbol{\omega})}ig(\widehat{\mathcal{L}}(heta)ig)=\mathcal{L}(heta)$$

- Converges to the same optima as $\mathcal{L}(\theta)$
- ► For inference, repeat:
 - Sample $\widehat{\boldsymbol{\omega}} \sim q_{ heta}(\boldsymbol{\omega})$
 - And minimise (one step)

 $\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y} | \mathbf{X}, \widehat{oldsymbol{\omega}} ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega} ig) \| \, pig(oldsymbol{\omega} ig) ig)$

w.r.t. 6

Stochastic approx. inference in Bayesian NNs

Unbiased estimator:

$$E_{\widehat{\omega} \sim q_{\theta}(\omega)}(\widehat{\mathcal{L}}(\theta)) = \mathcal{L}(\theta)$$

- Converges to the same optima as $\mathcal{L}(\theta)$
- ► For inference, repeat:
 - Sample $\widehat{\boldsymbol{\omega}} \sim q_{ heta}(\boldsymbol{\omega})$
 - And minimise (one step)

 $\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y} | \mathbf{X}, \widehat{oldsymbol{\omega}} ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega} ig) \mid pig(oldsymbol{\omega} ig) ig)$

w.r.t. 6

Stochastic approx. inference in Bayesian NNs

Unbiased estimator:

$$E_{\widehat{\omega} \sim q_{\theta}(\omega)}(\widehat{\mathcal{L}}(\theta)) = \mathcal{L}(\theta)$$

- Converges to the same optima as $\mathcal{L}(\theta)$
- ► For inference, repeat:
 - Sample $\widehat{\boldsymbol{\omega}} \sim q_{\theta}(\boldsymbol{\omega})$
 - And minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y} | \mathbf{X}, \widehat{\omega} ig) + \mathsf{KL}ig(q_{ heta}ig(\omega ig) \mid\mid p(\omega) ig)$$

w.r.t. θ .

Specifying $q_{\theta}(\cdot)$

 Given z_{i,j} Bernoulli r.v. and variational parameters θ = {M_i}^L_{i=1} (set of matrices):

$$\begin{aligned} \mathbf{z}_{i,j} &\sim \mathsf{Bernoulli}(p_i) \text{ for } i = 1, ..., L, \ j = 1, ..., K_{i-1} \\ \mathbf{W}_i &= \mathbf{M}_i \cdot \mathsf{diag}([\mathbf{z}_{i,j}]_{j=1}^{K_i}) \\ q_{\theta}(\boldsymbol{\omega}) &= \prod q_{\mathbf{M}_i}(\mathbf{W}_i) \end{aligned}$$

In summary:

Minimise divergence between $q_{\theta}(\omega)$ and $p(\omega | \mathbf{X}, \mathbf{Y})$:

- ► Repeat:
 - Sample $\widehat{\mathbf{z}}_{i,j} \sim \text{Bernoulli}(p_i)$ and set

$$\widehat{\mathbf{W}}_{i} = \mathbf{M}_{i} \cdot \text{diag}([\widehat{\mathbf{z}}_{i,j}]_{j=1}^{K_{i}})$$
$$\widehat{\boldsymbol{\omega}} = \{\widehat{\mathbf{W}}_{i}\}_{i=1}^{L}$$

Minimise (one step)

$$\widehat{\mathcal{L}}(\theta) = -\log p(\mathbf{Y}|\mathbf{X},\widehat{\boldsymbol{\omega}}) + \mathsf{KL}(q_{\theta}(\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega}))$$

w.r.t. $\theta = {\mathbf{M}_i}_{i=1}^L$ (set of matrices).

In summary:

Minimise divergence between $q_{\theta}(\omega)$ and $p(\omega | \mathbf{X}, \mathbf{Y})$:

- ► Repeat:
 - Randomly set columns of M_i to zero
 - Minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

w.r.t. $\theta = {\mathbf{M}_i}_{i=1}^L$ (set of matrices).

In summary:

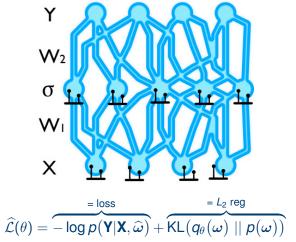
Minimise divergence between $q_{\theta}(\omega)$ and $p(\omega | \mathbf{X}, \mathbf{Y})$:

- ► Repeat:
 - Randomly set units of the network to zero
 - Minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

w.r.t. $\theta = {\mathbf{M}_i}_{i=1}^L$ (set of matrices).

Sounds familiar?²



²For more details see appendix of Gal and Ghahramani (2015) – yarin.co/dropout

Why does my model work?

Now we can answer: "Why does dropout work?"

- It adds noise
- ► Sexual reproduction³

2. Motivation

A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al., 2010). Sexual reproduction involves taking half the genes of one parent and half of the

- Because it approximately integrates over model parameters
- The noise is a side-effect of approx. integration
- Explains model over specification, "adaptive model capacity"
- We fit the process that generated our data

³Srivastava et al. (2014)

Now we can answer: "Why does dropout work?"

- It adds noise
- ► Sexual reproduction³

2. Motivation

A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al., 2010). Sexual reproduction involves taking half the genes of one parent and half of the

Because it approximately integrates over model parameters

- The noise is a side-effect of approx. integration
- Explains model over specification, "adaptive model capacity"
- We fit the process that generated our data

³Srivastava et al. (2014)

Now we can answer: "Why does dropout work?"

- It adds noise
- ► Sexual reproduction³

2. Motivation

A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al., 2010). Sexual reproduction involves taking half the genes of one parent and half of the

- Because it approximately integrates over model parameters
- ► The noise is a side-effect of approx. integration
- Explains model over specification, "adaptive model capacity"
- We fit the process that generated our data

³Srivastava et al. (2014)

Now we can answer: "Why does dropout work?"

- It adds noise
- ► Sexual reproduction³

2. Motivation

A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al., 2010). Sexual reproduction involves taking half the genes of one parent and half of the

- Because it approximately integrates over model parameters
- The noise is a side-effect of approx. integration
- ► Explains model over specification, "adaptive model capacity"
- We fit the process that generated our data

³Srivastava et al. (2014)

Now we can answer: "Why does dropout work?"

- It adds noise
- ► Sexual reproduction³

2. Motivation

A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al., 2010). Sexual reproduction involves taking half the genes of one parent and half of the

- Because it approximately integrates over model parameters
- The noise is a side-effect of approx. integration
- ► Explains model over specification, "adaptive model capacity"
- We fit the process that generated our data

³Srivastava et al. (2014)

Diving deeper into dropout

• "Why this $q_{\theta}(\cdot)$?"

- Bernoullis are cheap
- Dropout at test time \approx propagate the mean $\mathbb{E}(\mathbf{W}_i) = p_i \mathbf{M}_i$
- Constrains the weights to near the origin:
 - Posterior uncertainty decreases with more data
 - $\operatorname{Var}(\mathbf{W}_i) = \mathbf{M}_i \mathbf{M}_i^T (\mathbf{p}_i \mathbf{p}_i^2)$
 - ► For fixed *p_i*, to decrease uncertainty must decrease ||**M**_i||
- Smallest $||\mathbf{M}_i|| = \text{strongest reg. at } p_i = 0.5$.

Diving deeper into dropout

- "Why this $q_{\theta}(\cdot)$?"
 - Bernoullis are cheap
 - Dropout at test time \approx propagate the mean $\mathbb{E}(\mathbf{W}_i) = p_i \mathbf{M}_i$
 - Constrains the weights to near the origin:
 - Posterior uncertainty decreases with more data
 - $\blacktriangleright \text{Var}(\mathbf{W}_i) = \mathbf{M}_i \mathbf{M}_i^T (\mathbf{p}_i \mathbf{p}_i^2)$
 - ► For fixed *p_i*, to decrease uncertainty must decrease ||**M**_{*i*}||
 - Smallest $||\mathbf{M}_i|| = \text{strongest reg. at } p_i = 0.5$.

- "Why this $q_{\theta}(\cdot)$?"
 - Bernoullis are cheap
 - Dropout at test time \approx propagate the mean $\mathbb{E}(\mathbf{W}_i) = p_i \mathbf{M}_i$
 - Constrains the weights to near the origin:
 - Posterior uncertainty decreases with more data
 - $\operatorname{Var}(\mathbf{W}_i) = \mathbf{M}_i \mathbf{M}_i^T (p_i p_i^2)$
 - ► For fixed *p_i*, to decrease uncertainty must decrease ||**M**_{*i*}||
 - Smallest $||\mathbf{M}_i|| = \text{strongest reg. at } p_i = 0.5$.

- "Why this $q_{\theta}(\cdot)$?"
 - Bernoullis are cheap
 - Dropout at test time \approx propagate the mean $\mathbb{E}(\mathbf{W}_i) = p_i \mathbf{M}_i$
 - Constrains the weights to near the origin:
 - Posterior uncertainty decreases with more data
 - $\operatorname{Var}(\mathbf{W}_i) = \mathbf{M}_i \mathbf{M}_i^T (p_i p_i^2)$
 - ► For fixed *p_i*, to decrease uncertainty must decrease ||**M**_{*i*}||
 - Smallest $||\mathbf{M}_i|| = \text{strongest reg. at } p_i = 0.5$.

Other stochastic reg. techniques

- Multiply network units by $\mathcal{N}(1,1)$
- Same performance as dropout
 \$\product\$

Multiplicative Gaussian noise as approximate inference⁴

$$\begin{aligned} \mathbf{z}_{i,j} &\sim \mathcal{N}(1,1) \text{ for } i = 1, ..., L, \ j = 1, ..., K_{i-1} \\ \mathbf{W}_i &= \mathbf{M}_i \cdot \text{diag}([\mathbf{z}_{i,j}]_{j=1}^{K_i}) \\ q_{\theta}(\omega) &= \prod q_{\mathbf{M}_i}(\mathbf{W}_i) \end{aligned}$$

Similarly for **drop-connect** (Wan et al., 2013), **hashed neural networks** (Chen et al., 2015)

⁴See Gal and Ghahramani (2015) and Kingma et al. (2015)

Many unanswered questions

Why does my model work?

- Bayesian modelling and neural networks
- Modern deep learning as approximate inference
- Real-world implications
- What does my model know?
- Why does my model predict this and not that, and other open problems
- Conclusions

"A theory is worth nothing if you can't use it to make better code."

- DeadMG Jun 10 '12, stackexchange

- Better use of dropout
- Model structure selection
 - (No time: use Bayesian statistics to understand model architecture)

Better use of dropout

How do we use dropout with convolutional neural networks (convnets)?

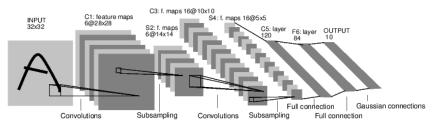


Figure : LeNet convnet structure

Image Source: LeCun et al. (1998)

Better use of dropout

How do we use dropout with convolutional neural networks (convnets)?

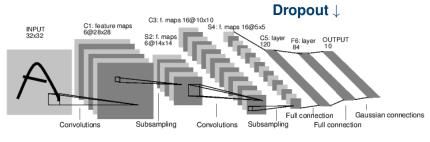


Figure : LeNet convnet structure

Image Source: LeCun et al. (1998)

How do we use dropout with convolutional neural networks (convnets)?

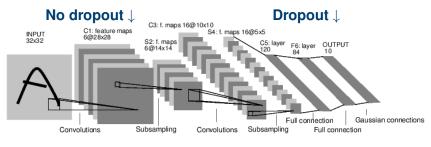


Figure : LeNet convnet structure

Image Source: LeCun et al. (1998)

Why not use dropout et al. with convolutions?

- It doesn't work
- Low co-adaptation in convolutions
- Because it's not used correctly
 - Standard dropout averages weights at test time

Why not use dropout et al. with convolutions?

- It doesn't work
- Low co-adaptation in convolutions
- Because it's not used correctly
 - Standard dropout averages weights at test time

Instead, predictive mean, approx. with MC integration:

$$\mathbb{E}_{q_{\theta}(\mathbf{y}^*|\mathbf{x}^*)}(\mathbf{y}^*) = \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t).$$

with $\widehat{\boldsymbol{\omega}}_t \sim \boldsymbol{q}_{\theta}(\boldsymbol{\omega})$.

- In practice, average stochastic forward passes through the network (referred to as "MC dropout").⁵
- Dropout after convolutions and averaging forward passes = approximate inference in Bayesian convnets.⁶

⁵Also suggested in Srivastava et al. (2014) as *model averaging*. ⁶See yarin.co/bcnn for more details

Instead, predictive mean, approx. with MC integration:

$$\mathbb{E}_{q_{\theta}(\mathbf{y}^*|\mathbf{x}^*)}(\mathbf{y}^*) = \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\omega}_t).$$

with $\widehat{\boldsymbol{\omega}}_t \sim \boldsymbol{q}_{\theta}(\boldsymbol{\omega})$.

- In practice, average stochastic forward passes through the network (referred to as "MC dropout").⁵
- Dropout after convolutions and averaging forward passes = approximate inference in Bayesian convnets.⁶

⁵Also suggested in Srivastava et al. (2014) as *model averaging*. ⁶See yarin.co/bcnn for more details

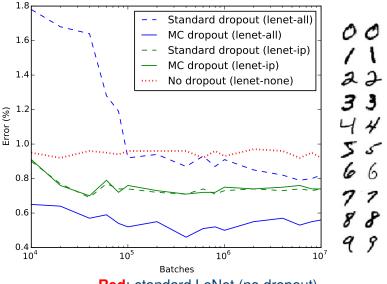
Instead, predictive mean, approx. with MC integration:

$$\mathbb{E}_{q_{\theta}(\mathbf{y}^*|\mathbf{x}^*)}(\mathbf{y}^*) = \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\omega}_t).$$

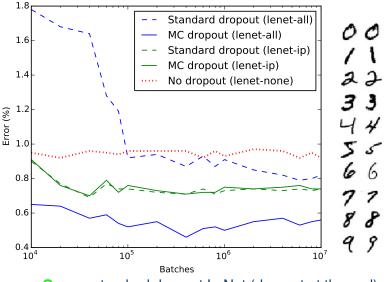
with $\widehat{\boldsymbol{\omega}}_t \sim \boldsymbol{q}_{\theta}(\boldsymbol{\omega})$.

- In practice, average stochastic forward passes through the network (referred to as "MC dropout").⁵
- Dropout after convolutions and averaging forward passes = approximate inference in Bayesian convnets.⁶

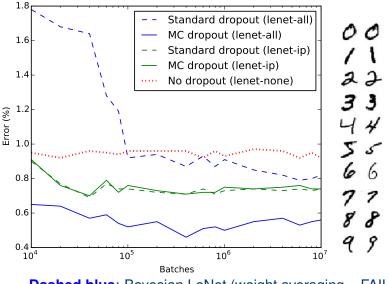
⁵Also suggested in Srivastava et al. (2014) as *model averaging*. ⁶See yarin.co/bcnn for more details



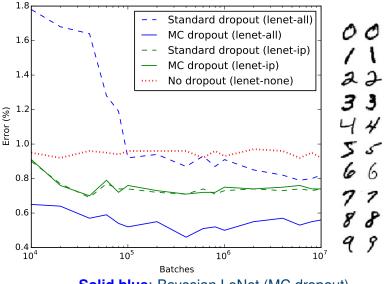
Red: standard LeNet (no dropout)



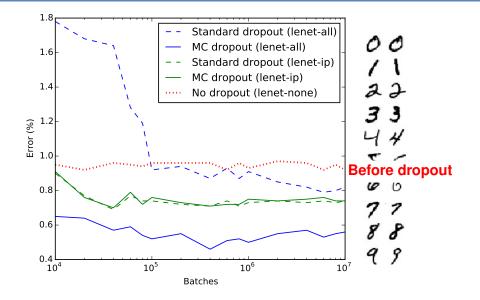
Green: standard dropout LeNet (dropout at the end)

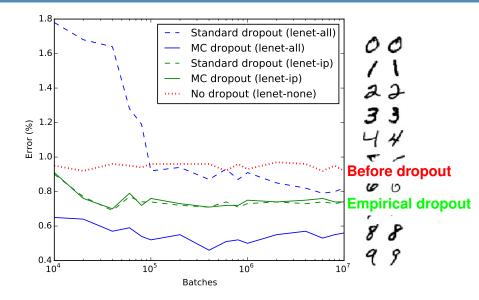


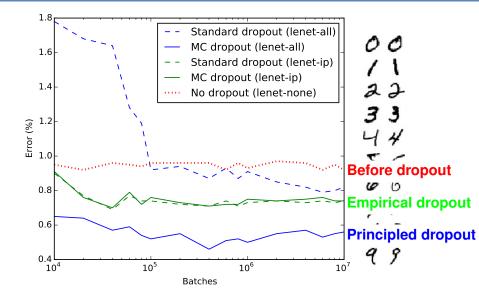
Dashed blue: Bayesian LeNet (weight averaging – FAIL)



Solid blue: Bayesian LeNet (MC dropout)

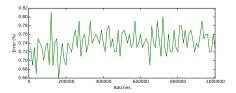




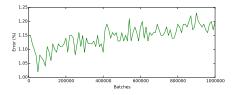


Over-fitting on small data

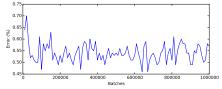
Robustness to over-fitting on smaller datasets:



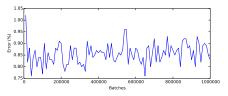
(a) Entire MNIST Standard dropout convnet



(c) 1/4 of MNIST Standard dropout convnet



(b) Entire MNIST Bayesian convnet



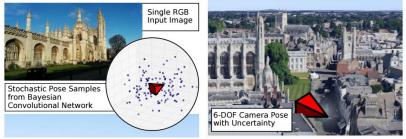
(d) 1/4 of MNIST Bayesian convnet

CIFAR Test Error (and Std.)

Model	Standard Dropout	MC Dropout
NIN	10.43 (Lin et al., 2013)	$\textbf{10.27} \pm \textbf{0.05}$
DSN	9.37 (Lee et al., 2014)	$\textbf{9.32} \pm \textbf{0.02}$
Augmented-DSN	7.95 (Lee et al., 2014)	$\textbf{7.71} \pm \textbf{0.09}$

Table : Bayesian techniques (MC dropout) with existing state-of-the-art

Find the location from which a picture was taken⁷

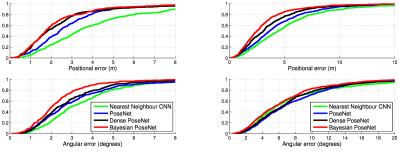


Kendall and Cipolla (2015) show 10–15% improvement on state-of-the-art with Bayesian convnets

⁷Figures used with author permission

RW: Camera pose localisation

- Find the location from which a picture was taken⁷
- Kendall and Cipolla (2015) show 10–15% improvement on state-of-the-art with Bayesian convnets



(a) King's College

(b) St Mary's Church

Localisation accuracy for different error thresholds

⁷Figures used with author permission

Many unanswered questions

- Why does my model work?
- What does my model know?
 - Why should I care about uncertainty?
 - How can I get uncertainty in deep learning?
 - What does this uncertainty look like?
 - Real-world implications
- Why does my model predict this and not that, and other open problems
- Conclusions

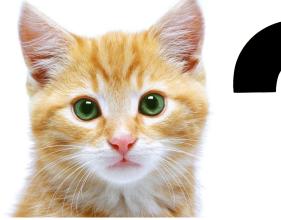
We train a model to recognise dog breeds

CAMBRIDGE

- We train a model to recognise dog breeds
- And are given a cat to classify

CAMBRIDGE

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?



CAMBRI

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.⁸

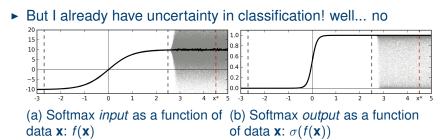
► For the practitioner: pass inputs with low confidence to

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.⁸
- For the practitioner: pass inputs with low confidence to specialised models
- ▶ But I already have uncertainty in classification! well... no
- We need to be able to tell what our model knows and what it doesn't.⁹

⁸Complete references at end of slides
⁹Friendly introduction given in yarin.co/b.

Why should I care about uncertainty?

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.⁸
- For the practitioner: pass inputs with low confidence to specialised models



Why should I care about uncertainty?

- We train a model to recognise dog breeds
- And are given a cat to classify
- What would you want your model to do?
- ► Similar problems in *decision making*, *physics*, *life science*, etc.⁸
- For the practitioner: pass inputs with low confidence to specialised models
- But I already have uncertainty in classification! well... no
- We need to be able to tell what our model knows and what it doesn't.⁹

⁸Complete references at end of slides
⁹Friendly introduction given in yarin.co/blog

How to get uncertainty in deep learning CAMBRIDGE

► We fit a **distribution**; Already used its first moment:

$$\mathbb{E}(\mathbf{y}^*) = \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t)$$

with $\widehat{\boldsymbol{\omega}}_t \sim \boldsymbol{q}_{\theta}(\boldsymbol{\omega}).$

► For uncertainty (in regression) look at the **second moment**:

$$\boxed{\operatorname{Var}(\mathbf{y}^*)} = \tau^{-1}\mathbf{I} + \frac{1}{T}\sum_{t=1}^{T}\widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t)^T\widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t) - \mathbb{E}(\mathbf{y}^*)^T \mathbb{E}(\mathbf{y}^*)$$

As simple as looking at the sample variance of stochastic forward passes through the network (plus obs. noise).¹⁰

¹⁰See yarin.co/dropout for more details

How to get uncertainty in deep learning CAMBRIDGE

► We fit a **distribution**; Already used its first moment:

$$\mathbb{E}(\mathbf{y}^*) = \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t)$$

with $\widehat{\boldsymbol{\omega}}_t \sim \boldsymbol{q}_{\theta}(\boldsymbol{\omega}).$

► For uncertainty (in regression) look at the second moment:

$$\boxed{\operatorname{Var}(\mathbf{y}^*)} = \tau^{-1}\mathbf{I} + \frac{1}{T}\sum_{t=1}^{T}\widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t)^T\widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t) - \mathbb{E}(\mathbf{y}^*)^T\mathbb{E}(\mathbf{y}^*)$$

As simple as looking at the sample variance of stochastic forward passes through the network (plus obs. noise).¹⁰

¹⁰See yarin.co/dropout for more details

How to get uncertainty in deep learning CAMBRIDGE

► We fit a **distribution**; Already used its first moment:

$$\mathbb{E}(\mathbf{y}^*) = \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t)$$

with $\widehat{\boldsymbol{\omega}}_t \sim \boldsymbol{q}_{\theta}(\boldsymbol{\omega}).$

► For uncertainty (in regression) look at the second moment:

$$\boxed{\operatorname{Var}(\mathbf{y}^*)} = \tau^{-1}\mathbf{I} + \frac{1}{T}\sum_{t=1}^{T}\widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t)^T\widehat{\mathbf{y}}(\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_t) - \mathbb{E}(\mathbf{y}^*)^T\mathbb{E}(\mathbf{y}^*)$$

As simple as looking at the sample variance of stochastic forward passes through the network (plus obs. noise).¹⁰

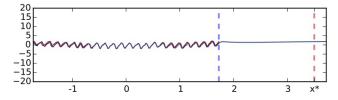
¹⁰See yarin.co/dropout for more details

- Many unanswered questions
- Why does my model work?
- What does my model know?
 - Why should I care about uncertainty?
 - How can I get uncertainty in deep learning?
 - What does this uncertainty look like?
 - Real-world implications
- Why does my model predict this and not that, and other open problems
- Conclusions

What does this uncertainty look like?

What would be the CO₂ concentration level in Mauna Loa, Hawaii, *in 20 years' time*?

Normal dropout (weight averaging, 5 layers, ReLU units):

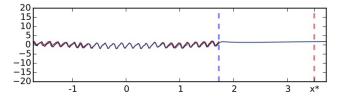


Same network, Bayesian perspective:

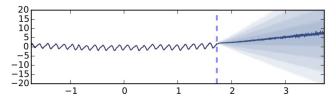
What does this uncertainty look like?

What would be the CO₂ concentration level in Mauna Loa, Hawaii, *in 20 years' time*?

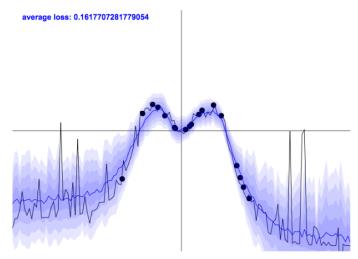
Normal dropout (weight averaging, 5 layers, ReLU units):



Same network, Bayesian perspective:



What does this uncertainty look like?



[Online demo] ¹¹

¹¹yarin.co/blog

UNIVERSITY OF CAMBRIDGE

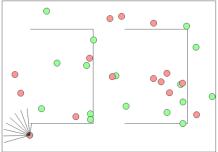
How good is our uncertainty estimate?

	Avg. Test RMSE and Std. Errors			Avg. Test LL and Std. Errors		
Dataset	VĬ	PBP	Dropout	VI	PBP	Dropout
Boston Housing	4.32 ± 0.29	3.01 ± 0.18	2.97 ± 0.85	-2.90 ± 0.07	-2.57 ± 0.09	-2.46 ±0.25
Concrete Strength	7.19 ± 0.12	5.67 ± 0.09	5.23 ± 0.53	-3.39 ± 0.02	-3.16 ± 0.02	-3.04 ± 0.09
Energy Efficiency	2.65 ± 0.08	1.80 ± 0.05	1.66 ± 0.19	-2.39 ± 0.03	-2.04 ± 0.02	-1.99 ±0.09
Kin8nm	0.10 ± 0.00	0.10 ± 0.00	0.10 ± 0.00	0.90 ± 0.01	0.90 ± 0.01	0.95 ± 0.03
Naval Propulsion	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	3.73 ± 0.12	3.73 ± 0.01	3.80 ± 0.05
Power Plant	4.33 ± 0.04	4.12 ± 0.03	4.02 ± 0.18	-2.89 ± 0.01	-2.84 ± 0.01	$\textbf{-2.80} \pm \textbf{0.05}$
Protein Structure	4.84 ± 0.03	4.73 ± 0.01	4.36 ± 0.04	-2.99 ± 0.01	-2.97 ± 0.00	-2.89 ± 0.01
Wine Quality Red	0.65 ± 0.01	0.64 ± 0.01	0.62 ± 0.04	-0.98 ± 0.01	-0.97 ± 0.01	-0.93 ± 0.06
Yacht Hydrodynamics	6.89 ± 0.67	1.02 ± 0.05	1.11 ± 0.38	-3.43 ± 0.16	-1.63 ± 0.02	-1.55 ± 0.12
Year Prediction MSD	$9.034 \pm NA$	$8.879 \pm NA$	$8.849 \pm \rm NA$	$-3.622 \pm NA$	$\textbf{-3.603} \pm \textbf{NA}$	-3.588 ±NA

Table 1: Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves [20]), Probabilistic back-propagation (PBP, Hernández-Lobato and Adams [27]), and dropout uncertainty (Dropout).

- Many unanswered questions
- Why does my model work?
- What does my model know?
 - Why should I care about uncertainty?
 - How can I get uncertainty in deep learning?
 - What does this uncertainty look like?
 - Real-world implications
- Why does my model predict this and not that, and other open problems
- Conclusions

- We have a "Roomba"¹²
- Penalised -5 for walking into a wall, +10 reward for collecting dirt
- Our environment is stochastic and ever changing
- We want a net to learn what actions to do in different situations



¹²Code based on Karpathy and authors. github.com/karpathy/convnetjs

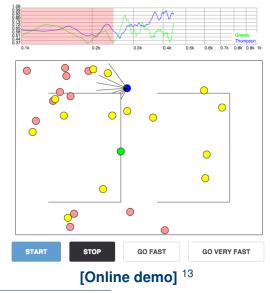
- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

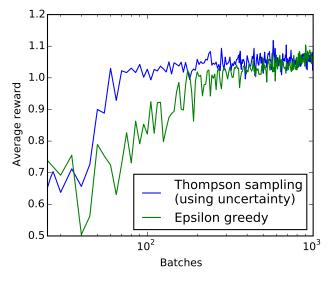
- ► Epsilon-greedy take random actions with probability *e* and optimal actions otherwise
- Using uncertainty we can learn faster
- Thompson sampling draw realisation from current belief over world, choose action with highest value
- In practice: simulate a stochastic forward pass through the dropout network and choose action with highest value

Deep Reinforcement Learning



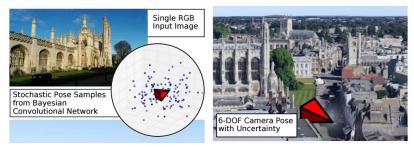
¹³yarin.co/blog

Deep Reinforcement Learning



Average reward over time (log scale)

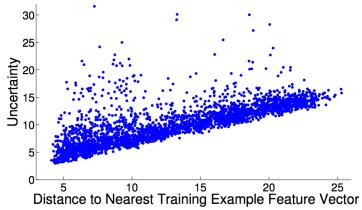
Where was a picture taken? (Kendall and Cipolla, 2015)¹⁴



- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)

► Localisation error correlates with uncertainty ¹⁴Figures used with author permission

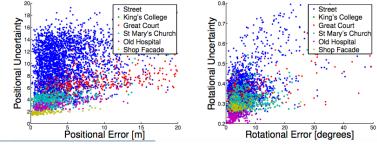
- Where was a picture taken? (Kendall and Cipolla, 2015)¹⁴
- Uncertainty increases as a test photo diverges from training distribution



Test photos with high uncertainty (strong occlusion from

- Where was a picture taken? (Kendall and Cipolla, 2015)¹⁴
- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)

- Where was a picture taken? (Kendall and Cipolla, 2015)¹⁴
- Uncertainty increases as a test photo diverges from training distribution
- Test photos with high uncertainty (strong occlusion from vehicles, pedestrians or other objects)
- Localisation error correlates with uncertainty

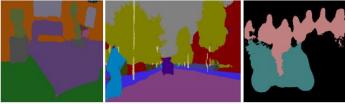


¹⁴Figures used with author permission

RW: Image segmentation

Input Images

Bayesian SegNet Segmentation Output



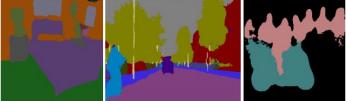
¹⁵Figures used with author permission

CAMBRIDGE

RW: Image segmentation

 Scene understanding: what's in a photo and where? (Kendall, Badrinarayanan, and Cipolla, 2015)¹⁵

Bayesian SegNet Segmentation Output

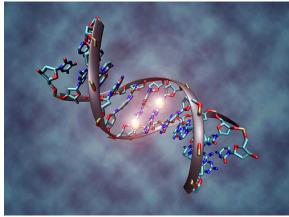


Bayesian SegNet Model Uncertainty Output

¹⁵Figures used with author permission

RW: DNA methylation

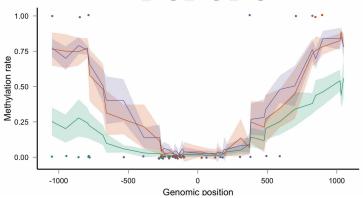
Angermueller and Stegle (2015) fit a network to predict DNA methylation – used for gene regulation



 Look at methylation rate of different embryonic stem cells.
 Uncertainty increases in genomic contexts that are hard to predict (e.g. LMR or H3K27me3)

RW: DNA methylation

- Angermueller and Stegle (2015) fit a network to predict DNA methylation – used for gene regulation
- Look at methylation rate of different embryonic stem cells.
 Uncertainty increases in genomic contexts that are hard to predict (e.g. LMR or H3K27me3)



task - CSC4_8F - CSC4_8G - CSC4_9F

- Many unanswered questions
- Why does my model work?
- What does my model know?
- Why does my model predict this and not that, and other open problems
- Conclusions

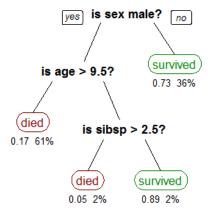
Use the theory to answer many questions: How can we...

- ... build interpretable models?
- ... combine Bayesian techniques & deep models?
- ... practically use deep learning uncertainty in existing models?
- ... extend deep learning in a principled way?

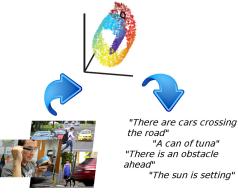
- Interpretable models?
 - Will you trust a decision made by a black-box?

- Rich literature in interpretable Bayesian models (e.g. Sun (2006), Letham (2014))
- Combine Bayesian and deep models in a principled way?
- Combine Bayesian techniques & deep models?
 - Unsupervised learning Bayesian data analysis?
 - Bayesian models with complex data? (sequence data, image data)

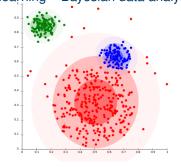
- Interpretable models?
 - Will you trust a decision made by a black-box?
 - Rich literature in interpretable Bayesian models (e.g. Sun (2006), Letham (2014))



- Interpretable models?
 - Will you trust a decision made by a black-box?
 - Rich literature in interpretable Bayesian models (e.g. Sun (2006), Letham (2014))
 - Combine Bayesian and deep models in a principled way?



- Interpretable models?
 - Will you trust a decision made by a black-box?
 - Rich literature in interpretable Bayesian models (e.g. Sun (2006), Letham (2014))
 - Combine Bayesian and deep models in a principled way?
- Combine Bayesian techniques & deep models?
 Unsupervised learning Bayesian data analysis?



- Interpretable models?
 - Will you trust a decision made by a black-box?
 - Rich literature in interpretable Bayesian models (e.g. Sun (2006), Letham (2014))
 - Combine Bayesian and deep models in a principled way?
- Combine Bayesian techniques & deep models?
 - Unsupervised learning Bayesian data analysis?
 - Bayesian models with complex data? (sequence data, image data)

Many unanswered questions left

- Practical deep learning uncertainty?
 - Capture language ambiguity?

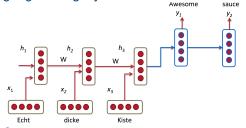
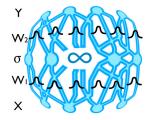


Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

- Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - Dropout in recurrent networks?
 - New appr. distributions = new stochastic reg. techniques?
 - Model compression: W_i ~ discrete distribution w. continuous base measure?

Many unanswered questions left

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?



- Principled extensions of deep learning?
 - Dropout in recurrent networks?
 - New appr. distributions = new stochastic reg. techniques?
 - Model compression: W_i ~ discrete distribution w. continuous base measure?

Many unanswered questions left

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - Dropout in recurrent networks?

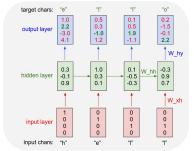


Image Source: karpathy.github.io/2015/05/21/rnn-effectiveness

New appr. distributions = new stochastic reg. techniques?

Many unanswered questions left

UNIVERSITY OF CAMBRIDGE

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - Dropout in recurrent networks?
 - New appr. distributions = new stochastic reg. techniques?

 $q_{ heta}(\omega) = ?$

► Model compression: W_i ~ discrete distribution w. continuous base measure?

Many unanswered questions left

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - Dropout in recurrent networks?
 - New appr. distributions = new stochastic reg. techniques?
 - ► Model compression: W_i ~ discrete distribution w. continuous base measure?

Many unanswered questions left

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - Dropout in recurrent networks?
 - New appr. distributions = new stochastic reg. techniques?
 - ► Model compression: W_i ~ discrete distribution w. continuous base measure?

Work in progress!

- Many unanswered questions
- Why does my model work?
- What does my model know?
- Why does my model predict this and not that, and other open problems
- Conclusions

- The theory above means that modern deep learning:
 - captures stochastic processes underlying observed data
 - can use vast Bayesian statistics literature
 - can be explained by mathematically rigorous theory
 - can be extended in a principled way
 - can be combined with Bayesian models / techniques in a practical way (we saw this!)
 - has uncertainty estimates built-in (we saw this as well!)

- captures stochastic processes underlying observed data
- can use vast Bayesian statistics literature
- can be explained by mathematically rigorous theory
- can be extended in a principled way
- can be combined with Bayesian models / techniques in a practical way (we saw this!)
- has uncertainty estimates built-in (we saw this as well!)

- captures stochastic processes underlying observed data
- can use vast Bayesian statistics literature
- can be explained by mathematically rigorous theory
- can be extended in a principled way
- can be combined with Bayesian models / techniques in a practical way (we saw this!)
- has uncertainty estimates built-in (we saw this as well!)

- captures stochastic processes underlying observed data
- can use vast Bayesian statistics literature
- can be explained by mathematically rigorous theory
- can be extended in a principled way
- can be combined with Bayesian models / techniques in a practical way (we saw this!)
- has uncertainty estimates built-in (we saw this as well!)

- captures stochastic processes underlying observed data
- can use vast Bayesian statistics literature
- can be explained by mathematically rigorous theory
- can be extended in a principled way
- can be combined with Bayesian models / techniques in a practical way (we saw this!)
- has uncertainty estimates built-in (we saw this as well!)

The theory above means that modern deep learning:

- captures stochastic processes underlying observed data
- can use vast Bayesian statistics literature
- can be explained by mathematically rigorous theory
- can be extended in a principled way
- can be combined with Bayesian models / techniques in a practical way (we saw this!)
- has uncertainty estimates built-in (we saw this as well!)

But...

New horizons

Most exciting is work to come:

- Practical uncertainty in deep learning
- Principled extensions to deep learning
- ► Hybrid deep learning Bayesian models

and much, much, more.

New horizons

Most exciting is work to come:

- Practical uncertainty in deep learning
- Principled extensions to deep learning
- ► Hybrid deep learning Bayesian models

and much, much, more.

Thank you for listening.

References

- Y Gal, Z Ghahramani, "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning", arXiv preprint, arXiv:1506.02142 (2015).
- Y Gal, Z Ghahramani, "Dropout as a Bayesian Approximation: Appendix", arXiv preprint, arXiv:1506.02157 (2015).
- ► Y Gal, Z Ghahramani, "Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference", arXiv preprint, arXiv:1506.02158 (2015).
- A Kendall, R Cipolla, "Modelling Uncertainty in Deep Learning for Camera Relocalization", arXiv preprint, arXiv:1509.05909 (2015)
- C Angermueller and O Stegle, "Multi-task deep neural network to predict CpG methylation profiles from low-coverage sequencing data", NIPS MLCB workshop (2015).
- JM Hernndez-Lobato, RP Adams, "Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks", ICML (2015).
- DP Kingma, T Salimans, M Welling, "Variational Dropout and the Local Reparameterization Trick", NIPS (2015).
- DJ Rezende, S Mohamed, D Wierstra, "Stochastic Backpropagation and Approximate Inference in Deep Generative Models", ICML (2014).

Refs – Bayesian neural networks

- Denker, Schwartz, Wittner, Solla, Howard, Jackel, and Hopfield, "Large Automatic Learning, Rule Extraction, and Generalization", Complex Systems (1987).
- Tishby, Levin, and Solla, "A statistical approach to learning and generalization in layered neural networks", COLT (1989).
- Denker and LeCun, "Transforming neural-net output levels to probability distributions", NIPS (1991).
- D MacKay, "A practical Bayesian framework for backpropagation networks", Neural Computation (1992).
- GE Hinton and D van Camp, "Keeping the neural networks simple by minimizing the description length of the weights", Computational learning theory (1993).
- ▶ R Neal, "Bayesian Learning for Neural Networks", PhD dissertation (1995).
- D Barber and CM Bishop, "Ensemble learning in Bayesian neural networks", Computer and Systems Sciences, (1998).
- A Graves, "Practical variational inference for neural networks", NIPS (2011).
- C Blundell, J Cornebise, K Kavukcuoglu, and D Wierstra, "Weight uncertainty in neural networks", ICML (2015).

- Krzywinski and Altman, "Points of significance: Importance of being uncertain", Nature Methods (2013).
- Herzog and Ostwald, "Experimental biology: Sometimes Bayesian statistics are better", Nature (2013).
- ► Nuzzo, "Scientific method: Statistical errors", Nature (2014).
- ► Woolston, "Psychology journal bans P values", Nature (2015).
- Ghahramani, "Probabilistic machine learning and artificial intelligence", Nature (2015).