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Modern deep learning

Conceptually simple
models...

I Attracts tremendous attention
from popular media,

I Fundamentally affected the way
ML is used in industry,

I Driven by pragmatic
developments...

I of tractable models...

I that work well...

I and scale well.
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But many unanswered questions...
I Why does my model work

We don’t understand many of the tools that we use...
E.g. stochastic reg. techniques (dropout, MGN1) are used in most
deep learning models to avoid over-fitting. Why do they work?

I What does my model know?

I Why does my model predict this and not that?
1Wager et al. (2013) and Baldi and Sadowski (2013) attempt to explain dropout

as sparse regularisation but cannot generalise to other techniques.
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But many unanswered questions...
I Why does my model work

I What does my model know?

We can’t tell whether our models are certain or not...
E.g. what would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

I Why does my model predict this and not that?
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But many unanswered questions...
I Why does my model work

I What does my model know?

I Why does my model predict this and not that?

Our models are black boxes and not interpretable...
Physicians and others need to understand why a model predicts an
output.
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But many unanswered questions...
I Why does my model work

I What does my model know?

I Why does my model predict this and not that?

Surprisingly, we can use Bayesian modelling to answer the
questions above
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Outline

I Many unanswered questions

I Why does my model work?

I What does my model know?

I Why does my model predict this and not that, and other open
problems

I Conclusions
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I Bayesian modelling and neural networks

I Modern deep learning as approximate inference

I Real-world implications
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problems
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Bayesian modelling and inference
I Observed inputs X = {xi}Ni=1 and outputs Y = {yi}Ni=1

I Capture stochastic process believed to have generated outputs

I Def. ω model parameters as r.v.

I Prior dist. over ω: p(ω)

I Likelihood: p(Y|ω,X)

I Posterior: p(ω|X,Y) = p(Y|ω,X)p(ω)
p(Y|X) (Bayes’ theorem)

I Predictive distribution given new input x∗

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,ω) p(ω|X,Y)︸ ︷︷ ︸
posterior

dω

I But... p(ω|X,Y) is often intractable
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Approximate inference
I Approximate p(ω|X,Y) with simple dist. qθ(ω)

I Minimise divergence from posterior w.r.t. θ

KL(qθ(ω) || p(ω|X,Y))
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Approximate inference
I Approximate p(ω|X,Y) with simple dist. qθ(ω)

I Minimise divergence from posterior w.r.t. θ

KL(qθ(ω) || p(ω|X,Y))

6 of 52

qθ3(ω)

p(ω|X,Y)



Approximate inference
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Approximate inference
I Approximate p(ω|X,Y) with simple dist. qθ(ω)

I Minimise divergence from posterior w.r.t. θ

KL(qθ(ω) || p(ω|X,Y))
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Approximate inference

I Approximate p(ω|X,Y) with simple dist. qθ(ω)

I Minimise divergence from posterior w.r.t. θ

KL(qθ(ω) || p(ω|X,Y))

I Identical to minimising

LVI(θ) := −
∫

qθ(ω) log

likelihood︷ ︸︸ ︷
p(Y|X,ω)dω + KL(qθ(ω)||

prior︷ ︸︸ ︷
p(ω))

I We can approximate the predictive distribution

qθ(y∗|x∗) =
∫

p(y∗|x∗,ω)qθ(ω)dω.
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What to this and deep learning?
We’ll look at dropout specifically:

I Used in most modern deep learning models

I It somehow circumvents over-fitting

I And improves performance

With Bayesian modelling we can explain why
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The link —
Bayesian neural networks

I Place prior p(Wi):
Wi ∼ N (0, I)

for i ≤ L (and write ω := {Wi}Li=1).

I Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

I Softmax likelihood for class.: p
(
y |x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f
(
x,ω

)
, τ−1I

)
.

I But difficult to evaluate posterior
p
(
ω|X,Y

)
.

Many have tried...
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Long history1

I Denker, Schwartz, Wittner, Solla, Howard, Jackel, Hopfield (1987)

I Denker and LeCun (1991)

I MacKay (1992)

I Hinton and van Camp (1993)

I Neal (1995)

I Barber and Bishop (1998)

And more recently...
I Graves (2011)

I Blundell, Cornebise, Kavukcuoglu, and Wierstra (2015)

I Hernandez-Lobato and Adam (2015)

But we don’t use these... do we?
1Complete references at end of slides
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Outline

I Many unanswered questions

I Why does my model work?
I Bayesian modelling and neural networks

I Modern deep learning as approximate inference

I Real-world implications

I What does my model know?

I Why does my model predict this and not that, and other open
problems

I Conclusions
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Deep learning as approx. inference

Approximate inference in Bayesian NNs

I Def qθ
(
ω
)

to approximate posterior p
(
ω|X,Y

)
I KL divergence to minimise:

KL
(
qθ
(
ω
)
|| p
(
ω|X,Y

))
∝ −

∫
qθ
(
ω
)

log p
(
Y|X,ω

)
dω + KL

(
qθ
(
ω
)
|| p
(
ω
))

=: L(θ)

I Approximate the integral with MC integration ω̂ ∼ qθ(ω):

L̂(θ) := − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))
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Deep learning as approx. inference

Stochastic approx. inference in Bayesian NNs

I Unbiased estimator:

Eω̂∼qθ(ω)

(
L̂(θ)

)
= L(θ)

I Converges to the same optima as L(θ)

I For inference, repeat:
I Sample ω̂ ∼ qθ(ω)

I And minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

w.r.t. θ.
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Deep learning as approx. inference

Specifying qθ(·)

I Given zi,j Bernoulli r.v. and variational parameters θ = {Mi}Li=1
(set of matrices):

zi,j ∼ Bernoulli(pi) for i = 1, ...,L, j = 1, ...,Ki−1

Wi = Mi · diag([zi,j ]
Ki
j=1)

qθ(ω) =
∏

qMi (Wi)
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Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I Sample ẑi,j ∼ Bernoulli(pi) and set

Ŵi = Mi · diag([ẑi,j ]
Ki
j=1)

ω̂ = {Ŵi}L
i=1

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).
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Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I = Randomly set columns of Mi to zero

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).
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Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I = Randomly set units of the network to zero

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).
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Deep learning as approx. inference

Sounds familiar?2

L̂(θ) =

= loss︷ ︸︸ ︷
− log p

(
Y|X, ω̂

)
+

= L2 reg︷ ︸︸ ︷
KL
(
qθ
(
ω
)
|| p
(
ω
))

2For more details see appendix of Gal and Ghahramani (2015) –
yarin.co/dropout
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Why does my model work?

Now we can answer: “Why does dropout work?”

I It adds noise

I Sexual reproduction3

I Because it approximately integrates over model parameters

I The noise is a side-effect of approx. integration

I Explains model over specification, “adaptive model capacity”

I We fit the process that generated our data

3Srivastava et al. (2014)
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Diving deeper into dropout

I “Why this qθ(·)?”
I Bernoullis are cheap

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Constrains the weights to near the origin:
I Posterior uncertainty decreases with more data

I Var(Wi) = MiMT
i (pi − p2

i )

I For fixed pi , to decrease uncertainty must decrease ||Mi ||

I Smallest ||Mi || = strongest reg. at pi = 0.5.
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Other stochastic reg. techniques

I Multiplicative Gaussian noise (Srivastava et al. 2014) –

I Multiply network units by N (1,1)

I Same performance as dropout
m

Multiplicative Gaussian noise as approximate inference4

zi,j ∼ N (1,1) for i = 1, ...,L, j = 1, ...,Ki−1

Wi = Mi · diag([zi,j ]
Ki
j=1)

qθ(ω) =
∏

qMi (Wi)

Similarly for drop-connect (Wan et al., 2013), hashed neural
networks (Chen et al., 2015)

4See Gal and Ghahramani (2015) and Kingma et al. (2015)
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Outline

I Many unanswered questions

I Why does my model work?
I Bayesian modelling and neural networks

I Modern deep learning as approximate inference

I Real-world implications

I What does my model know?

I Why does my model predict this and not that, and other open
problems

I Conclusions
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Real world implications

“A theory is worth nothing if you can’t use it to make better
code.”

– DeadMG Jun 10 ’12, stackexchange

I Better use of dropout

I Model structure selection
I (No time: use Bayesian statistics to understand model

architecture)
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Better use of dropout

How do we use dropout with convolutional neural networks
(convnets)?

Figure : LeNet convnet structure

Image Source: LeCun et al. (1998)
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Better use of dropout

How do we use dropout with convolutional neural networks
(convnets)?

Figure : LeNet convnet structure

Image Source: LeCun et al. (1998)
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Better use of dropout

Why not use dropout et al. with convolutions?

I It doesn’t work

I Low co-adaptation in convolutions

I Because it’s not used correctly
I Standard dropout averages weights at test time
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Better use of dropout

Instead, predictive mean, approx. with MC integration:

Eqθ(y∗|x∗)

(
y∗
)
=

1
T

T∑
t=1

ŷ(x∗, ω̂t).

with ω̂t ∼ qθ
(
ω
)
.

I In practice, average stochastic forward passes through the
network (referred to as “MC dropout”).5

I Dropout after convolutions and averaging forward passes =
approximate inference in Bayesian convnets.6

5Also suggested in Srivastava et al. (2014) as model averaging.
6See yarin.co/bcnn for more details
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Huge improvement (MNIST)
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Red: standard LeNet (no dropout)
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Over-fitting on small data
I Robustness to over-fitting on smaller datasets:
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State-of-the-art on CIFAR-10

CIFAR Test Error (and Std.)

Model Standard Dropout MC Dropout

NIN 10.43 (Lin et al., 2013) 10.27± 0.05
DSN 9.37 (Lee et al., 2014) 9.32± 0.02

Augmented-DSN 7.95 (Lee et al., 2014) 7.71± 0.09

Table : Bayesian techniques (MC dropout) with existing state-of-the-art
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RW: Camera pose localisation

I Find the location from which a picture was taken7

I Kendall and Cipolla (2015) show 10–15% improvement on
state-of-the-art with Bayesian convnets

7Figures used with author permission
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Localisation accuracy for different error thresholds
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Outline

I Many unanswered questions

I Why does my model work?

I What does my model know?
I Why should I care about uncertainty?

I How can I get uncertainty in deep learning?

I What does this uncertainty look like?

I Real-world implications

I Why does my model predict this and not that, and other open
problems

I Conclusions
28 of 52



Why should I care about uncertainty?

I We train a model to recognise dog breeds

I And are given a cat to classify

I What would you want your model to do?

I Similar problems in decision making, physics, life science, etc.8

I For the practitioner: pass inputs with low confidence to
specialised models

I But I already have uncertainty in classification! well... no

I We need to be able to tell what our model knows and what it
doesn’t.9

8Complete references at end of slides
9Friendly introduction given in yarin.co/blog
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How to get uncertainty in deep learning

I We fit a distribution; Already used its first moment:

E
(
y∗
)
=

1
T

T∑
t=1

ŷ(x∗, ω̂t)

with ω̂t ∼ qθ(ω).

I For uncertainty (in regression) look at the second moment:

Var
(
y∗
)

= τ−1I +
1
T

T∑
t=1

ŷ(x∗, ω̂t)
T ŷ(x∗, ω̂t)− E(y∗)TE(y∗)

I As simple as looking at the sample variance of stochastic
forward passes through the network (plus obs. noise).10

10See yarin.co/dropout for more details
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Outline

I Many unanswered questions

I Why does my model work?

I What does my model know?
I Why should I care about uncertainty?

I How can I get uncertainty in deep learning?

I What does this uncertainty look like?

I Real-world implications

I Why does my model predict this and not that, and other open
problems

I Conclusions
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What does this uncertainty look like?

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

I Normal dropout (weight averaging, 5 layers, ReLU units):

I Same network, Bayesian perspective:
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What does this uncertainty look like?

[Online demo] 11

11yarin.co/blog
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What does this uncertainty look like?

I How good is our uncertainty estimate?
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Deep Reinforcement Learning

I We have a “Roomba”12

I Penalised −5 for walking into a wall, +10 reward for collecting
dirt

I Our environment is stochastic and ever changing

I We want a net to learn what actions to do in different situations

12Code based on Karpathy and authors. github.com/karpathy/convnetjs
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Deep Reinforcement Learning

Behavioural policies:
I Epsilon-greedy – take random actions with probability ε and

optimal actions otherwise

I Using uncertainty we can learn faster

I Thompson sampling – draw realisation from current belief
over world, choose action with highest value

I In practice: simulate a stochastic forward pass through the
dropout network and choose action with highest value
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Deep Reinforcement Learning

[Online demo] 13

13yarin.co/blog
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Deep Reinforcement Learning
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RW: Camera local. (with uncertainty!)

I Where was a picture taken? (Kendall and Cipolla, 2015)14

I Uncertainty increases as a test photo diverges from training
distribution

I Test photos with high uncertainty (strong occlusion from
vehicles, pedestrians or other objects)

I Localisation error correlates with uncertainty
14Figures used with author permission
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RW: Image segmentation
I Scene understanding: what’s in a photo and where? (Kendall,

Badrinarayanan, and Cipolla, 2015)15

15Figures used with author permission
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RW: DNA methylation
I Angermueller and Stegle (2015) fit a network to predict DNA

methylation – used for gene regulation

I Look at methylation rate of different embryonic stem cells.
Uncertainty increases in genomic contexts that are hard to
predict (e.g. LMR or H3K27me3)
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Outline

I Many unanswered questions

I Why does my model work?

I What does my model know?

I Why does my model predict this and not that, and other open
problems

I Conclusions
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What lays ahead

Use the theory to answer many questions: How can we...

I ... build interpretable models?

I ... combine Bayesian techniques & deep models?

I ... practically use deep learning uncertainty in existing models?

I ... extend deep learning in a principled way?
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Many unanswered questions left
I Interpretable models?

I Will you trust a decision made by a black-box?

I Rich literature in interpretable Bayesian models (e.g. Sun
(2006), Letham (2014))

I Combine Bayesian and deep models in a principled way?

I Combine Bayesian techniques & deep models?
I Unsupervised learning – Bayesian data analysis?

I Bayesian models with complex data? (sequence data, image
data)
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Many unanswered questions left
I Practical deep learning uncertainty?

I Capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

I Weight uncertainty for model debugging?

I Principled extensions of deep learning?
I Dropout in recurrent networks?

I New appr. distributions = new stochastic reg. techniques?

I Model compression: Wi ∼ discrete distribution w. continuous
base measure?
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Many unanswered questions left
I Practical deep learning uncertainty?

I Capture language ambiguity?

I Weight uncertainty for model debugging?

I Principled extensions of deep learning?
I Dropout in recurrent networks?

I New appr. distributions = new stochastic reg. techniques?

qθ(ω) =?

I Model compression: Wi ∼ discrete distribution w. continuous
base measure?
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Many unanswered questions left
I Practical deep learning uncertainty?

I Capture language ambiguity?

I Weight uncertainty for model debugging?

I Principled extensions of deep learning?
I Dropout in recurrent networks?

I New appr. distributions = new stochastic reg. techniques?

I Model compression: Wi ∼ discrete distribution w. continuous
base measure?

Work in progress!
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Outline

I Many unanswered questions

I Why does my model work?

I What does my model know?

I Why does my model predict this and not that, and other open
problems

I Conclusions
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Conclusions

The theory above means that modern deep learning:

I captures stochastic processes underlying observed data

I can use vast Bayesian statistics literature

I can be explained by mathematically rigorous theory

I can be extended in a principled way

I can be combined with Bayesian models / techniques in a
practical way (we saw this!)

I has uncertainty estimates built-in (we saw this as well!)
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The theory above means that modern deep learning:

I captures stochastic processes underlying observed data

I can use vast Bayesian statistics literature

I can be explained by mathematically rigorous theory

I can be extended in a principled way

I can be combined with Bayesian models / techniques in a
practical way (we saw this!)

I has uncertainty estimates built-in (we saw this as well!)

But...
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New horizons

Most exciting is work to come:
I Practical uncertainty in deep learning

I Principled extensions to deep learning

I Hybrid deep learning – Bayesian models

and much, much, more.
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Most exciting is work to come:
I Practical uncertainty in deep learning

I Principled extensions to deep learning

I Hybrid deep learning – Bayesian models

and much, much, more.
Thank you for listening.
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