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Recurrent Neural Networks

Recurrent neural networks (RNNs) are damn useful.

Figure : RNN structure

Image Source:
karpathy.github.io/2015/05/21/rnn-effectiveness
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Recurrent Neural Networks

But these also overfit very quickly...

Figure : Overfitting

This means...
I We can’t use large models

I We have to use early stopping

I We can’t use small data

I We have to waste data for validation sets...
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Dropout in recurrent neural networks

Let’s use dropout then. But lots of research has claimed that that’s
a bad idea:

I Pachitariu & Sahani, 2013
I noise added in the recurrent connections of an RNN leads to

model instabilities
I Bayer et al., 2013

I with dropout, the RNNs dynamics change dramatically
I Pham et al., 2014

I dropout in recurrent layers disrupts the RNNs ability to model
sequences

I Zaremba et al., 2014
I applying dropout to the non-recurrent connections alone results

in improved performance
I Bluche et al., 2015

I exploratory analysis of the performance of dropout before,
inside, and after the RNNs
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Dropout in recurrent neural networks

→ has settled on using dropout for inputs and outputs alone:

xt

ht

xt−1

ht−1

xt+1

ht+1

Figure : Naive application of dropout in RNNs (colours = different dropout
masks)

5 of 24



Dropout in recurrent neural networks

Why not use dropout with recurrent layers?

I It doesn’t work

I Noise drowns the signal

I Because it’s not used correctly?
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Dropout in recurrent neural networks

Why not use dropout with recurrent layers?

I It doesn’t work

I Noise drowns the signal

I Because it’s not used correctly?

First, some background on Bayesian modelling and VI in
Bayesian neural networks.
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Bayesian modelling and inference
I Observed inputs X = {xi}Ni=1 and outputs Y = {yi}Ni=1

I Capture stochastic process believed to have generated outputs

I Def. ω model parameters as r.v.

I Prior dist. over ω: p(ω)

I Likelihood: p(Y|ω,X)

I Posterior: p(ω|X,Y) = p(Y|ω,X)p(ω)
p(Y|X) (Bayes’ theorem)

I Predictive distribution given new input x∗

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,ω) p(ω|X,Y)︸ ︷︷ ︸
posterior

dω

I But... p(ω|X,Y) is often intractable
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Approximate inference

I Approximate p(ω|X,Y) with simple dist. qθ(ω)

I Minimise divergence from posterior w.r.t. θ

KL(qθ(ω) || p(ω|X,Y))

I Identical to minimising

LVI(θ) := −
∫

qθ(ω) log

likelihood︷ ︸︸ ︷
p(Y|X,ω)dω + KL(qθ(ω)||

prior︷ ︸︸ ︷
p(ω))

I We can approximate the predictive distribution

qθ(y∗|x∗) =
∫

p(y∗|x∗,ω)qθ(ω)dω.
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Bayesian neural networks

I Place prior p(Wi):
Wi ∼ N (0, I)

for i ≤ L (and write ω := {Wi}Li=1).

I Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

I Softmax likelihood for class.: p
(
y |x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f
(
x,ω

)
, τ−1I

)
.

I But difficult to evaluate posterior
p
(
ω|X,Y

)
.
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Approximate inference in Bayesian NNs

I Def qθ
(
ω
)

to approximate posterior p
(
ω|X,Y

)
I KL divergence to minimise:

KL
(
qθ
(
ω
)
|| p
(
ω|X,Y

))
∝ −

∫
qθ
(
ω
)

log p
(
Y|X,ω

)
dω + KL

(
qθ
(
ω
)
|| p
(
ω
))

=: L(θ)

I Approximate the integral with MC integration ω̂ ∼ qθ(ω):

L̂(θ) := − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))
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Stochastic approx. inf. in Bayesian NNs

I Unbiased estimator:

Eω̂∼qθ(ω)

(
L̂(θ)

)
= L(θ)

I Converges to the same optima as L(θ)

I For inference, repeat:
I Sample ω̂ ∼ qθ(ω)

I And minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

w.r.t. θ.
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Specifying q()

I Given variational parameters θ =
{
[mi1, ...,miK ]

}L
i=1:

qθ(ω) =
∏

i

qθ(Wi)

qθ(Wi) =
∏

k

qmik (wik )

qmik (wik ) = pN (0, σ2) + (1− p)N (mik , σ
2)

→ k ’th column of the i ’th layer is a multivariate mixture of Gaussians

I With small enough σ2, in practice equivalent to

zi,j ∼ Bernoulli(pi) for i = 1, ...,L, j = 1, ...,Ki−1

Wi = Mi · diag([zi,j ]
Ki
j=1)

with zi,j Bernoulli r.v.s.
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Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I Sample ẑi,j ∼ Bernoulli(pi) and set

Ŵi = Mi · diag([ẑi,j ]
Ki
j=1)

ω̂ = {Ŵi}L
i=1

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).

13 of 24



Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):
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Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
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Deep learning as approx. inference
Sounds familiar?

L̂(θ) =

= loss︷ ︸︸ ︷
− log p

(
Y|X, ω̂

)
+

= L2 reg︷ ︸︸ ︷
KL
(
qθ
(
ω
)
|| p
(
ω
))

Implementing VI with qθ(·) above = implementing dropout in
deep network
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Other stochastic reg. techniques

I Multiplicative Gaussian noise (Srivastava et al. 2014) –

I Multiply network units by N (1,1)

I Same performance as dropout
m

Multiplicative Gaussian noise as approximate inference1

zi,j ∼ N (1,1) for i = 1, ...,L, j = 1, ...,Ki−1

Wi = Mi · diag([zi,j ]
Ki
j=1)

qθ(ω) =
∏

qMi (Wi)

Similarly for drop-connect (Wan et al., 2013), etc.

1See Gal and Ghahramani (2015) and Kingma et al. (2015)
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Back to recurrent neural networks

xt

ht

xt−1

ht−1

xt+1

ht+1

Figure : A Recurrent Neural Network
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Now, in RNNs...

I Input sequence of vectors x = {x1, ...,xT} with T time steps

I Let ω = {all weight matrices in the model}

I Define ht = fωh (xt ,ht−1)
I single recurrent unit transition. E.g. tanh of affine

transformation: tanh(Wxt + Uht−1 + b)

I Set fωy (hT ) = fωy (fωh (xT , ...fωh (x1,h0)...))
I model output (e.g. affine transformation of last state, or function

of all states)

I Lastly, define p(y|fωy (hT ))

I model likelihood. E.g. N (y; fωy (hT ), σ
2)

I Similarly for LSTM, GRU
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Now, in RNNs...

I Looking at the variational lower bound, we have:∫
q(ω) log p(y|fωy (hT ))dω =∫

q(ω) log p
(

y
∣∣∣∣fωy (fωh (xT , ...fωh (x1,h0)...

)))
dω,

I Using MC integration with ω̂ ∼ q(ω),

LVI ≈ − log p
(

y
∣∣∣∣fω̂y (fω̂h (xT , ...fω̂h (x1,h0)...)

))
+ KL

(
qθ
(
ω
)
|| p
(
ω
))
.
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Dropout in RNNs
Objective:

− log p
(

y
∣∣∣∣f ω̂

y
(
f
ω̂

h (xT , ...f
ω̂

h (x1,h0)...)
))

+ ... ω̂ ∼ q(ω)

I In practice, use the same dropout mask at each time step

xt

ht

xt−1

ht−1

xt+1

ht+1

Figure : Bayesian motivated dropout in RNNs (colours = dropout masks)
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Word embedding dropout

I With continuous inputs we apply dropout to the input layer
(place a distr. over weight matrix)

I But not for models with discrete inputs...

I Word embeddings: input can be seen as either the word
embed. itself, or a “one-hot” encoding times an embed. matrix

I Optimising embedding matrix can lead to overfitting...

I Let’s apply dropout to the one-hot encoded vectors
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Word embedding dropout

I In practice, drop words at random throughout the sentence
I Randomly set embedding matrix rows to zero – entire word

embeddings

I Mask is repeated at each time step→ drop the same words
throughout the sequence

I i.e. drop word types at random rather than word tokens

I For example, “the dog and the cat” might become “— dog and
— cat” or “the — and the cat”, but never “— dog and the cat”.

I Can be interpreted as encouraging model to not “depend” on
single words.
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Working dropout in recurrent layers

Some results (much more in paper):
I Sentiment analysis (Pang & Lee, 2005)

Figure : LSTM test error

I Language model (Penn Treebank) 22 of 24



Working dropout in recurrent layers

Some results (much more in paper):
I Sentiment analysis (Pang & Lee, 2005)

Figure : GRU test error

I Language model (Penn Treebank)
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Working dropout in recurrent layers

Some results (much more in paper):
I Sentiment analysis (Pang & Lee, 2005)
I Language model (Penn Treebank)

Figure : 2 layers LSTM, 200 units
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Many unanswered questions left

I Practical deep learning uncertainty?
I Capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

I Weight uncertainty for model debugging?

I Principled extensions of deep learning?
I New appr. distributions = new stochastic reg. techniques?

I Model compression: Wi ∼ discrete distribution w. continuous
base measure?
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Many unanswered questions left

I Practical deep learning uncertainty?
I Capture language ambiguity?

I Weight uncertainty for model debugging?

I Principled extensions of deep learning?
I New appr. distributions = new stochastic reg. techniques?

I Model compression: Wi ∼ discrete distribution w. continuous
base measure?

Work in progress!
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New horizons

Most exciting is work to come:
I Practical uncertainty in deep learning applications

I Principled extensions to deep learning tools

I Hybrid deep learning – Bayesian models

and much, much, more.
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Most exciting is work to come:
I Practical uncertainty in deep learning applications

I Principled extensions to deep learning tools

I Hybrid deep learning – Bayesian models

and much, much, more.
Thank you for listening.
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