

Dropout in RNNs Following a VI Interpretation

Yarin Gal

yg279@cam.ac.uk

Unless specified otherwise, photos are either original work or taken from Wikimedia, under Creative Commons license

Recurrent neural networks (RNNs) are damn useful.

Figure : RNN structure

Image Source: karpathy.github.io/2015/05/21/rnn-effectiveness

But these also overfit very quickly...

Figure : Overfitting

- We can't use large models
- We have to use early stopping
- We can't use small data
- We have to waste data for validation sets...

But these also overfit very quickly...

Figure : Overfitting

- We can't use large models
- We have to use early stopping
- We can't use small data
- We have to waste data for validation sets...

But these also overfit very quickly...

Figure : Overfitting

- We can't use large models
- We have to use early stopping
- We can't use small data
- We have to waste data for validation sets...

But these also overfit very quickly...

Figure : Overfitting

- We can't use large models
- We have to use early stopping
- We can't use small data
- We have to waste data for validation sets...

But these also overfit very quickly...

Figure : Overfitting

- We can't use large models
- We have to use early stopping
- We can't use small data
- We have to waste data for validation sets...

Let's use dropout then. But lots of research has claimed that that's a **bad idea**:

- ▶ Pachitariu & Sahani, 2013
 - noise added in the recurrent connections of an RNN leads to model instabilities
- **Bayer et al.**, 2013
 - ▶ with dropout, the RNNs dynamics change dramatically
- ▶ Pham et al., 2014
 - dropout in recurrent layers disrupts the RNNs ability to model sequences
- ► Zaremba et al., 2014
 - applying dropout to the non-recurrent connections alone results in improved performance
- ▶ Bluche et al., 2015
 - exploratory analysis of the performance of dropout before, inside, and after the RNNs

\rightarrow has settled on using dropout for inputs and outputs alone:

Figure : Naive application of dropout in RNNs (colours = different dropout masks)

Dropout in recurrent neural networks

Why not use dropout with recurrent layers?

- It doesn't work
- ▶ Noise drowns the signal
- Because it's not used correctly?

Why not use dropout with recurrent layers?

- It doesn't work
- ► Noise drowns the signal
- Because it's not used correctly?

Why not use dropout with recurrent layers?

- It doesn't work
- ► Noise drowns the signal
- Because it's not used correctly?

Why not use dropout with recurrent layers?

- It doesn't work
- Noise drowns the signal
- Because it's not used correctly?

First, some background on Bayesian modelling and VI in Bayesian neural networks.

Bayesian modelling and inference

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}}_{i=1}^N$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^N$
- Capture stochastic process believed to have generated outputs
- Def. ω model parameters as r.v.
- Prior dist. over ω : $p(\omega)$
- Likelihood: $p(\mathbf{Y}|\boldsymbol{\omega}, \mathbf{X})$
- ► Posterior: $p(\omega | \mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y} | \omega, \mathbf{X}) p(\omega)}{p(\mathbf{Y} | \mathbf{X})}$ (Bayes' theorem)
- Predictive distribution given new input x*

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega) \underbrace{p(\omega|\mathbf{X}, \mathbf{Y})}_{\text{posterior}} d\omega$$

▶ But... $p(\omega | \mathbf{X}, \mathbf{Y})$ is often intractable

Bayesian modelling and inference

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}}_{i=1}^N$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^N$
- Capture stochastic process believed to have generated outputs
- Def. ω model parameters as r.v.
- Prior dist. over ω : $p(\omega)$
- Likelihood: $p(\mathbf{Y}|\boldsymbol{\omega}, \mathbf{X})$
- ► Posterior: $p(\omega | \mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y} | \omega, \mathbf{X}) p(\omega)}{p(\mathbf{Y} | \mathbf{X})}$ (Bayes' theorem)
- Predictive distribution given new input x*

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega) \underbrace{p(\omega|\mathbf{X}, \mathbf{Y})}_{\text{posterior}} d\omega$$

▶ But... $p(\omega | \mathbf{X}, \mathbf{Y})$ is often intractable

Bayesian modelling and inference

- Observed inputs $\mathbf{X} = {\{\mathbf{x}_i\}}_{i=1}^N$ and outputs $\mathbf{Y} = {\{\mathbf{y}_i\}}_{i=1}^N$
- Capture stochastic process believed to have generated outputs
- Def. ω model parameters as r.v.
- Prior dist. over ω : $p(\omega)$
- Likelihood: $p(\mathbf{Y}|\boldsymbol{\omega}, \mathbf{X})$
- ► Posterior: $p(\omega | \mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y} | \omega, \mathbf{X}) p(\omega)}{p(\mathbf{Y} | \mathbf{X})}$ (Bayes' theorem)
- Predictive distribution given new input x*

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega) \underbrace{p(\omega|\mathbf{X}, \mathbf{Y})}_{\text{posterior}} d\omega$$

• But... $p(\omega | \mathbf{X}, \mathbf{Y})$ is often intractable

Approximate inference

- Approximate $p(\omega | \mathbf{X}, \mathbf{Y})$ with simple dist. $q_{\theta}(\omega)$
- Minimise divergence from posterior w.r.t. θ

 $\mathsf{KL}(q_{ heta}(\omega) \mid\mid p(\omega \mid \mathbf{X}, \mathbf{Y}))$

Identical to minimising

$$\mathcal{L}_{\mathsf{VI}}(heta) := -\int q_{ heta}(\omega) \log \overbrace{p(\mathbf{Y}|\mathbf{X},\omega)}^{\mathsf{likelihood}} \mathsf{d}\omega + \mathsf{KL}(q_{ heta}(\omega)||\overbrace{p(\omega)}^{\mathsf{prior}})$$

We can approximate the predictive distribution

$$q_{ heta}(\mathbf{y}^*|\mathbf{x}^*) = \int p(\mathbf{y}^*|\mathbf{x}^*,\omega) q_{ heta}(\omega) \mathsf{d}\omega.$$

▶ Place prior $p(\mathbf{W}_i)$:

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

 $\mathbf{W}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

• Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

 $\bm{W}_i \sim \mathcal{N}(0,\bm{I})$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

- Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$
- Softmax likelihood for class.: p(y|x, ω) = softmax (f(x, ω)) or a Gaussian for regression: p(y|x, ω) = N (y; f(x, ω), τ⁻¹I).
- ► But difficult to evaluate posterior $p(\omega | \mathbf{X}, \mathbf{Y}).$

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

 $\bm{W}_i \sim \mathcal{N}(0,\bm{I})$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

- ► Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$
- Softmax likelihood for class.: p(y|x, ω) = softmax (f(x, ω)) or a Gaussian for regression: p(y|x, ω) = N (y; f(x, ω), τ⁻¹I).
- But difficult to evaluate posterior $p(\omega | \mathbf{X}, \mathbf{Y}).$

Bayesian neural networks

• Place prior $p(\mathbf{W}_i)$:

 $\bm{W}_i \sim \mathcal{N}(0,\bm{I})$

for $i \leq L$ (and write $\boldsymbol{\omega} := \{\mathbf{W}_i\}_{i=1}^L$).

- ► Output is a r.v. $f(\mathbf{x}, \boldsymbol{\omega}) = \mathbf{W}_L \sigma(...\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)...).$
- Softmax likelihood for class.: p(y|x, ω) = softmax (f(x, ω)) or a Gaussian for regression: p(y|x, ω) = N (y; f(x, ω), τ⁻¹I).
- But difficult to evaluate posterior

 $p(\boldsymbol{\omega}|\mathbf{X},\mathbf{Y}).$

Approximate inference in Bayesian NNs

- Def $q_{ heta}(\omega)$ to approximate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$
- ► KL divergence to minimise:

 $\mathsf{KL}(q_{\theta}(\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y}))$

$$= -\int q_{\theta}(\omega) \log p(\mathbf{Y}|\mathbf{X}, \omega) d\omega + \mathsf{KL}(q_{\theta}(\omega) || p(\omega))$$

• Approximate the integral with MC integration $\widehat{\omega} \sim q_{\theta}(\omega)$:

$$\widehat{\mathcal{L}}(heta) := -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

Approximate inference in Bayesian NNs

- Def $q_{ heta}(\omega)$ to approximate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$
- KL divergence to minimise:

$$\begin{split} \mathsf{KL} \big(q_{\theta}(\omega) \mid\mid p(\omega \mid \mathbf{X}, \mathbf{Y}) \big) \\ \propto \boxed{-\int q_{\theta}(\omega) \log p(\mathbf{Y} \mid \mathbf{X}, \omega) \mathrm{d}\omega} + \mathsf{KL} \big(q_{\theta}(\omega) \mid\mid p(\omega) \big) \\ =: \mathcal{L}(\theta) \end{split}$$

• Approximate the integral with MC integration $\widehat{\omega} \sim q_{\theta}(\omega)$:

 $\widehat{\mathcal{L}}(\theta) := -\log p\big(\mathbf{Y} | \mathbf{X}, \widehat{\boldsymbol{\omega}}\big) + \mathsf{KL}\big(q_{\theta}\big(\boldsymbol{\omega}\big) \mid\mid p\big(\boldsymbol{\omega}\big)\big)$

Approximate inference in Bayesian NNs 🌄 UNIVERSITY OF

- Def $q_{ heta}(\omega)$ to approximate posterior $p(\omega | \mathbf{X}, \mathbf{Y})$
- KL divergence to minimise:

$$\begin{split} \mathsf{KL} \big(q_{\theta}(\omega) \mid\mid p(\omega \mid \mathbf{X}, \mathbf{Y}) \big) \\ \propto \boxed{-\int q_{\theta}(\omega) \log p(\mathbf{Y} \mid \mathbf{X}, \omega) \mathrm{d}\omega} + \mathsf{KL} \big(q_{\theta}(\omega) \mid\mid p(\omega) \big) \\ =: \mathcal{L}(\theta) \end{split}$$

• Approximate the integral with MC integration $\widehat{\omega} \sim q_{\theta}(\omega)$:

$$\widehat{\mathcal{L}}(heta) := -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

Stochastic approx. inf. in Bayesian NNs

Unbiased estimator:

 $E_{\widehat{\omega} \sim q_{\theta}(\omega)}(\widehat{\mathcal{L}}(\theta)) = \mathcal{L}(\theta)$

- Converges to the same optima as $\mathcal{L}(\theta)$
- ► For inference, repeat:
 - Sample $\widehat{\boldsymbol{\omega}} \sim q_{\theta}(\boldsymbol{\omega})$
 - And minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \parallel pig(oldsymbol{\omega}ig)ig)$$

w.r.t. *θ*.

Stochastic approx. inf. in Bayesian NNs

Unbiased estimator:

$$E_{\widehat{\omega} \sim q_{\theta}(\omega)}(\widehat{\mathcal{L}}(\theta)) = \mathcal{L}(\theta)$$

• Converges to the same optima as $\mathcal{L}(\theta)$

- ► For inference, repeat:
 - Sample $\widehat{\boldsymbol{\omega}} \sim q_{\theta}(\boldsymbol{\omega})$
 - And minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{\omega}ig) + \mathsf{KL}ig(q_{ heta}ig(\omegaig) \mid\mid pig(\omegaig)ig)$$

w.r.t. *θ*.

Stochastic approx. inf. in Bayesian NNs

Unbiased estimator:

$$E_{\widehat{\omega} \sim q_{\theta}(\omega)}(\widehat{\mathcal{L}}(\theta)) = \mathcal{L}(\theta)$$

- Converges to the same optima as $\mathcal{L}(\theta)$
- ► For inference, repeat:
 - Sample $\widehat{\omega} \sim q_{\theta}(\omega)$
 - And minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

w.r.t. θ .

Specifying q()

• Given variational parameters $\theta = \{[\mathbf{m}_{i1}, ..., \mathbf{m}_{iK}]\}_{i=1}^{L}$:

$$\begin{aligned} q_{\theta}(\boldsymbol{\omega}) &= \prod_{i} q_{\theta}(\mathbf{W}_{i}) \\ q_{\theta}(\mathbf{W}_{i}) &= \prod_{k} q_{\mathbf{m}_{ik}}(\mathbf{w}_{ik}) \\ q_{\mathbf{m}_{ik}}(\mathbf{w}_{ik}) &= p\mathcal{N}(0, \sigma^{2}) + (1 - p)\mathcal{N}(\mathbf{m}_{ik}, \sigma^{2}) \end{aligned}$$

 \rightarrow k'th column of the *i*'th layer is a multivariate mixture of Gaussians

• With small enough σ^2 , in practice equivalent to

$$\mathbf{z}_{i,j} \sim \text{Bernoulli}(p_i) \text{ for } i = 1, ..., L, j = 1, ..., K_{i-1}$$

 $\mathbf{W}_i = \mathbf{M}_i \cdot \text{diag}([\mathbf{z}_{i,j}]_{j=1}^{K_i})$

with $\mathbf{z}_{i,j}$ Bernoulli r.v.s.

In summary:

Minimise divergence between $q_{\theta}(\omega)$ and $p(\omega | \mathbf{X}, \mathbf{Y})$:

- ► Repeat:
 - Sample $\widehat{\mathbf{z}}_{i,j} \sim \text{Bernoulli}(p_i)$ and set

$$\widehat{\mathbf{W}}_{i} = \mathbf{M}_{i} \cdot \text{diag}([\widehat{\mathbf{z}}_{i,j}]_{j=1}^{K_{i}})$$
$$\widehat{\omega} = \{\widehat{\mathbf{W}}_{i}\}_{i=1}^{L}$$

Minimise (one step)

$$\widehat{\mathcal{L}}(\theta) = -\log p(\mathbf{Y}|\mathbf{X},\widehat{\boldsymbol{\omega}}) + \mathsf{KL}(q_{\theta}(\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega}))$$

w.r.t. $\theta = {\mathbf{M}_i}_{i=1}^L$ (set of matrices).

In summary:

Minimise divergence between $q_{\theta}(\omega)$ and $p(\omega | \mathbf{X}, \mathbf{Y})$:

- ► Repeat:
 - Randomly set columns of M_i to zero
 - Minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

w.r.t. $\theta = {\mathbf{M}_i}_{i=1}^L$ (set of matrices).

In summary:

Minimise divergence between $q_{\theta}(\omega)$ and $p(\omega | \mathbf{X}, \mathbf{Y})$:

- ► Repeat:
 - Randomly set units of the network to zero
 - Minimise (one step)

$$\widehat{\mathcal{L}}(heta) = -\log pig(\mathbf{Y}|\mathbf{X},\widehat{oldsymbol{\omega}}ig) + \mathsf{KL}ig(q_{ heta}ig(oldsymbol{\omega}ig) \mid\mid pig(oldsymbol{\omega}ig)ig)$$

w.r.t. $\theta = {\mathbf{M}_i}_{i=1}^L$ (set of matrices).

Deep learning as approx. inference

Sounds familiar?

Implementing VI with $q_{\theta}(\cdot)$ above = implementing dropout in deep network

Other stochastic reg. techniques

- Multiply network units by $\mathcal{N}(1,1)$
- ► Same performance as dropout

Multiplicative Gaussian noise as approximate inference¹

$$\begin{aligned} \mathbf{z}_{i,j} &\sim \mathcal{N}(1,1) \text{ for } i = 1, ..., L, \ j = 1, ..., K_{i-1} \\ \mathbf{W}_i &= \mathbf{M}_i \cdot \text{diag}([\mathbf{z}_{i,j}]_{j=1}^{K_i}) \\ q_{\theta}(\omega) &= \prod q_{\mathbf{M}_i}(\mathbf{W}_i) \end{aligned}$$

Similarly for drop-connect (Wan et al., 2013), etc.

¹See Gal and Ghahramani (2015) and Kingma et al. (2015)

Back to recurrent neural networks

Figure : A Recurrent Neural Network

Now, in RNNs...

- ► Input sequence of vectors $\mathbf{x} = {\mathbf{x}_1, ..., \mathbf{x}_T}$ with *T* time steps
- Let $\omega = \{ all weight matrices in the model \}$
- Define $\mathbf{h}_t = \mathbf{f}_{\mathbf{h}}^{\boldsymbol{\omega}}(\mathbf{x}_t, \mathbf{h}_{t-1})$
 - ► single recurrent unit transition. E.g. tanh of affine transformation: tanh(Wx_t + Uh_{t-1} + b)
- $\blacktriangleright \text{ Set } f^{\omega}_y(h_{\mathcal{T}}) = f^{\omega}_y(f^{\omega}_h(x_{\mathcal{T}},...f^{\omega}_h(x_1,h_0)...))$
 - model output (e.g. affine transformation of last state, or function of all states)
- Lastly, define $p(\mathbf{y}|\mathbf{f}_{\mathbf{y}}^{\omega}(\mathbf{h}_{T}))$
 - model likelihood. E.g. $\mathcal{N}(\mathbf{y}; \mathbf{f}_{\mathbf{y}}^{\omega}(\mathbf{h}_{T}), \sigma^{2})$
- Similarly for LSTM, GRU

Looking at the variational lower bound, we have:

$$\begin{split} \int q(\boldsymbol{\omega}) \log p(\mathbf{y} | \mathbf{f}_{\mathbf{y}}^{\boldsymbol{\omega}}(\mathbf{h}_{T})) d\boldsymbol{\omega} &= \\ \int q(\boldsymbol{\omega}) \log p \bigg(\mathbf{y} \bigg| \mathbf{f}_{\mathbf{y}}^{\boldsymbol{\omega}} \big(\mathbf{f}_{\mathbf{h}}^{\boldsymbol{\omega}} \big(\mathbf{x}_{T}, ... \mathbf{f}_{\mathbf{h}}^{\boldsymbol{\omega}} \big(\mathbf{x}_{1}, \mathbf{h}_{0} \big) ... \big) \big) \bigg) d\boldsymbol{\omega}, \end{split}$$

• Using MC integration with $\widehat{\omega} \sim q(\omega)$,

$$\begin{split} \mathcal{L}_{\textit{VI}} &\approx -\log \rho \bigg(\mathbf{y} \bigg| \mathbf{f}_{\mathbf{y}}^{\widehat{\omega}} \big(\mathbf{f}_{\mathbf{h}}^{\widehat{\omega}}(\mathbf{x}_{\mathcal{T}}, ... \mathbf{f}_{\mathbf{h}}^{\widehat{\omega}}(\mathbf{x}_{1}, \mathbf{h}_{0}) ...) \big) \bigg) \\ &+ \mathsf{KL} \big(q_{\theta} \big(\omega \big) \mid\mid \rho(\omega) \big). \end{split}$$

Dropout in RNNs

$$-\log p\left(\mathbf{y} \middle| \mathbf{f}_{\mathbf{y}}^{\widehat{\boldsymbol{\omega}}}\left(\mathbf{f}_{\mathbf{h}}^{\widehat{\boldsymbol{\omega}}}\left(\mathbf{x}_{\mathcal{T}}, \dots, \mathbf{f}_{\mathbf{h}}^{\widehat{\boldsymbol{\omega}}}\left(\mathbf{x}_{1}, \mathbf{h}_{0}\right) \dots\right)\right) + \dots \quad \widehat{\boldsymbol{\omega}} \sim q(\boldsymbol{\omega})$$

► In practice, use the same dropout mask at each time step

Figure : Bayesian motivated dropout in RNNs (colours = dropout masks)

- With continuous inputs we apply dropout to the input layer (place a distr. over weight matrix)
- But not for models with discrete inputs...
- Word embeddings: input can be seen as either the word embed. itself, or a "one-hot" encoding times an embed. matrix
- Optimising embedding matrix can lead to overfitting...
- Let's apply dropout to the one-hot encoded vectors

Word embedding dropout

- ► In practice, drop words at random throughout the sentence
 - Randomly set embedding matrix rows to zero entire word embeddings
 - \blacktriangleright Mask is repeated at each time step \rightarrow drop the same words throughout the sequence
 - ► i.e. drop word types at random rather than word tokens
- ► For example, "the dog and the cat" might become "— dog and — cat" or "the — and the cat", but never "— dog and the cat".
- Can be interpreted as encouraging model to not "depend" on single words.

Some results (much more in paper):

Sentiment analysis (Pang & Lee, 2005)

Figure : LSTM test error

Working dropout in recurrent layers

Some results (much more in paper):

Sentiment analysis (Pang & Lee, 2005)

Figure : GRU test error

I anguaga model (Penn Treehank)

Some results (much more in paper):

- Sentiment analysis (Pang & Lee, 2005)
- Language model (Penn Treebank)

	Medium LSTM			Large LSTM		
	Validation	Test	WPS	Validation	Test	WPS
Non-regularized (early stopping)	121.1	121.7	5.5K	128.3	127.4	2.5K
Moon et al. [19]	100.7	97.0	4.8K	122.9	118.7	3K
Moon et al. [19] +emb dropout	88.9	86.5	4.8K	88.8	86.0	3K
Zaremba et al. [4]	86.2	82.7	5.5K	82.2	78.4	2.5K
Variational (tied weights)	81.8 ± 0.2	79.7 ± 0.1	4.7K	77.3 ± 0.2	75.0 ± 0.1	2.4K
Variational (tied weights, MC)	_	79.0 ± 0.1	-	_	74.1 ± 0.0	-
Variational (untied weights)	81.9 ± 0.2	79.7 ± 0.1	2.7K	77.9 ± 0.3	75.2 ± 0.2	1.6K
Variational (untied weights, MC)	_	$\textbf{78.6} \pm \textbf{0.1}$	-	_	$\textbf{73.4} \pm \textbf{0.0}$	-

Working dropout in recurrent layers

Some results (much more in paper):

- Sentiment analysis (Pang & Lee, 2005)
- Language model (Penn Treebank)

Figure : 2 layers LSTM, 200 units

Practical deep learning uncertainty?

Capture language ambiguity?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

- Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - New appr. distributions = new stochastic reg. techniques?
 - Model compression: W_i ~ discrete distribution w. continuous base measure?

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?

- Principled extensions of deep learning?
 - New appr. distributions = new stochastic reg. techniques?
 - Model compression: W_i ~ discrete distribution w. continuous base measure?

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - New appr. distributions = new stochastic reg. techniques?

$$q_{ heta}(\omega) = ?$$

► Model compression: W_i ~ discrete distribution w. continuous base measure?

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - New appr. distributions = new stochastic reg. techniques?
 - ► Model compression: W_i ~ discrete distribution w. continuous base measure?

- Practical deep learning uncertainty?
 - Capture language ambiguity?
 - Weight uncertainty for model debugging?
- Principled extensions of deep learning?
 - New appr. distributions = new stochastic reg. techniques?
 - ► Model compression: W_i ~ discrete distribution w. continuous base measure?

Work in progress!

New horizons

Most exciting is work to come:

- Practical uncertainty in deep learning applications
- Principled extensions to deep learning tools
- Hybrid deep learning Bayesian models

and much, much, more.

New horizons

Most exciting is work to come:

- Practical uncertainty in deep learning applications
- Principled extensions to deep learning tools
- ► Hybrid deep learning Bayesian models

and much, much, more.

Thank you for listening.