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Recurrent neural networks (RNNs) are damn useful.
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Figure : RNN structure

Image Source:
karpathy.github.10/2015/05/21/rnn-effectiveness
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But these also overfit very quickly...
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But these also overfit very quickly...

A

Figure : Overfitting

This means...
» We can’t use large models

v

We have to use early stopping

We can’t use small data

\{

v

We have to waste data for validation sets...
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Dropout in recurrent neural networks A

Let’'s use dropout then. But lots of research has claimed that that’s
a bad idea:
» Pachitariu & Sahani, 2013
» noise added in the recurrent connections of an RNN leads to
model instabilities
Bayer et al., 2013
» with dropout, the RNNs dynamics change dramatically
Pham et al., 2014
» dropout in recurrent layers disrupts the RNNs ability to model
sequences
Zaremba et al., 2014
» applying dropout to the non-recurrent connections alone results
in improved performance
Bluche et al., 2015

» exploratory analysis of the performance of dropout before,
inside, and after the RNNs

v

v

v

v
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— has settled on using dropout for inputs and outputs alone:
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Figure : Naive application of dropout in RNNs (colours = different dropout
masks)
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Why not use dropout with recurrent layers?
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Why not use dropout with recurrent layers?
» H-deesntwork

» Neise.d he sianal

» Because it’s not used correctly?

First, some background on Bayesian modelling and VI in
Bayesian neural networks.
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Bayesian modelling and inference AMBRIDGE

» Observed inputs X = {x;}¥ , and outputs Y = {y;}",

v

Capture stochastic process believed to have generated outputs

v

Def. w model parameters as r.v.

v

Prior dist. over w: p(w)

\4

Likelihood: p(Y|w, X)

v

Posterior: p(w|X,Y) = % (Bayes’ theorem)
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» Observed inputs X = {x;}"¥ , and outputs Y = {y;}",

v

Capture stochastic process believed to have generated outputs

v

Def. w model parameters as r.v.

v

Prior dist. over w: p(w)

v

Likelihood: p(Y|w, X)

v

Posterior: p(w|X,Y) = % (Bayes’ theorem)

v

Predictive distribution given new input x*

PY* X" X, Y) = / py* X" w) [p@]X. V)| dw

————
posterior

v

But... p(w|X,Y) is often intractable
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Approximate inference AMBRIDGE

v

Approximate p(w|X,Y) with simple dist. gy(w)

v

Minimise divergence from posterior w.r.t. ¢

KL(go(w) I| p(w[X,Y))

Identical to minimising

v

likelihood prior
~ =

—
Lui(o / G () 109 DY X, @) dw + KL(qp ()| D))

v

We can approximate the predictive distribution

Qy'x') = [ ply* ¥, )as )
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» Place prior p(W;):
W, ~ N(0,1)
for i < L (and write w := {W;}L,).
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» Place prior p(W;):
W; ~ N(0,1)

for i < L (and write w := {W;}5 ;).
» Outputis arv. f(x,w) =W, o(..Wao (Wix + by)...).

» Softmax likelihood for class.: p(y|x,w) = softmax (f(x,w))
or a Gaussian for regression: p(y[x,w) = N (y;f(x,w), 7).

» But difficult to evaluate posterior
p(wlX,Y).
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» Def gy(w) to approximate posterior p(w|X, Y)
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Approximate inference in Bayesian NNs == S\ ERIDGE

» Def gy(w) to approximate posterior p(w|X, Y)

» KL divergence to minimise:
KL(gs () || P(w]X, Y))

x —/qg(w) log p(Y|X, w)dw

=: L(0)

+KL(gs (w) [1 P(w))

» Approximate the integral with MC integration & ~ gy(w):

L(0) := —log p(Y|X,®) + KL(gs(w) || p(w))
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Stochastic approx. inf. in Bayesian NNs == S\ ERIDGE

» Unbiased estimator:

~

Ecnqo(w) (L£(0)) = L(0)
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Stochastic approx. inf. in Bayesian NNs == Z\NERIDCE

» Unbiased estimator:
Eaman(w) (L(0)) = L(6)
» Converges to the same optima as £(0)

» For inference, repeat:
» Sample @ ~ gg(w)

» And minimise (one step)

L(0) = —log p(Y|X,&) + KL(go (w) || p(w))

w.r.t. 0.
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» Given variational parameters = {[m;1, ..., m,-K]},.L:1:
ao(w) = [ (W)
i
(W) = [ T gmi (Wik)
K
Qm; (Wix) = pN (O, ‘72) + (1 = p)N (M, 02)

— K’th column of the /’th layer is a multivariate mixture of Gaussians

» With small enough o2, in practice equivalent to

z;; ~ Bernoulli(p)) fori =1,...,L, j=1,...,Ki_1
W, = M; - diag([z;;]/,)

with z; ; Bernoulli r.v.s.
J
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In summary:

» Repeat:
» Sample z;; ~ Bernoulli(p;) and set

W; = M, - diag([z;,]/%)
& = {W;}i
» Minimise (one step)
L(8) = —log p(Y|X,&) + KL(qs(w) || p(w))

w.rt. 6 = {M;}L, (set of matrices).
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Deep learning as approx. inference CAMBRIDGE

In summary:

» Repeat:
» = Randomly set columns of M; to zero

» Minimise (one step)
L(6) = —log p(Y|X, &) + KL(gs(w) || p(w))

w.rt. 0 = {M;}L, (set of matrices).
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Deep learning as approx. inference CAMBRIDGE

In summary:

» Repeat:
» = Randomly set units of the network to zero

» Minimise (one step)
L(6) = —log p(Y|X, &) + KL(gs(w) || p(w))

w.rt. 0 = {M;}L, (set of matrices).
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Deep learning as approx. inference o AMBRIDGE

Sounds familiar?

=loss =Loreg
7\

A

£(0) = —log p(Y|X, @) + KL(gs (w) || p(w))

Implementing VI with gy(-) above = implementing dropout in
deep network
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Other stochastic reg. techniques R

» Multiplicative Gaussian noise (Srivastava et al. 2014) —
» Multiply network units by N'(1,1)

» Same performance as dropout

)

zij~N1,)fori=1,.. L j=1,., K_
W,' = M,' ° diag([z,-,j];(:’1)
qe(l.d) = HqM,(wl)

Similarly for drop-connect (Wan et al., 2013), etc.

'See Gal and Ghahramani (2015) and Kingma et al. (2015)
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Figure : A Recurrent Neural Network
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Now, in RNNSs... B T

v

Input sequence of vectors x = {X1, ..., x7} with T time steps

v

Let w = {all weight matrices in the model}

Define hy = fi#(x¢, h_4)
» single recurrent unit transition. E.g. tanh of affine
transformation: tanh(Wx; + Uh;_1 + b)

Set f;"(hr) = f‘y"(f‘;(XT, fﬁ(X1 R ho)))
» model output (e.g. affine transformation of last state, or function
of all states)

v

v

v

Lastly, define p(y|fy'(hr))
» model likelihood. E.g. V(y; fy’(h7),0?)

v

Similarly for LSTM, GRU
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» Looking at the variational lower bound, we have:

| atw)iogplyity (hr))de =

/ q(w) Iogp(v

» Using MC integration with & ~ g(w),
12 (12 (xr, .48 (x1, ho)...)))
+KL(go(w) [| p(w))-

£ (8 (x7. ...f;‘,’(x1,h0)...)))dw,

Ly =~ —|09P(V
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Objective

bgp(

» In practice, use the same dropout mask at each time step

( T,...fh (x1,h0)...))> + ... ~ q(w)

h; 4 h; hiyq
N N N
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N N N
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Figure : Bayesian motivated dropout in RNNs (colours = dropout masks)
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» With continuous inputs we apply dropout to the input layer
(place a distr. over weight matrix)

v

But not for models with discrete inputs...

v

Word embeddings: input can be seen as either the word
embed. itself, or a “one-hot” encoding times an embed. matrix

v

Optimising embedding matrix can lead to overfitting...

v

Let’s apply dropout to the one-hot encoded vectors
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» In practice, drop words at random throughout the sentence
» Randomly set embedding matrix rows to zero — entire word
embeddings

» Mask is repeated at each time step — drop the same words
throughout the sequence

» i.e. drop word types at random rather than word tokens

» For example, “the dog and the cat” might become “— dog and
— cat” or “the — and the cat”, but never “— dog and the cat”.

» Can be interpreted as encouraging model to not “depend” on
single words.
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Working dropout in recurrent layers CAMBRIDGE

Some results (much more in paper):
» Sentiment analysis (Pang & Lee, 2005)

0.20

— Standard LSTM
o190l ~—— Naive Dropout LSTM| |
—— Bayesian LSTM

0.14

Epoch

Figure : LSTM test error
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Some results (much more in paper):
» Sentiment analysis (Pang & Lee, 2005)

— Standard GRU
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Figure : GRU test error
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Some results (much more in paper):

» Sentiment analysis (Pang & Lee, 2005)
» Language model (Penn Treebank)

Medium LSTM Large LSTM
Validation Test ‘WPS | Validation Test WPS
Non-regularized (early stopping) 121.1 121.7 5.5K 128.3 127.4 2.5K
Moon et al. [19] 100.7 97.0 48K | 1229 118.7 3K
Moon et al. [19] +emb dropout 88.9 86.5 4.8K 88.8 86.0 3K
Zaremba et al. [4] 86.2 82.7 5.5K 82.2 8.4 2.5K
Variational (tied weights) 818402 79.7+0.1 47K |77.3+£0.2 75.0+0.1 24K
Variational (tied weights, MC) - 79.0+£0.1 - - 741400 -
Variational (untied weights) |81.94+0.2 79.7+£0.1 27K |77.9+03 752102 1.6K
Variational (untied weights, MC) — 786+01 — — 73.4+00 -—
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Some results (much more in paper):

» Sentiment analysis (Pang & Lee, 2005)
» Language model (Penn Treebank)

180

1

— Standard LSTM
170k — Naive Dropout LSTM ||
—— Bayesian LSTM

120 L .
10° 10! 10?
Epoch

Figure : 2 layers LSTM, 200 units
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Many unanswered questions left T

» Practical deep learning uncertainty?
» Capture language ambiguity?

(e00e] (000e] (0ceo]

Echt dicke Kiste
Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
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» Weight uncertainty for model debugging?

» Principled extensions of deep learning?
» New appr. distributions = new stochastic reg. techniques?

Qo(w) =7
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Many unanswered questions left & CAMBRIDGE

» Practical deep learning uncertainty?
» Capture language ambiguity?

» Weight uncertainty for model debugging?

» Principled extensions of deep learning?
» New appr. distributions = new stochastic reg. techniques?

» Model compression: W; ~ discrete distribution w. continuous
base measure?

Work in progress!
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Most exciting is work to come:
» Practical uncertainty in deep learning applications

» Principled extensions to deep learning tools

» Hybrid deep learning — Bayesian models

and much, much, more.
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Most exciting is work to come:
» Practical uncertainty in deep learning applications

» Principled extensions to deep learning tools

» Hybrid deep learning — Bayesian models

and much, much, more.
Thank you for listening.
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