
Dropout as a Bayesian Approximation

Yarin Gal • Zoubin Ghahramani

yg279@cam.ac.uk

mailto:yg279@cam.ac.uk

Modern deep learning

Conceptually simple
models...

I Attracts tremendous attention
from popular media,

I Fundamentally affected the way
ML is used in industry,

I Driven by pragmatic
developments...

I of tractable models...

I that work well...

I and scale well.

2 of 21

But important unanswered questions...

I What does my model know?

We can’t tell whether our models are certain or not...
E.g. what would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

3 of 21

But important unanswered questions...

I What does my model know?

We can’t tell whether our models are certain or not...
E.g. what would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

Surprisingly, we can use Bayesian modelling to answer the
question above

3 of 21

Bayesian modelling and inference
I Observed inputs X = {xi}Ni=1 and outputs Y = {yi}Ni=1

I Capture stochastic process believed to have generated outputs

I Def. ω model parameters as r.v.

I Prior dist. over ω: p(ω)

I Likelihood: p(Y|ω,X)

I Posterior: p(ω|X,Y) = p(Y|ω,X)p(ω)
p(Y|X) (Bayes’ theorem)

I Predictive distribution given new input x∗

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,ω) p(ω|X,Y)︸ ︷︷ ︸
posterior

dω

I But... p(ω|X,Y) is often intractable

4 of 21

Bayesian modelling and inference
I Observed inputs X = {xi}Ni=1 and outputs Y = {yi}Ni=1

I Capture stochastic process believed to have generated outputs

I Def. ω model parameters as r.v.

I Prior dist. over ω: p(ω)

I Likelihood: p(Y|ω,X)

I Posterior: p(ω|X,Y) = p(Y|ω,X)p(ω)
p(Y|X) (Bayes’ theorem)

I Predictive distribution given new input x∗

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,ω) p(ω|X,Y)︸ ︷︷ ︸
posterior

dω

I But... p(ω|X,Y) is often intractable

4 of 21

Bayesian modelling and inference
I Observed inputs X = {xi}Ni=1 and outputs Y = {yi}Ni=1

I Capture stochastic process believed to have generated outputs

I Def. ω model parameters as r.v.

I Prior dist. over ω: p(ω)

I Likelihood: p(Y|ω,X)

I Posterior: p(ω|X,Y) = p(Y|ω,X)p(ω)
p(Y|X) (Bayes’ theorem)

I Predictive distribution given new input x∗

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,ω) p(ω|X,Y)︸ ︷︷ ︸
posterior

dω

I But... p(ω|X,Y) is often intractable

4 of 21

Approximate inference

I Approximate p(ω|X,Y) with simple dist. qθ(ω)

I Minimise divergence from posterior w.r.t. θ

KL(qθ(ω) || p(ω|X,Y))

I Identical to minimising

LVI(θ) := −
∫

qθ(ω) log

likelihood︷ ︸︸ ︷
p(Y|X,ω)dω + KL(qθ(ω)||

prior︷ ︸︸ ︷
p(ω))

I We can approximate the predictive distribution

qθ(y∗|x∗) =
∫

p(y∗|x∗,ω)qθ(ω)dω.

5 of 21

What to this and deep learning?

We’ll look at dropout specifically:

I Used in most modern deep learning models

I It somehow circumvents over-fitting

I And improves performance

6 of 21

The link — Bayesian neural networks

I Place prior p(wik):

p(wik) ∝ e−
1
2 wT

ik wik

for layer i and column k (and write ω := {wik}i,k).

I Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

I Softmax likelihood for class.: p
(
y |x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f
(
x,ω

)
, τ−1I

)
.

I But difficult to evaluate posterior
p
(
ω|X,Y

)
.

Many have tried...

7 of 21

The link — Bayesian neural networks

I Place prior p(wik):

p(wik) ∝ e−
1
2 wT

ik wik

for layer i and column k (and write ω := {wik}i,k).

I Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

I Softmax likelihood for class.: p
(
y |x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f
(
x,ω

)
, τ−1I

)
.

I But difficult to evaluate posterior
p
(
ω|X,Y

)
.

Many have tried...

7 of 21

The link — Bayesian neural networks

I Place prior p(wik):

p(wik) ∝ e−
1
2 wT

ik wik

for layer i and column k (and write ω := {wik}i,k).

I Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

I Softmax likelihood for class.: p
(
y |x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f
(
x,ω

)
, τ−1I

)
.

I But difficult to evaluate posterior
p
(
ω|X,Y

)
.

Many have tried...

7 of 21

The link — Bayesian neural networks

I Place prior p(wik):

p(wik) ∝ e−
1
2 wT

ik wik

for layer i and column k (and write ω := {wik}i,k).

I Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

I Softmax likelihood for class.: p
(
y |x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f
(
x,ω

)
, τ−1I

)
.

I But difficult to evaluate posterior
p
(
ω|X,Y

)
.

Many have tried...

7 of 21

Long history

I Denker, Schwartz, Wittner, Solla, Howard, Jackel, Hopfield (1987)

I Denker and LeCun (1991)

I MacKay (1992)

I Hinton and van Camp (1993)

I Neal (1995)

I Barber and Bishop (1998)

And more recently...
I Graves (2011)

I Blundell, Cornebise, Kavukcuoglu, and Wierstra (2015)

I Hernandez-Lobato and Adam (2015)

But we don’t use these... do we?

8 of 21

Approximate inference in Bayesian NNs

I Approximate posterior p
(
ω|X,Y

)
with qθ

(
ω
)

(def later)

I KL divergence to minimise:

KL
(
qθ
(
ω
)
|| p
(
ω|X,Y

))
∝ −

∫
qθ
(
ω
)

log p
(
Y|X,ω

)
dω + KL

(
qθ
(
ω
)
|| p
(
ω
))

=: L(θ)

I Approximate the integral with MC integration ω̂ ∼ qθ(ω):

L̂(θ) := − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

9 of 21

Approximate inference in Bayesian NNs

I Approximate posterior p
(
ω|X,Y

)
with qθ

(
ω
)

(def later)

I KL divergence to minimise:

KL
(
qθ
(
ω
)
|| p
(
ω|X,Y

))
∝ −

∫
qθ
(
ω
)

log p
(
Y|X,ω

)
dω + KL

(
qθ
(
ω
)
|| p
(
ω
))

=: L(θ)

I Approximate the integral with MC integration ω̂ ∼ qθ(ω):

L̂(θ) := − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

9 of 21

Approximate inference in Bayesian NNs

I Approximate posterior p
(
ω|X,Y

)
with qθ

(
ω
)

(def later)

I KL divergence to minimise:

KL
(
qθ
(
ω
)
|| p
(
ω|X,Y

))
∝ −

∫
qθ
(
ω
)

log p
(
Y|X,ω

)
dω + KL

(
qθ
(
ω
)
|| p
(
ω
))

=: L(θ)

I Approximate the integral with MC integration ω̂ ∼ qθ(ω):

L̂(θ) := − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p
(
ω
))

9 of 21

Stochastic approx. inf. in Bayesian NNs

I Unbiased estimator:

Eω̂∼qθ(ω)

(
L̂(θ)

)
= L(θ)

I Converges to the same optima as L(θ)

I For inference, repeat:
I Sample ω̂ ∼ qθ(ω)

I And minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ

(
ω
)
|| p
(
ω
))

w.r.t. θ.

10 of 21

Stochastic approx. inf. in Bayesian NNs

I Unbiased estimator:

Eω̂∼qθ(ω)

(
L̂(θ)

)
= L(θ)

I Converges to the same optima as L(θ)

I For inference, repeat:
I Sample ω̂ ∼ qθ(ω)

I And minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ

(
ω
)
|| p
(
ω
))

w.r.t. θ.

10 of 21

Stochastic approx. inf. in Bayesian NNs

I Unbiased estimator:

Eω̂∼qθ(ω)

(
L̂(θ)

)
= L(θ)

I Converges to the same optima as L(θ)

I For inference, repeat:
I Sample ω̂ ∼ qθ(ω)

I And minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ

(
ω
)
|| p
(
ω
))

w.r.t. θ.

10 of 21

Specifying q()

I Given variational parameters θ =
{

mik
}

i,k :

qθ(ω) =
∏

i

qθ(Wi)

qθ(Wi) =
∏

k

qmik (wik)

qmik (wik) = pδ0(wik) + (1− p)δmik (wik)

→ k ’th column of the i ’th layer is a mixture of two components

I Or, in a more compact way:

zik ∼ Bernoulli(pi) for each layer i and column k

Wi = Mi · diag([zik]
K
k=1)

with zik Bernoulli r.v.s.

11 of 21

Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I Sample ẑik ∼ Bernoulli(pi) and set

Ŵi = Mi · diag([ẑik]
K
k=1)

ω̂ = {Ŵi}L
i=1

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ

(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).

12 of 21

Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I = Randomly set columns of Mi to zero

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ

(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).

12 of 21

Deep learning as approx. inference

In summary:

Minimise divergence between qθ(ω) and p(ω|X,Y):

I Repeat:
I = Randomly set units of the network to zero

I Minimise (one step)

L̂(θ) = − log p
(
Y|X, ω̂

)
+ KL

(
qθ

(
ω
)
|| p
(
ω
))

w.r.t. θ = {Mi}L
i=1 (set of matrices).

12 of 21

Deep learning as approx. inference
Sounds familiar?

L̂(θ) =

= loss︷ ︸︸ ︷
− log p

(
Y|X, ω̂

)
+

= L2 reg︷ ︸︸ ︷
KL
(
qθ
(
ω
)
|| p
(
ω
))

Implementing VI with qθ(·) above = implementing dropout in
deep network

13 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Diving deeper into dropout

I We fit to the distribution that generated our observed data,
not just its mean

I What can we say about qθ(·)?
I Many Bernoullis = cheap multi-modality

I Dropout at test time ≈ propagate the mean E(Wi) = piMi

I Strong correlations between function frequencies, indp. across
output dimensions

I can combine model with Bayesian techniques in a practical
way...

I have uncertainty estimates in the network

14 of 21

Bayesian evaluation techniques

We fit a distribution...

15 of 21

Bayesian evaluation techniques

We fit a distribution...
I Use first moment for predictions:

E
(
y∗
)
≈ 1

T

T∑
t=1

ŷt

with ŷt ∼ DropoutNetwork(x∗).

I Use second moment for uncertainty (in regression):

Var
(
y∗
)
≈ 1

T

T∑
t=1

ŷT
t ŷt − E(y∗)TE(y∗) + τ−1I

with ŷt ∼ DropoutNetwork(x∗).

15 of 21

Bayesian evaluation techniques

We fit a distribution...
I Use first moment for predictions:

E
(
y∗
)
≈ 1

T

T∑
t=1

ŷt

with ŷt ∼ DropoutNetwork(x∗).

I Use second moment for uncertainty (in regression):

Var
(
y∗
)
≈ 1

T

T∑
t=1

ŷT
t ŷt − E(y∗)TE(y∗) + τ−1I

with ŷt ∼ DropoutNetwork(x∗).

15 of 21

Bayesian eval. – some code

In more practical terms, given point x :1

I drop units at test time

I repeat 10 times

I and look at mean and sample variance.

I Or in Python:

1 y = []
2 for _ in xrange(10):
3 y.append(model.output(x, dropout=True))
4 y_mean = numpy.mean(y)
5 y_var = numpy.var(y)

1Friendly introduction given in yarin.co/blog
16 of 21

http://yarin.co/blog

Using the first moment

CIFAR Test Error (and Std.)

Model Standard Dropout Bayesian technique

NIN 10.43 (Lin et al., 2013) 10.27± 0.05
DSN 9.37 (Lee et al., 2014) 9.32± 0.02

Augmented-DSN 7.95 (Lee et al., 2014) 7.71± 0.09

Table : Bayesian techniques with existing state-of-the-art

17 of 21

Using the second moment

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

I Normal dropout (weight averaging, 5 layers, ReLU units):

I Same network, Bayesian perspective:

18 of 21

Using the second moment

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

I Normal dropout (weight averaging, 5 layers, ReLU units):

I Same network, Bayesian perspective:

18 of 21

How good is our uncertainty estimate?

19 of 21

Applications

20 of 21

New horizons

Most exciting is work to come:
I Deep learning applications using practical uncertainty

estimates

I Principled extensions to deep learning tools

I Hybrid deep learning – Bayesian models

and much, much, more.

21 of 21

New horizons

Most exciting is work to come:
I Deep learning applications using practical uncertainty

estimates

I Principled extensions to deep learning tools

I Hybrid deep learning – Bayesian models

and much, much, more.
Thank you for listening.

21 of 21

