
Deep Learning 101— a Hands-on Tutorial

Yarin Gal

yg279@cam.ac.uk

A TALK IN THREE ACTS, based in part on the online tutorial
deeplearning.net/software/theano/tutorial

yg279@cam.ac.uk
deeplearning.net/software/theano/tutorial

Synopsis

”Deep Learning is not rocket science”

Why deep learning is so easy (in practice)

Playing with Theano

Two Theano examples: logistic regression and a deep net

Making deep learning even simpler: using existing packages

2 of 35

Prologue

”Deep Learning is not rocket science”

3 of 35

Modern deep learning

Conceptually simple
models...

I Attracts tremendous attention
from popular media,

I Fundamentally affected the way
ML is used in industry,

I Driven by pragmatic
developments...

I of tractable models...

I that work well...

I and scale well.

4 of 35

In more concrete terms...

Data: X = {x1,x2, ...,xN}, Y = {y1,y2, ...,yN}
Model: given matrices W and non-linear func. σ(·), define “network”

ỹi(xi) = W2 · σ
(
W1xi

)
Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.

5 of 35

Model regularisation in deep learning
I But these models overfit quickly...

I Dropout is a technique to avoid overfitting:
I Used in most modern deep learning models

I It circumvents over-fitting (we can discuss why later)

I And improves performance

6 of 35

Model regularisation in deep learning

I But these models overfit quickly...

I Dropout is a technique to avoid overfitting:
I Used in most modern deep learning models

I It circumvents over-fitting (we can discuss why later)

I And improves performance

6 of 35

Example model: image processing

Figure: LeNet convnet structure

We’ll see a concrete example later. But first, how do we find optimal
weights W easily?

7 of 35

Act I

Why deep learning is so easy (in practice)

8 of 35

Symbolic differentiation

I Need to find optimal weights Wi minimising distance of model
predictions ỹW1,W2(xi) := W2 · σ

(
W1xi

)
from observations yi

L(W1,W2) =
N∑

i=1

(yi − ỹW1,W2(xi))
2 + ||W1||2 + ||W2||2︸ ︷︷ ︸

keeps weights from blowing up

W1,W2 = argminW1,W2
L(W1,W2)

I We can use calculus to differentiate objective L(W1,W2) w.r.t.
W1,W2 and use gradient descent

I Differentiating L(W1,W2) is extremely easy using symbolic
differentiation.

9 of 35

Symbolic differentiation
I Need to find optimal weights Wi minimising distance of model

predictions ỹW1,W2(xi) := W2 · σ
(
W1xi

)
from observations yi

I We can use calculus to differentiate objective L(W1,W2) w.r.t.
W1,W2 and use gradient descent

I Differentiating L(W1,W2) is extremely easy using symbolic
differentiation.

9 of 35

Symbolic differentiation

I Need to find optimal weights Wi minimising distance of model
predictions ỹW1,W2(xi) := W2 · σ

(
W1xi

)
from observations yi

I We can use calculus to differentiate objective L(W1,W2) w.r.t.
W1,W2 and use gradient descent

I Differentiating L(W1,W2) is extremely easy using symbolic
differentiation.

9 of 35

What’s symbolic differentiation?

I “Symbolic computation is a scientific area that refers to the
study and development of algorithms and software for
manipulating mathematical expressions and other
mathematical objects.” [Wikipedia]

10 of 35

What’s Theano?
I Theano was the priestess of Athena in

Troy [source: Wikipedia].

I It is also a Python package for symbolic
differentiation.a

I Open source project primarily developed
at the University of Montreal.

I Symbolic equations compiled to run
efficiently on CPU and GPU.

I Computations are expressed using a
NumPy-like syntax:

I numpy.exp() – theano.tensor.exp()
I numpy.sum() – theano.tensor.sum()

aTensorFlow (Google’s Theano alternative) is similar.
Figure: Athena

11 of 35

How does Theano work?

Internally, Theano builds a graph structure composed of:
I interconnected variable nodes (red),

I operator (op) nodes (green),

I and “apply” nodes (blue, representing the application of an op
to some variables)

1 import theano.tensor as T
2 x = T.dmatrix(’x’)
3 y = T.dmatrix(’y’)
4 z = x + y

12 of 35

Theano basics – differentiation

Computing automatic differentiation is simple with the graph
structure.

I The only thing tensor.grad() has to do is to traverse the graph
from the outputs back towards the inputs.

I Gradients are composed using the chain rule.

Code for derivatives of x2:

1 x = T.scalar(’x’)
2 f = x**2
3 df_dx = T.grad(f, [x]) # results in 2x

13 of 35

Theano graph optimisation

When compiling a Theano graph, graph optimisation...
I Improves the way the computation is carried out,

I Replaces certain patterns in the graph with faster or more
stable patterns that produce the same results,

I And detects identical sub-graphs and ensures that the same
values are not computed twice (mostly).

For example, one optimisation is to replace the pattern xy
y by x .

14 of 35

Act II

Playing with Theano

15 of 35

Theano in practice – example
1 >>> import theano.tensor as T
2 >>> from theano import function
3 >>> x = T.dscalar(’x’)
4 >>> y = T.dscalar(’y’)
5 >>> z = x + y # same graph as before
6
7 >>> f = function([x, y], z) # compiling the graph
8 # the function inputs are x and y, its output is z
9 >>> f(2, 3) # evaluating the function on integers

10 array(5.0)
11 >>> f(16.3, 12.1) # ...and on floats
12 array(28.4)
13
14 >>> z.eval({x : 16.3, y : 12.1})
15 array(28.4) # a quick way to debug the graph
16
17 >>> from theano import pp
18 >>> print pp(z) # print the graph
19 (x + y)

16 of 35

Theano basics – exercise 1

1. Type and run the following code:

1 import theano
2 import theano.tensor as T
3 a = T.vector() # declare variable
4 out = a + a**10 # build symbolic expression
5 f = theano.function([a], out) # compile function
6 print f([0, 1, 2]) # prints ‘array([0, 2, 1026])’

2. Modify the code to compute a2 + 2ab + b2 element-wise.

17 of 35

Theano basics – solution 1

1 import theano
2 import theano.tensor as T
3 a = T.vector() # declare variable
4 b = T.vector() # declare variable
5 out = a**2 + 2*a*b + b**2 # build symbolic expression
6 f = theano.function([a, b], out) # compile function
7 print f([1, 2], [4, 5]) # prints [25. 49.]

18 of 35

Theano basics – exercise 2

Implement the Logistic Function:

s(x) =
1

1 + e−x

19 of 35

Theano basics – solution 2

1 >>> x = T.dmatrix(’x’)
2 >>> s = 1 / (1 + T.exp(-x))
3 >>> logistic = theano.function([x], s)
4 >>> logistic([[0, 1], [-1, -2]])
5 array([[0.5 , 0.73105858],
6 [0.26894142, 0.11920292]])

Note that the operations are performed element-wise.

20 of 35

Theano basics – multiple inputs outputs

We can compute the elementwise difference, absolute difference,
and squared difference between two matrices a and b at the same
time.

1 >>> a, b = T.dmatrices(’a’, ’b’)
2 >>> diff = a - b
3 >>> abs_diff = abs(diff)
4 >>> diff_squared = diff**2
5 >>> f = function([a, b], [diff, abs_diff, diff_squared])

21 of 35

Theano basics – shared variables

Shared variables allow for functions with internal states.
I hybrid symbolic and non-symbolic variables,

I value may be shared between multiple functions,

I used in symbolic expressions but also have an internal value.
The value can be accessed and modified by the .get value() and
.set value() methods.

Accumulator
The state is initialized to zero. Then, on each function call, the state
is incremented by the function’s argument.

1 >>> state = theano.shared(0)
2 >>> inc = T.iscalar(’inc’)
3 >>> accumulator = theano.function([inc], state,
4 updates=[(state, state+inc)])

22 of 35

Theano basics – updates parameter

I Updates can be supplied with a list of pairs of the form
(shared-variable, new expression),

I Whenever function runs, it replaces the value of each shared
variable with the corresponding expression’s result at the end.

In the example above, the accumulator replaces state’s value with
the sum of state and the increment amount.

1 >>> state.get_value()
2 array(0)
3 >>> accumulator(1)
4 array(0)
5 >>> state.get_value()
6 array(1)
7 >>> accumulator(300)
8 array(1)
9 >>> state.get_value()

10 array(301)

23 of 35

Act III

Two Theano examples: logistic regression and
a deep net

24 of 35

Theano basics – exercise 3
I Logistic regression is a probabilistic linear classifier.

I It is parametrised by a weight matrix W and a bias vector b.

I The probability that an input vector x is classified as 1 can be
written as:

P(Y = 1|x ,W ,b) =
1

1 + e−(Wx+b) = s(Wx + b)

I The model’s prediction ypred is the class whose probability is
maximal, specifically for every x :

ypred = 1(P(Y = 1|x ,W ,b) > 0.5)

I And the optimisation objective (negative log-likelihood) is

−y log(s(Wx + b))− (1− y) log(1− s(Wx + b))

(you can put a Gaussian prior over W if you so desire.)
Using the Logistic Function, implement Logistic Regression.

25 of 35

Theano basics – exercise 3
1 ...
2 x = T.matrix("x")
3 y = T.vector("y")
4 w = theano.shared(np.random.randn(784), name="w")
5 b = theano.shared(0., name="b")
6
7 # Construct Theano expression graph
8 prediction, obj, gw, gb # Implement me!
9

10 # Compile
11 train = theano.function(inputs=[x,y],
12 outputs=[prediction, obj],
13 updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
14 predict = theano.function(inputs=[x], outputs=prediction)
15
16 # Train
17 for i in range(training_steps):
18 pred, err = train(D[0], D[1])
19 ...

26 of 35

Theano basics – solution 3

1 ...
2 # Construct Theano expression graph
3 # Probability that target = 1
4 p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))
5 # The prediction thresholded
6 prediction = p_1 > 0.5
7 # Cross-entropy loss function
8 obj = -y * T.log(p_1) - (1-y) * T.log(1-p_1)
9 # The cost to minimize

10 cost = obj.mean() + 0.01 * (w ** 2).sum()
11 # Compute the gradient of the cost
12 gw, gb = T.grad(cost, [w, b])
13 ...

27 of 35

Theano basics – exercise 4

Implement an MLP, following section Example: MLP in
http://nbviewer.ipython.org/github/craffel/
theano-tutorial/blob/master/Theano%20Tutorial.
ipynb#example-mlp

28 of 35

http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb#example-mlp
http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb#example-mlp
http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb#example-mlp

Theano basics – solution 4

1 class Layer(object):
2 def __init__(self, W_init, b_init, activation):
3 n_output, n_input = W_init.shape
4 self.W = theano.shared(value=W_init.astype(theano.config.floatX),
5 name=’W’,
6 borrow=True)
7 self.b = theano.shared(value=b_init.reshape(-1, 1).astype(theano.config.floatX),
8 name=’b’,
9 borrow=True,

10 broadcastable=(False, True))
11 self.activation = activation
12 self.params = [self.W, self.b]
13
14 def output(self, x):
15 lin_output = T.dot(self.W, x) + self.b
16 return (lin_output if self.activation is None else self.activation(lin_output))

29 of 35

Theano basics – solution 4

1 class MLP(object):
2 def __init__(self, W_init, b_init, activations):
3 self.layers = []
4 for W, b, activation in zip(W_init, b_init, activations):
5 self.layers.append(Layer(W, b, activation))
6
7 self.params = []
8 for layer in self.layers:
9 self.params += layer.params

10
11 def output(self, x):
12 for layer in self.layers:
13 x = layer.output(x)
14 return x
15
16 def squared_error(self, x, y):
17 return T.sum((self.output(x) - y)**2)

30 of 35

Theano basics – solution 4

1 def gradient_updates_momentum(cost, params,
2 learning_rate, momentum):
3 updates = []
4 for param in params:
5 param_update = theano.shared(param.get_value()*0.,
6 broadcastable=param.broadcastable)
7 updates.append((param,
8 param - learning_rate*param_update))
9 updates.append((param_update, momentum*param_update

10 + (1. - momentum)*T.grad(cost, param)))
11 return updates

31 of 35

Epilogue

Making deep learning even simpler:
using Keras

32 of 35

Keras

I Keras is a python package that uses Theano (or TensorFlow)
to abstract away model design.

I A Sequential model is a linear stack of layers:

1 from keras.models import Sequential
2 from keras.layers import Dense, Activation
3
4 model = Sequential()
5 model.add(Dense(32, input_dim=784))
6 model.add(Activation(’relu’))
7
8 # for a mean squared error regression problem
9 model.compile(optimizer=’rmsprop’, loss=’mse’)

10
11 # train the model
12 model.fit(X, Y, nb_epoch=10, batch_size=32)

33 of 35

Keras

I Keras is a python package that uses Theano (or TensorFlow)
to abstract away model design.

I A Sequential model is a linear stack of layers:

1 from keras.models import Sequential
2 from keras.layers import Dense, Activation
3
4 model = Sequential()
5 model.add(Dense(32, input_dim=784))
6 model.add(Activation(’relu’))
7
8 # for a mean squared error regression problem
9 model.compile(optimizer=’rmsprop’, loss=’mse’)

10
11 # train the model
12 model.fit(X, Y, nb_epoch=10, batch_size=32)

33 of 35

Keras

Follow tutorial on http://goo.gl/xatlXR

In your free time:

Image processing example on https://goo.gl/G4ccHU

34 of 35

http://goo.gl/xatlXR
https://goo.gl/G4ccHU

Thank you

35 of 35

	"Deep Learning is not rocket science"
	Why deep learning is so easy (in practice)
	Playing with Theano
	Two Theano examples: logistic regression and a deep net
	Making deep learning even simpler: using existing packages

