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Pillar I: Deep learning

Conceptually simple models

Data: X = {x1,x2, ...,xN}, Y = {y1,y2, ...,yN}
Model: given matrices W and non-linear func. σ(·), define “network”

ỹi(xi) = W2 · σ
(
W1xi

)
Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.
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(
W1xi

)
Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.

Deep learning is awesome

I Simple and modular

I Huge attention from
practitioners and engineers

I Great software tools

I Scales with data and
compute

I Real-world impact

... but has many issues

I What does a model not know?

I Uninterpretable black-boxes

I Easily fooled (AI safety)

I Lacks solid mathematical
foundations (mostly ad hoc)

I Crucially relies on big data
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Why should I care about uncertainty?

I We need a way to tell what our model knows and what not.

I We train a model to recognise dog breeds

I And are given a cat to classify

I What would you want your model to do?

I Similar problems in decision making, physics, life science, etc.

I Uncertainty gives insights into the black-box when it fails
—where am I not certain?

I Uncertainty might even be useful to identify when attacked with
adversarial examples!

I Lastly, need less data if label only where model is uncertain:
wear-and-tear in robotics, expert time in medical analysis
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Pillar II: Bayes

The language of uncertainty
I Probability theory
I Specifically Bayesian probability theory (1750!)

When applied to Information Engineering...
I Bayesian modelling

I Built on solid mathematical foundations
I Orthogonal to deep learning...
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A simple way to tie the two pillars together

I “Dropout”: a popular method in deep learning, cited hundreds
and hundreds of times

I Works by randomly setting network units to zero

I This somehow improves performance and reduces over-fitting

I Used in almost all modern deep learning models
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A simple way to tie the two pillars together

I Can be shown that dropout training is identical to approximate
inference in Bayesian modelling [Gal, 2016],

I Connecting Deep Learning to Bayesian probability theory.

I The mathematically grounded connection gives a treasure trove
of new research opportunities:

I uncertainty in deep learning, e.g. interpretability and AI safety
I principled extensions to deep learning
I enable deep learning in small data domains
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A simple way to tie the two pillars together

I Can be shown that dropout training is identical to approximate
inference in Bayesian modelling [Gal, 2016],

I Connecting Deep Learning to Bayesian probability theory.

I The mathematically grounded connection gives a treasure trove
of new research opportunities:

I uncertainty in deep learning, e.g. interpretability and AI safety
I principled extensions to deep learning
I enable deep learning in small data domains

More in a second. First, some theory.
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Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate

qM(W) ≈ p
(
W|X,Y

)
I This is called approximate variational inference.
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Some theory

Theorem (Dropout as approximate variational inference)

Define qM(W) := M · diag(Bernoulli)

with variational parameter M.
The optimisation objective of (stochastic) variational inference with
qM(W) is identical to the objective of a dropout neural network.

Proof.

See Gal [2016].
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with variational parameter M.
The optimisation objective of (stochastic) variational inference with
qM(W) is identical to the objective of a dropout neural network.

Proof.

See Gal [2016].

Implementing inference with qM(W)
=

Implementing dropout training.
Line to line.
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Some theory

Theorem (Dropout as approximate variational inference)

Define qM(W) := M · diag(Bernoulli)

with variational parameter M.
The optimisation objective of (stochastic) variational inference with
qM(W) is identical to the objective of a dropout neural network.

Corollary (Model uncertainty with dropout)

Given p(y∗|fW(x∗)) = N (y∗; fW(x∗), τ−1I) for some τ > 0, the model’s
predictive variance can be estimated with the unbiased estimator:

Ṽar[y∗] := τ−1I +
1
T

T∑
t=1

fŴt (x∗)T fŴt (x∗)− Ẽ[y∗]T Ẽ[y∗]

with Ŵt ∼ q∗M(W).
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Some code, just for fun

In practical terms1, given point x :

I drop units at test time

I repeat 10 times

I and look at mean and sample variance.

I Or in Python:

1 y = []
2 for _ in xrange(10):
3 y.append(model.output(x, dropout=True))
4 y_mean = numpy.mean(y)
5 y_var = numpy.var(y)

1Friendly introduction given in yarin.co/blog
9 of 18
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Example uncertainty in deep learning

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

I Normal dropout:

I Same network, Bayesian perspective:
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Example uncertainty in deep learning

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

Normal dropout: Bayesian perspective:

What can we do with this?
I Interpretability & AI safety

I Principled deep learning extensions

I Deep learning in small data domains
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Example uncertainty in deep learning

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

Normal dropout: Bayesian perspective:

What can we do with this?
I Interpretability & AI safety

I Principled deep learning extensions
I Deep learning in small data domains

I Cancer diagnosis
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Active Learning with image data

Active learning of images [Gal, Islam & Ghahramani, 2017]
E.g. diagnose melanoma with a handful of images.
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Active Learning acquisition functions

Choose x∗ that maximises acquisition functions a(x):

x∗ = argmaxx∈Dpool
a(x)

E.g. points that maximise uncertainty. But, which uncertainty?

I Aleatoric uncertainty captures noise inherent in the data

I Epistemic uncertainty captures model’s lack of knowledge

I Predictive uncertainty captures the sum of the two

Figures adapted from Hanna M. Wallach (Cambridge, UMassAmherst)
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Acquisition functions for classification

Choose x∗ that maximises acquisition functions a(x):

x∗ = argmaxx∈Dpool
a(x)

Possible measures of uncertainty in classification:

I Predictive entropy (H[y |x,Dtrain])

aPE(x) = −
∑

c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain)

I Information gained about the model parameters (I[y ,W|x,Dtrain])

aMI(x) = H[y |x,Dtrain]− Ep(W|Dtrain)

[
H[y |x,W]

]
I Variation ratios

aVR(x) = 1−max
y

p(y |x,Dtrain)

I Random acquisition (baseline): aU(x) = unif()
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Acquisition functions intuition

Want to classify dogs vs. cats given image x with models M1,M2,M3
• Stochastic forward passes give probability vectors for each model:

1. (1,0), ..., (1,0)

2. (0.5,0.5), ..., (0.5,0.5), and

3. (1,0), (0,1), (1,0), ..., (0,1)
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1. (1,0), ..., (1,0)

2. (0.5,0.5), ..., (0.5,0.5), and

3. (1,0), (0,1), (1,0), ..., (0,1)

What’s the epistemic uncertainty? models M1 and M2 are
confident about the output. Model M3 is uncertain.
What’s the predictive uncertainty? M1 has low uncertainty, M2
and M3 have high uncertainty.

Acquisition functions intuition:

I M1: all acquisition functions give low uncertainty

I M2: variation ratios and predictive entropy give high uncertainty;
mutual information gives low uncertainty.

I M3: all acquisition functions give high uncertainty
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MNIST experiments

Test accuracy as a function of number of acquired images (up to 1K):
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using both a Bayesian CNN (red) and a deterministic CNN (blue)

Number of acquired images to get to model error of %:

% error BALD Var Ratios Max Ent Random

10% 145 120 165 255
5% 335 295 355 835
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Active learning vs. semi-supervised learning

Test error on MNIST with 1000 labelled training samples, for active
learning (using simple LeNet) vs. semi-supervised techniques:

Technique Test error

Semi-supervised:

SS Embedding (Weston et al., 2012) 5.73%
DGN (Kingma et al., 2014) 2.40%
Γ Ladder Network (Rasmus et al., 2015) 1.53%
Virtual Adversarial (Miyato et al., 2015) 1.32%

Active learning with various acquisitions:

Random 4.66%
BALD 1.80%
Max Entropy 1.74%
Var Ratios 1.64%
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Medical analysis with Active Learning

Active learning of images [Gal, Islam & Ghahramani, 2017]
E.g. diagnose melanoma with a handful of images:
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New horizons

Most exciting is work to come:
I What is interesting data to label? (when model is uncertain)

I Active learning in real-world medical applications

and much, much, more.
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Most exciting is work to come:
I What is interesting data to label? (when model is uncertain)

I Active learning in real-world medical applications

and much, much, more.

Thank you for listening.
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