

An Infinite Product of Sparse Chinese Restaurant Processes

Yarin Gal • Tomoharu Iwata • Zoubin Ghahramani

yg279@cam.ac.uk

The Chinese restaurant process (CRP)

- Distribution over partitions of *N* natural numbers \mathcal{P}_N .
- Marginal distribution of the Dirichlet process.
- Following a Chinese restaurant metaphor
 - Restaurant = partition $R \in \mathcal{P}_N$,
 - Table = partition block $T \in R$,
 - Customer sitting at a table = element in a block $i \in T$.
 - **Restaurant configuration** = sequence of block sizes $\mathbf{n} = (n_1, n_2, ..., n_K)$, in order of appearance

CRP – quick recap

Follows a recursive construction

- ► Given discount parameter d ∈ [0, 1) and concentration parameter c > -d,
- ► Given restaurant R^N with configuration n = (n₁,..., n_K) with K tables and ∑_{i=1}^K n_i = N customers,
- ▶ Probability of customer *N* + 1 to sit at an *existing table T_i*:

$$p(N+1 \in T_i | R^N) = rac{n_i - \mathbf{d}}{N + \mathbf{c}}$$

• Or at a *new table* T_{K+1} :

$$p(N+1 \in T_{K+1}|R^N) = rac{\mathbf{c} + K\mathbf{d}}{N+\mathbf{c}}.$$

We assumed discount $\boldsymbol{d} \in [0,1)$ and concentration $\boldsymbol{c} > -\boldsymbol{d}$ with conditional probabilities

$$rac{n_i-\mathbf{d}}{N+\mathbf{c}},rac{\mathbf{c}+K\mathbf{d}}{N+\mathbf{c}}.$$

What happens when...

- **c** is fixed and **d** \nearrow 1?
- **d** is fixed and $\mathbf{c} \nearrow \infty$?
- **c** is fixed and $\mathbf{d} \searrow \mathbf{0}$?
- **d** is fixed and $\mathbf{c} \searrow -\mathbf{d}$?

We assumed discount $\boldsymbol{d} \in [0,1)$ and concentration $\boldsymbol{c} > -\boldsymbol{d}$ with conditional probabilities

$$\frac{n_i-\mathbf{d}}{N+\mathbf{c}}, \frac{\mathbf{c}+K\mathbf{d}}{N+\mathbf{c}}.$$

What happens when...

- ► **c** is fixed and **d** / 1?
- **d** is fixed and **c** $\nearrow \infty$?
- c is fixed and d \searrow 0? \leftarrow one-parameter CRP
- d is fixed and c \searrow -d? \leftarrow very interesting indeed

A CRP parametrisation

Discount d is fixed and concentration c \searrow –d.

- Let $\gamma > 0$ and $M \in \mathbb{N}$.
- Given restaurant R_M^N with configuration $(n_1, ..., n_K)$ (sum to N),
- ► Let R_M^{N+1} follow a CRP distribution with concentration parameter $-\mathbf{d} + \gamma/M$ and discount parameter $\mathbf{d} \in [0, 1)$.
- Probability of customer N + 1 to sit at an *existing table* $T_i \in R_M^N$:

$$p(N+1 \in T_i | R_M^N) = \frac{n_i - \mathbf{d}}{N - \mathbf{d} + \gamma/M} \stackrel{M \to \infty}{
ightarrow} \frac{n_i - \mathbf{d}}{N - \mathbf{d}},$$

• Or at a *new table* T_{K+1} :

$$p(N+1 \in T_{K+1}|R_M^N) = \frac{-\mathbf{d} + \gamma/M + K\mathbf{d}}{N-\mathbf{d} + \gamma/M} \stackrel{M \to \infty}{\to} \frac{(K-1)\mathbf{d}}{N-\mathbf{d}}.$$

A CRP parametrisation

Discount d is fixed and concentration $\mathbf{c} = -\mathbf{d} + \gamma/M$. We have $R_M \stackrel{M \to \infty}{\Rightarrow} R_{\infty}$.

- ► First customer sits at table *T*₁,
- Probability of second customer to sit at *existing table* $T_1 \in R_{\infty}^1$:

$$p(2 \in T_1 | R_{\infty}^1) = \frac{1-\mathbf{d}}{1-\mathbf{d}} = 1,$$

- Or at a new table T_2 : $p(2 \in T_2 | R_{\infty}^1) = \frac{(1-1)d}{1-d} = 0$,
- ► For all $i \in \mathbb{N}$: $p(i \in T_1 | R_{\infty}^{i-1}) = \frac{i-1-\mathbf{d}}{i-1-\mathbf{d}} = 1$.
- A.s. resulting configuration with N customers all sitting at T₁:
 (N)
 - referred to as a **degenerate** configuration.

Not that interesting...

A sparse CRP (sCRP) parametrisation CAMBRIDGE

But if we had *M* restaurants with concentration $c = -d + \gamma/M$...

Theorem (Sparse parametrisation of the CRP)

- Let $\gamma > 0$ be a sparsity parameter and $m \leq M \in \mathbb{N}$.
- ► Let $R_{M,m}^N$ follow a CRP distribution with concentration $-\mathbf{d} + \gamma/M$ and discount $\mathbf{d} \in [0, 1)$ with N customers.
- ► Denote by (**n**_m)^M_{m=1} the random sequence of configurations of the restaurants (R^N_{M,m})^M_{m=1}.

The following holds true as $M \to \infty$:

- the expected count of degenerate configurations (N) is unbounded,
- ► the expected count of **non-degenerate configurations** is given by $\gamma H_d(N-1)$ with $H_d(N) = \sum_{i=1}^N \frac{1}{i-d}$.

A sparse CRP (sCRP) parametrisation CAMBRIDGE

So, in the infinite sequence of sparse CRPs (sCRPs)...

- almost all restaurants have all customers sitting next to a single table,
- ► but finitely many restaurants have more than a single table. In fact,
 - ► These have exchangeable partition probability function (EPPF):

$$p(n_1, n_2, ..., n_K) = \frac{\prod_{i=1}^K \left(\prod_{j=1}^{n_i-1} (j-d)\right) \prod_{i=1}^{K-2} (id)}{\prod_{i=1}^{N-1} (i-d)}.$$

We can analytically write the probability of a sequence of non-degenerate configurations —

For an infinite product of sparse CRPs the probability of configurations $\{n_m\}_{m=1}^{K^+}$ follows,

Theorem (Infinite product of sparse CRPs)

The probability of K^+ non-degenerate configurations $\{(n_1^m, ..., n_{k^m}^m) | m \in [K^+]\}$ is given by

$$\frac{\gamma^{K^{+}}}{K^{+}!}e^{-\gamma H_{\mathbf{d}}(N-1)}\prod_{m=1}^{K^{+}}\left(\frac{\prod_{i=1}^{k^{m}}\left(\prod_{j=1}^{n_{i}^{m-1}}(j-d)\right)\prod_{i=1}^{k^{m}-2}(id)}{\prod_{i=1}^{N-1}(i-d)}\right)$$

Obtained by setting c = −d + ^γ/_M in a product of M sparse CRPs with M → ∞.

Infinite product of sparse CRPs

We can re-write this equation as a product of Poisson densities and the EPPFs above...

- And obtain a recursive construction.
- Instead of extending the Chinese restaurant metaphor, we use an urn scheme:

Infinite product of sCRPs – urn scheme CAMBRIDGE

Time permits...

Definition (Urn scheme)

- Create Poi $(\frac{\gamma}{1-d})$ urns; for each urn
 - add two balls with distinct colours.
- At the I'th step $(I \ge 3)$
 - ► For each existing urn with balls of k colours, n_i balls of colour i
 - select colour i with probability ^{ni-d}/_{l-1-d} and add another ball of the same colour,

• or add a ball of a new colour with probability $\frac{(k-1)d}{l-1-d}$.

- Create $Poi(\frac{\gamma}{l-1-d})$ new urns; for each urn
 - add a ball of a new colour,
 - ► add I 1 balls of a distinct colour.

This suggests an MCMC scheme.

Expected number of urns as a function of the sparsity parameter γ

$$y = \gamma H_{\rm d}(N-1)$$

with **d** = 0.1 and *N* = 100.

CA

Expected number of urns as a function of the discount parameter d

$$y = \gamma H_{\rm d}(N-1)$$

with $\gamma = 5$ and N = 100.

Expected number of urns as a function of the number of draws N

$$y = \gamma H_{\rm d}(N-1)$$

with $\gamma = 5$ and $\mathbf{d} = 0.4$.

CA

Expected number of colours in the first urn (p = 1, blue) and in the $N^{0.5}$ 'th urn (p = 0.5, green) as a function of the number of draws N $y \propto N^{pd}$.

C C

Relation to existing research

CAMBRIDGE

- ► The process induces a categorical feature allocation
 - Restaurants = features
 - Tables = feature values
 - i'th customer in each restaurant = data point i
 - i'th customer sitting next to table T in restaurant R = data point i takes value T for feature R
- Relates to existing literature in the field:
 - ► IBP (Griffiths and Ghahramani, 2011) binary feature allocation
 - Continuum of urns (Roy, 2014) a product of urns with balls of two colours characterising the IBP

Finally - future research

What can we do with this process?

- Multi-view clustering; principled extension to
 - Cross-Cat (Mansinghka, Jonas, Petschulat, Cronin, Shafto, Tenenbaum, 2009),
 - Infinite latent attribute model (Palla, Knowles, Ghahramani, 2012),
 - ► etc.
- Bayesian representation learning
 - Features as data representation
- Currently running experiments!

Thank you

Cross-Cat:

