An Infinite Product of Sparse Chinese Restaurant Processes

Yarin Gal • Tomoharu Iwata • Zoubin Ghahramani
yg279@cam.ac.uk

CRP - quick recap

The Chinese restaurant process (CRP)

- Distribution over partitions of N natural numbers \mathcal{P}_{N}.
- Marginal distribution of the Dirichlet process.
- Following a Chinese restaurant metaphor -
- Restaurant = partition $R \in \mathcal{P}_{N}$,
- Table = partition block $T \in R$,
- Customer sitting at a table $=$ element in a block $i \in T$.
- Restaurant configuration = sequence of block sizes $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{K}\right)$, in order of appearance

CRP - quick recap

Follows a recursive construction

- Given discount parameter $\mathbf{d} \in[0,1)$ and concentration parameter c>-d,
- Given restaurant R^{N} with configuration $\mathbf{n}=\left(n_{1}, \ldots, n_{K}\right)$ with K tables and $\sum_{i=1}^{K} n_{i}=N$ customers,
- Probability of customer $N+1$ to sit at an existing table T_{i} :

$$
p\left(N+1 \in T_{i} \mid R^{N}\right)=\frac{n_{i}-\mathbf{d}}{N+\mathbf{c}}
$$

- Or at a new table T_{K+1} :

$$
p\left(N+1 \in T_{K+1} \mid R^{N}\right)=\frac{\mathbf{c}+K \mathbf{d}}{N+\mathbf{c}} .
$$

An interesting question

We assumed discount $\mathbf{d} \in[0,1)$ and concentration $\mathbf{c}>-\mathbf{d}$ with conditional probabilities

$$
\frac{n_{i}-\mathbf{d}}{N+\mathbf{c}}, \frac{\mathbf{c}+K \mathbf{d}}{N+\mathbf{c}}
$$

What happens when...

- \mathbf{c} is fixed and $\mathbf{d} \nearrow 1$?
$-\mathbf{d}$ is fixed and $\mathbf{c} \nearrow \infty$?
- \mathbf{c} is fixed and $\mathbf{d} \searrow 0$?
- \mathbf{d} is fixed and $\mathbf{c} \searrow-\mathbf{d}$?

An interesting question

We assumed discount $\mathbf{d} \in[0,1)$ and concentration $\mathbf{c}>-\mathbf{d}$ with conditional probabilities

$$
\frac{n_{i}-\mathbf{d}}{N+\mathbf{c}}, \frac{\mathbf{c}+K \mathbf{d}}{N+\mathbf{c}}
$$

What happens when...

- e is fixed and d $\lambda 1$?
- d is fixed and c λ_{∞} ?
- C is fixed and $\mathrm{d} \geqslant 0$? \leftarrow one-parameter CRP
- \mathbf{d} is fixed and $\mathbf{c} \searrow-\mathbf{d}$? \leftarrow very interesting indeed

A CRP parametrisation

Discount d is fixed and concentration $c \searrow-d$.

- Let $\gamma>0$ and $M \in \mathbb{N}$.
- Given restaurant R_{M}^{N} with configuration $\left(n_{1}, \ldots, n_{K}\right)$ (sum to N),
- Let R_{M}^{N+1} follow a CRP distribution with concentration parameter $-\mathbf{d}+\gamma / M$ and discount parameter $\mathbf{d} \in[0,1)$.
- Probability of customer $N+1$ to sit at an existing table $T_{i} \in R_{M}^{N}$:

$$
p\left(N+1 \in T_{i} \mid R_{M}^{N}\right)=\frac{n_{i}-\mathbf{d}}{N-\mathbf{d}+\gamma / M} \xrightarrow{M \rightarrow \infty} \frac{n_{i}-\mathbf{d}}{N-\mathbf{d}}
$$

- Or at a new table T_{K+1} :

$$
p\left(N+1 \in T_{K+1} \mid R_{M}^{N}\right)=\frac{-\mathbf{d}+\gamma / M+K \mathbf{d}}{N-\mathbf{d}+\gamma / M} \xrightarrow{M \rightarrow \infty} \frac{(K-1) \mathbf{d}}{N-\mathbf{d}} .
$$

A CRP parametrisation

Discount \mathbf{d} is fixed and concentration $\mathbf{c}=-\mathbf{d}+\gamma / M$. We have $R_{M} \stackrel{M}{\Rightarrow}{ }^{\infty} R_{\infty}$.

- First customer sits at table T_{1},
- Probability of second customer to sit at existing table $T_{1} \in R_{\infty}^{1}$:

$$
p\left(2 \in T_{1} \mid R_{\infty}^{1}\right)=\frac{1-\mathbf{d}}{1-\mathbf{d}}=1
$$

- Or at a new table $T_{2}: p\left(2 \in T_{2} \mid R_{\infty}^{1}\right)=\frac{(1-1) d}{1-d}=0$,
- For all $i \in \mathbb{N}: p\left(i \in T_{1} \mid R_{\infty}^{i-1}\right)=\frac{i-1-d}{i-1-d}=1$.
- A.s. resulting configuration with N customers all sitting at T_{1} :

$$
(N)
$$

- referred to as a degenerate configuration.

Not that interesting...

A sparse CRP (sCRP) parametrisation CAMBRIDGE

But if we had M restaurants with concentration $\mathbf{c}=-\mathbf{d}+\gamma / M$...

Theorem (Sparse parametrisation of the CRP)

- Let $\gamma>0$ be a sparsity parameter and $m \leq M \in \mathbb{N}$.
- Let $R_{M, m}^{N}$ follow a CRP distribution with concentration $-\mathbf{d}+\gamma / M$ and discount $\mathbf{d} \in[0,1)$ with N customers.
- Denote by $\left(\mathbf{n}_{m}\right)_{m=1}^{M}$ the random sequence of configurations of the restaurants $\left(R_{M, m}^{N}\right)_{m=1}^{M}$.
The following holds true as $M \rightarrow \infty$:
- the expected count of degenerate configurations (N) is unbounded,
- the expected count of non-degenerate configurations is given by $\gamma \mathbf{H}_{\mathbf{d}}(\mathbf{N}-\mathbf{1})$ with $H_{\mathbf{d}}(N)=\sum_{i=1}^{N} \frac{1}{i-d}$.

A sparse CRP (sCRP) parametrisation Fig Civibride

So, in the infinite sequence of sparse CRPs (sCRPs)...

- almost all restaurants have all customers sitting next to a single table,
- but finitely many restaurants have more than a single table. In fact,
- These have exchangeable partition probability function (EPPF):

$$
p\left(n_{1}, n_{2}, \ldots, n_{K}\right)=\frac{\prod_{i=1}^{K}\left(\prod_{j=1}^{n_{i}-1}(j-d)\right) \prod_{i=1}^{K-2}(i d)}{\prod_{i=1}^{N-1}(i-d)} .
$$

- We can analytically write the probability of a sequence of non-degenerate configurations -

Infinite product of sparse CRPs

For an infinite product of sparse CRPs the probability of configurations $\left\{\mathbf{n}_{m}\right\}_{m=1}^{K^{+}}$follows,

Theorem (Infinite product of sparse CRPs)

The probability of K^{+}non-degenerate configurations $\left\{\left(n_{1}^{m}, \ldots, n_{k^{m}}^{m}\right) \mid m \in\left[K^{+}\right]\right\}$is given by

$$
\frac{\gamma^{K^{+}}}{K^{+}!} e^{-\gamma H_{d}(N-1)} \prod_{m=1}^{K^{+}}\left(\frac{\prod_{i=1}^{k^{m}}\left(\prod_{j=1}^{n_{j}^{m}-1}(j-d)\right) \prod_{i=1}^{k^{m}-2}(i d)}{\prod_{i=1}^{N-1}(i-d)}\right)
$$

- Obtained by setting $\mathbf{c}=-\mathbf{d}+\frac{\gamma}{M}$ in a product of M sparse CRPs with $M \rightarrow \infty$.

Infinite product of sparse CRPs

- We can re-write this equation as a product of Poisson densities and the EPPFs above...

- And obtain a recursive construction.
- Instead of extending the Chinese restaurant metaphor, we use an urn scheme:

Infinite product of sCRPs - urn scheme Cimili CAMBRIDGE

Time permits...

Definition (Urn scheme)

- Create Poi $\left(\frac{\gamma}{1-d}\right)$ urns; for each urn
- add two balls with distinct colours.
- At the l'th step ($I \geq 3$)
- For each existing urn with balls of k colours, n_{i} balls of colour i
- select colour i with probability $\frac{n_{i}-d}{1-1-d}$ and add another ball of the same colour,
- or add a ball of a new colour with probability $\frac{(k-1) d}{1-1-d}$.
- Create Poi $\left(\frac{\gamma}{1-1-d}\right)$ new urns; for each urn
- add a ball of a new colour,
- add I - 1 balls of a distinct colour.

This suggests an MCMC scheme.

Infinite product of sCRPs - properties

Expected number of urns as a function of the sparsity parameter γ

$$
y=\gamma H_{\mathbf{d}}(N-1)
$$

with $\mathbf{d}=0.1$ and $N=100$.

Infinite product of sCRPs - properties

Expected number of urns as a function of the discount parameter \mathbf{d}

$$
y=\gamma H_{\mathbf{d}}(N-1)
$$

with $\gamma=5$ and $N=100$.

Infinite product of sCRPs - properties

Expected number of urns as a function of the number of draws N

$$
y=\gamma H_{\mathbf{d}}(N-1)
$$

with $\gamma=5$ and $\mathbf{d}=0.4$.

Infinite product of sCRPs - properties

Expected number of colours in the first urn ($p=1$, blue) and in the $N^{0.5 ' t h ~ u r n ~(~} p=0.5$, green) as a function of the number of draws N

$$
y \propto N^{p d}
$$

- The process induces a categorical feature allocation
- Restaurants = features
- Tables = feature values
- i 'th customer in each restaurant = data point i
- i 'th customer sitting next to table T in restaurant $R=$ data point i takes value T for feature R
- Relates to existing literature in the field:
- IBP (Griffiths and Ghahramani, 2011) - binary feature allocation
- Continuum of urns (Roy, 2014) - a product of urns with balls of two colours characterising the IBP

What can we do with this process?

- Multi-view clustering; principled extension to -

Cross-Cat:

- Cross-Cat (Mansinghka, Jonas, Petschulat, Cronin, Shafto, Tenenbaum, 2009),
- Infinite latent attribute model (Palla, Knowles, Ghahramani, 2012),
- etc.
- Bayesian representation learning
- Features as data representation
- Currently running experiments!

Thank you

