In short:

Dropout neural networks are identical to
variational inference in Gaussian processes.

his gives us...

e Insights into some of dropout’s key properties.
¢ Uncertainty in deep learning.
e Introduce the Bayesian machinery into existing deep learning frameworks.

e Straightforward generalisations of dropout.

Background

What is dropout?
e A technique to avoid over-fitting in multilayer perceptrons (MLPs).

e Given weight matrices W, and a bias vector b, sample vectors of Bernoulli random
variables b; with probabilities p;, to get MLP output:

y = U(X(b1W1) + b) (Do Wo).

e Optimisation objective:
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Can easily be generalised to multiple layers and classification.

Wait, what is a Gaussian process (GP)?
e A powerful tool in statistics, robust to over-fitting.

e Models distributions over functions.
e Supervised /unsupervised, regression/classification.

e Offers uncertainty estimates over the function values (in blue).
e Given training inputs X = {x;}¥, € R"*¥ and outputs Y = {y,;}, € RV*D,
estimate a function y = f(x) that is likely to have generated Y.

e We place a joint Gaussian distribution over all function values:
p(Y | X) = N(0,K(X,X) + 7 'Ty)
with precision hyper-parameter 7 and covariance function K(X, X).

Ok, what is variational inference?

e Condition the model on a finite set of random variables w.

e [he predictive distribution for a new input point x*
p(y'|x", X,Y) = /p(y*lx*,w)p(w\X,Y) dw,

e The distribution p(w|X, Y) cannot be evaluated analytically — define an “easier”
approximating variational distribution ¢(w).

e Minimise the Kullback—Leibler (KL) divergence: KL(q(w) | p(w|X,Y)).
e Minimising the KL divergence = maximising log evidence lower bound,
L= [ a(w)logp(YIX.w)dw — KL(g(w) pe)

with respect to the variational parameters defining g(w).
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Proof Sketch

1. Given a GP covariance function
K(x,y) = /N(W; 0,I0)p(b)o(w'x + b)o(w'y + b)dwdb
with some distribution p(b), o element-wise non-linear function (e.g. ReLU/TanH).

2. Approximate with Monte Carlo integration with K terms:
K
~ 1
K(x,y) = > o(wix + by)o(wiy + by)
k=1
with wy, ~ N (0,1y) and by ~ p(b). This is a random covariance function.

3. The GP predictive distribution is re-parametrised as
wi ~ N(0,Ig), wa~N(0,1k), by~ p(b),
W, = [Wk]é(zla W, = [Wd]cli)zla b = [bk]i(:la
w={Wi;, Wy, b}

1
ply ) = (37 oW 4 BIWa, 7L )
p(y x5, X,Y) = /p(y*\x*,w)p(w\X,Y)dw.

4. Use variational distribution ¢(w) = q¢(W1)q(W5)q(b) to approximate posterior
p(w|X,Y):

with some probability p; € |0,1], scalar & > 0 and M; = [mq]Q_1 c RAXD
variational parameters. Repeat for W.

5. Approximate the log evidence lower bound with Monte Carlo integration with a
single sample W ~ q(w):
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This is an unbiased estimator of Ly.

6. For regression we maximise
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recovering dropout objective with appropriate v and model precision 7 for small
enough o. Can easily be generalised to multiple layers and classification.

Insights

e Alternative explanation to dropout robustness to over-fitting.

e Weight-decay for the dropped-out weights should be scaled by the probability of
the weights not to be dropped.

e Dropout extensions such as m; - AV/(1,1) suggested in [S2014] are alternative
approximating distributions.

e At test time should use Monte Carlo integration with 7' terms
T
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p(y ‘X 7X7Y) ~ ?zl:p(y ’X 7wi)
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with @; ~ g(w), named MC dropout. Mentioned in [S2014| as model averaging.

Dropout as a Bayesian Approximation: Insights and Applications

Example Applications

Model uncertainty

e We can obtain model uncertainty from existing models

[GG2015A]

[GG2015B]

Predictive mean and uncertainties on the Mauna Loa CO, concentrations dataset:
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MC dropout, same network as above
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Gaussian process, SE covariance function
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Complete treatment with applications to Deep Reinforcement Learning given

in [GG2015A].

Bayesian convolutional neural networks (convnets)

e We can implement Bayesian convnets with existing tools in the field.

Test set error on log scale for LeNet:
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MNIST CIFAR-10

In blue is our Bayesian convnet implementation (lenet-all), in green is dropout ap-
plied after the fully connected layer alone (lenet-ip), in red no dropout (lenet-none).
Standard dropout shown with a dashed line, MC dropout shown with a solid line.

Complete treatment with new state-of-the-art results on CIFAR-10 given in
|GG20158].

Principled extensions of dropout
e Use of new approximating distributions.

e Also mathematically identical to variational inference in Bayesian neural networks.
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