
Improving PILCO with Bayesian Neural Network Dynamics Models

Yarin Gal and Rowan Thomas McAllister and Carl Edward Rasmussen1

Abstract— Model-based reinforcement learning (RL) allows
an agent to discover good policies with a small number of
trials by generalising observed transitions. Data efficiency can
be further improved with a probabilistic model of the agent’s
ignorance about the world, allowing it to choose actions under
uncertainty. Bayesian modelling offers tools for this task, with
PILCO [1] being a prominent example, achieving state-of-the-
art data efficiency on low dimensional RL benchmarks. But
PILCO relies on Gaussian processes (GPs), which prohibits
its applicability to problems that require a larger number
of trials to be solved. Further, PILCO does not consider
temporal correlation in model uncertainty between successive
state transitions, which results in PILCO underestimating state
uncertainty at future time steps [2]. In this paper we extend
PILCO’s framework to use Bayesian deep dynamics models
with approximate variational inference, allowing PILCO to
scale linearly with number of trials and observation space
dimensionality. Using particle methods we sample dynamics
function realisations, and obtain lower cumulative cost than
PILCO. We give insights into the modelling assumptions made
in PILCO, and show that moment matching is a crucial sim-
plifying assumption made by the model. Our implementation
can leverage GPU architectures, offering faster running time
than PILCO, and will allow structured observation spaces to be
modelled (images or higher dimensional inputs) in the future.

I. INTRODUCTION

Reinforcement learning (RL) algorithms learn control
tasks via trial and error, much like a child learning to ride a
bicycle [3]. But trials of real world control tasks often involve
time and resources we wish not to waste. Alternatively, the
number of trials might be limited due to wear and tear of
the system, making data-efficiency critical. Exploration tech-
niques such as Thompson sampling [4] can help learn better
policies faster. But a much more drastic improvement in data
efficiency can be achieved by modelling the system dynamics
[5]. A dynamics model allows the agent to generalise its
knowledge about the system dynamics to other, unobserved,
states. Probabilistic dynamics models allow an agent to con-
sider transition uncertainty throughout planning and predic-
tion, improving data efficiency even further. PILCO [1], for
example, is a data-efficient probabilistic model-based policy
search algorithm. PILCO analytically propagates uncertain
state distributions through a Gaussian process (GP) dynamics
model. This is done by recursively feeding the output state
distribution (output uncertainty) of one time step as the
input state distribution (input uncertainty) of the next time
step, until a fixed time horizon T . This allows the agent to
consider the long-term consequences (expected cumulative
cost) of a particular controller parametrisation w.r.t. all
plausible dynamics models. PILCO relies on GPs, which

1Department of Engineering, University of Cambridge, [yg279,
rtm26, cer54]@cam.ac.uk

work extremely well with small amounts of low dimensional
data, but scale cubically with the number of trials. Further,
PILCO’s distribution propagation adds a squared term in the
observation space dimensionality, making it hard to scale
the framework to high dimensional observation spaces. This
makes it difficult to use PILCO with tasks that require a
larger number of trials. Further, PILCO does not consider
temporal correlation in model uncertainty between successive
state transitions. This means that PILCO underestimates
state uncertainty at future time steps [2], which can lead
to diminished performance.

Here we attempt to answer these shortcomings by replac-
ing PILCO’s Gaussian process with a Bayesian deep dynam-
ics model, while maintaining the framework’s probabilistic
nature and its data-efficiency benefits. But this task poses
several interesting difficulties. First, we have to handle small
data, and neural networks are notoriously known for their
tendency to overfit. Furthermore, we must retain PILCO’s
ability to capture 1) dynamics model output uncertainty and
2) input uncertainty. Output uncertainty can be captured with
a Bayesian neural network (BNN), but end-to-end inference
poses a challenge. Input uncertainty in PILCO is obtained
by analytically propagating a state distribution through the
dynamics model. But this can neither be done analytically
with NNs nor with BNNs. Our solution to handling output
uncertainty relies on dropout as a Bayesian approximation
to the dynamics model posterior [6]. This allows us to use
techniques proven to work well in the field, while following
their probabilistic Bayesian interpretation. Input uncertainty
in the dynamics model is captured using particle techniques.
To do this we solve the difficulties encountered by [7] while
attempting this particle technique with PILCO in the past.
Interestingly, unlike PILCO our approach allows us to sample
dynamics functions, required for accurate variance estimates
of future state distributions.

Our approach has several benefits compared to the existing
PILCO framework. First, as we require lower time complex-
ity (linear in trials and observation space dimensionality),
we can scale our algorithm well to tasks that necessitate
more trials for learning. We demonstrate this by analysing
the running time of our algorithm compared to PILCO’s
on a standard benchmark. Second, unlike PILCO we can
sample dynamics function realisations, resulting in better
cumulative cost than PILCO’s on the cartpole swing-up
task (a 25% reduction in cumulative cost). The use of a
NN dynamics model comes at a price though, where we
need to use a slightly higher number of trials than PILCO.
Our approach offers insights into the modelling assumption
made in PILCO, such as the consequences of performing

moment matching. Lastly, our model can be seen as a
Bayesian approach to performing data efficient deep RL. In
the experiments section we compare our approach to that
of recent deep RL algorithms [8], [9], showing orders of
magnitude improvement in data efficiency on these.

The following sections are structured as follows. First we
outline the original PILCO algorithm (Section II) before
introducing our algorithm – an adaptation of PILCO (Sec-
tion III). We then describe our experiments using the cartpole
swing-up task (Section IV) used to compare data-efficiency
against PILCO, and discuss our insights (Section V). Finally,
we discuss future work (Section VI).

II. PILCO

In this section we outline the PILCO (probabilistic in-
ference for learning control) algorithm [1], prior to de-
scribing our adaption of PILCO in Section III. PILCO is
a model-based policy search RL algorithm that achieved
unprecedented data-efficiency of several control benchmarks
including the cartpole swing-up task.

PILCO is summarised by Algorithm 1. A policy π’s
functional form is chosen by the user (step 1), whose
parameters ψ are initialised randomly (step 2). Thereafter
PILCO executes the current policy from an initial state
(sampled from initial distribution p(X0)) until the time
horizon T (defined as one trial, step 4). Observed transitions
are recorded, and appended to the total training data. Given
the additional training data, the dynamics model is re-trained
(step 5). Using its probabilistic transition model, PILCO then
analytically predicts states distributions from an initial state
distribution p(X0) to p(X1) etc. until time horizon p(XT)
making a joint Gaussian assumption (step 6). Prediction of
future state distribution follows the generative model seen
in Figure 1, where each system-state Xt defines an action
Ut according to policy π, which determines the new state
Xt+1 according to the dynamics f . I.e. Xt+1 = f(Xt, Ut),
where we train a GP model of f given all previous observed
transition tuples {Xt, Ut, Xt+1}. Given the multi-state dis-
tribution p({X0, ..., XT }), the expected cost EX [cost(Xt)] is
computed for each state distribution, using a user-supplied
cost function. The sum of expected costs is our minimisation
objective J (step 7). Gradient information is also computed

Algorithm 1 PILCO
1: Define policy’s functional form: π : zt × ψ → ut.
2: Initialise policy parameters ψ randomly.
3: repeat
4: Execute system, record data.
5: Learn dynamics model.
6: Predict system trajectories from p(X0) to p(XT).
7: Evaluate policy:

J(ψ) =
∑T
t=0 γ

tEX [cost(Xt)|ψ].
8: Optimise policy:

ψ ← arg min
ψ

J(ψ).

9: until policy parameters ψ converge

w.r.t. policy parameters dJ/dψ. Finally, the objective J is
optimised using gradient decent according to dJ/dψ (step
8). The algorithm then loops back to step 4 and executes the
newly-optimised policy, which is locally optimal given all
the data observed thus far.

PILCO’s data-efficiency success can be attributed to its
probabilistic dynamics model. Probabilistic models help
avoid model bias – a problem that arises from selecting
only a single dynamics model f̂ from a large possible set,
and assuming that f̂ is the correct model with certainty
[2]. Whilst such approaches can provide accurate short
term state predictions e.g. p(X1), their longterm predictions
(e.g. p(XT)) are inaccurate due to the compounding effects
of T -many prediction errors from f̂ . Since inaccurate predic-
tions of p(XT) are made with high-confidence, changes in
policy parameters ψ are (falsely) predicted to have significant
affect on the expected cost at time T . Since optimising total
expected cost J must balance the expected costs of states,
including p(X1) and p(XT), the optimisation will compro-
mise on the cost of p(X1) based on perceived cost of p(XT)
– even though the prediction p(XT) is effectively random
noise. I.e. given sufficient model uncertainty, p(XT) will
have a broad distribution almost invariant to policy π. Such
undesirable behaviour hampers data efficiency. Optimising
data-efficiency exacerbates the negative effects of model bias
even further, since the smaller the data, the larger the set of
plausible models that can describe that data. PILCO uses
probabilistic models to avoid model bias by considering all
plausible dynamics models in prediction of all future states.
In cases as the above, PILCO optimises the policy based
only on the states Xt it can predict well.

III. OUR ALGORITHM: DEEP PILCO

We now describe our method – Deep PILCO – for data-
efficient deep RL. Our method is similar to PILCO: both
methods follow Algorithm 1. The main difference of Deep
PILCO is its dynamics model. PILCO uses a Gaussian
process which can model the dynamics’ output uncertainty,
but cannot scale to high dimensional observation spaces.
In contrast, Deep PILCO uses a deep neural network ca-
pable of scaling to high dimensional observations spaces.
Like PILCO, our policy-search algorithm alternates between

Xt Xt+1

Ut Ut+1

π π

f

Fig. 1: Prediction model of system trajectories (step 6
in Algorithm 1). The system state Xt generates action Ut
according to policy π, both of which result in a new state
Xt+1 as predicted by dynamics model f (a model trained
given all previously observed X and U).

mc

mp

l

θ

xc

yp

xp

l

u

Fig. 2: The cartpole swing-up task. A pendulum of length
l is attached to a cart by a frictionless pivot. The system
begins with cart at position xc = 0 and pendulum hanging
down: θ = π. The goal is to accelerate the cart by applying
horizontal force ut at each timestep t to invert then stabilise
the pendulum’s endpoint at the goal (black cross).

fitting a dynamics model to observed transitions data, evalu-
ating the policy using dynamics model predictions of future
states and costs, and then improving the policy.

Replacing PILCO’s GP with a deep network is a surpris-
ingly complicated endeavour though, as we wish our dynam-
ics model to maintain its probabilistic nature, capturing 1)
output uncertainty, and 2) input uncertainty.

A. Output uncertainty

First, we require output uncertainty from our dynamics
model, critical to PILCO’s data-efficiency. Yet simple NN
models cannot express output model uncertainty, and thus
cannot capture our ignorance of the latent system dynamics.
To solve this we use the Bayesian probabilistic equivalent of
the NN – the Bayesian neural network (BNN) [10].

In low data settings, BNNs represent model uncertainty
with the use of a posterior distribution over the weights of
the NN. However, the true posterior of a BNN is intractably
complex. One approximate solution is to use variational
inference where we find a distribution in a tractable family
which minimises the Kullback-Leibler (KL) divergence to
the true posterior. [6] show that dropout can be interpreted
as a variational Bayesian approximation, where the approx-
imating distribution is a mixture of two Gaussians with
small variances and the mean of one of the Gaussians fixed
at zero. The uncertainty in the weights induces prediction
uncertainty by marginalising over the approximate posterior
using Monte Carlo integration. This amounts to the regular
dropout procedure only with dropout also applied at test time,
giving us output uncertainty from our dynamics model.

This approach also offers insights into the use of NNs with
small data. [6] for example show that the network’s weight
decay can be parametrised as a function of dataset size,
dropout probability, and observation noise. Together with
adaptive learning-rate optimisation techniques, the number
of parameters requiring tuning becomes negligible.

B. Input uncertainty

A second difficulty with NN dynamics models is han-
dling input uncertainty. To plan under dynamics uncertainty,
PILCO analytically propagates state distributions through
the dynamics model (step 6 in Algorithm 1, depicted in
Figure 1). To do so, the dynamics model must pass uncertain
dynamics outputs from a given time step as uncertain input
into the dynamics model in the next time step. This handling
of input uncertainty cannot be done analytically with NNs,
as is done with Gaussian processes in PILCO.

To feed a distribution into the dynamics model, we resort
to particle methods (Algorithm 2). This involves sampling
a set of particles from the input distribution (step 2 in
Algorithm 2), passing these particles through the BNN
dynamics model (and sampling the uncertain output, step
8 in Algorithm 2), which yields an output distribution of
particles.

This approach was attempted unsuccessfully in the past
with PILCO [7]. [7] encountered several problems optimising
the policy with particle methods, the main problem being
the abundance of local optima in the optimisation surface,
impeding their BFGS optimisation method. [7] suggested
that this might be due to the finite number of particles
used and their deterministic optimisation. To avoid these
issues, we randomly re-sample a new set of particles at each
optimisation step, giving us an unbiased estimator for the
objective (step 7 in Algorithm 1). We then use the stochastic
optimisation procedure Adam [11] instead of BFGS.

We found that fitting a Gaussian distribution to the output
state distribution at each time step, as PILCO does, is of
crucial importance (steps 10-11 in Algorithm 2). This mo-
ment matching avoids multi-modality in the dynamics model.
Fitting a multi-modal distribution with a (wide) Gaussian
causes the objective to average over the many high-cost
states the Gaussian spans [2]. By forcing a unimodal fit,
the algorithm penalises policies that cause the predictive
states to bifurcate, often a precursor to a loss of control.
This can alternatively be seen as smoothing the gradients

Algorithm 2 Step 6 of Algorithm 1: Predict system trajec-
tories from p(X0) to p(XT)

1: Define time horizon T .
2: Initialise set of K particles xk0 ∼ P (X0).
3: for k = 1 to K do
4: Sample BNN dynamics model weights W k.
5: end for
6: for time t = 1 to T do
7: for each particle x1t to xKt do
8: Evaluate BNN with weights W k and input particle

xkt , obtain output ykt .
9: end for

10: Calculate mean µt and standard deviation σ2
t of

{y1t , ..., yKt }.
11: Sample set of K particles xkt+1 ∼ N (µt, σ

2
t).

12: end for

of the expected cost when bifurcation happens, simplifying
controller optimisation (this is explained further, with exam-
ples, in the experiments section). We hypothesised this to be
an important modelling choice done in PILCO and assessed
this assumption in our experiments.

C. Sampling functions from the dynamics model

Unlike PILCO, our approach allows sampling individual
functions from the dynamics model and following a single
function throughout an entire trial. This is because a repeated
application of the BNN dynamics model above can be seen
as a simple Bayesian recurrent neural network (RNN, where
an input is only given at the first time step). Approximate
inference in the Bayesian RNN is done by sampling function
weights once for the dynamics model, and using the same
weights at all timesteps (steps 4 and 8 in Algorithm 2). With
dropout, this is done by sampling and fixing the dropout
mask for all time steps during the rollout [12]. PILCO does
not consider such temporal correlation in model uncertainty
between successive state transitions, which results in PILCO
underestimating state uncertainty at future timesteps [2].

Another consequence of viewing our dynamics model as a
Bayesian RNN is that the model could be easily extended to
more interesting RNNs such as Bayesian LSTMs, capturing
long-term dependencies between states. This is important
for non-Markovian system dynamics, which can arise with
observation noise for example. In this paper we restrict
the model to Markovian system dynamics, where a simple
Bayesian recurrent neural network model suffices to predict
a single output state given a single input state.

Figure 5 (explained in detail below) shows trials obtained
with a fixed controller and sampled dynamics model func-
tions for the cartpole swing-up task. These are generated by
sampling particles from the initial distribution, and sampling
and fixing a dropout mask throughout the trial for each
particle.

IV. EXPERIMENT SETUP

This section describes the experiment setup we used to
compare our Deep PILCO algorithm against the state-of-the-
art PILCO, using the cartpole swing-up task as a benchmark.
We present a detailed analysis of the experiment results
in Section V. The cartpole swing-up task (Figure 2) is a
standard benchmark for nonlinear control due to the non-
linearity in the dynamics, and the requirement for nonlinear
controllers to successfully swing up and balance the pendu-
lum. Apart from the cartpole swing-up task, we evaluated our
approach on the cart, cartpole balancing, and pole swing-up
tasks. We report results on the cartpole swing-up alone due
to space constraints (and since this is the most difficult of
the tasks).

The cartpole swing-up is a continuous state, continuous
action, discrete time task. We assume zero observation noise.
The task goal is to balance the pendulum upright. A system
state x comprises the cart position, pendulum angle, and their
time derivatives x = [xc, θ, ẋc, θ̇]

>. Task parameters used are
pendulum length l = 0.6m, cart mass mc = 0.5kg, pendulum

mass mp = 0.5kg, time horizon T = 2.5s, time discretisation
∆t = 0.1s, and acceleration due to gravity g = 9.82m/s2.
In addition, friction resists the cart’s motion with a damping
coefficient b = 0.1Ns/m. The cartpole’s motion is described
with the differential equation:

ẋ =

[
ẋc, θ̇,

−2mplθ̇
2s+ 3mpgsc+ 4u− 4bẋc

4(mc +mp)− 3mpc2
,

−3mplθ̇
2sc+ 6(mc +mp)gs+ 6(u− bẋc)c

4l(mc +mp)− 3mplc2

]
,

using shorthand s = sin θ and c = cos θ. Both the
initial latent state and initial belief are assumed to be
i.i.d.: X0

iid∼ N (µ,Σ) where µ ∼ δ([0, π, 0, 0]>) and Σ
1
2 =

diag([0.2m, 0.2rad, 0.2m/s, 0.2rad/s]).
We use a saturating cost function: 1 − exp

(
− 1

2d
2/σ2

c

)
where σc = 0.25m and d2 is the squared Euclidean distance
between the pendulum’s end point (xp, yp) and its goal (0, l).
This is the standard setting used with PILCO as well.

For our deep dynamics model we experimented with
dropout probabilities p = 0, 0.05, 0.1, and 0.2. We found
that p = 0.05 performed best and used this in our comparison
to PILCO. As per Algorithm 1 we alternate between fitting
a dynamics model and optimising the policy. To fit the
dynamics model we use 5×103 optimisation steps, each step
using 100 particles (batch size). To optimise the controller we
use 103 steps, each step with batch size of 10. Weight decay
of the NN dynamics model is set to 10−4. As we assume no
observation noise in the experiment, we set the dynamics
model’s observation noise to 10−3. The dynamics model
architecture has 200 units with 2 hidden layers and sigmoid
activation functions. Our controller is a radial basis function
(RBF) network of 50 units. Like [8], we use a “replay buffer”
of finite size (the most recent 10 trials), discarding older trials
of data.

In our experiment we generate a single random trial for
each method, and then iterate Algorithm 1’s main loop for
100 times (40 for PILCO due to its time complexity). At
each iteration a single trial of data is acquired by executing
the cartpole for 2.5s, generating 25 transition datum per trial.
We evaluate each method at each iteration by calculating the
controller’s cost averaged over 50 randomly sampled initial
states from p(X0).

Figure 3 shows the average cost of 4 random runs (with
two standard deviations denoted by two shades for each plot).
Deep PILCO matches PILCO’s cost very quickly (within
26 trials) and then improves on PILCO’s performance by
25%, converging to 0.3 cost (compared to PILCO’s 0.4 cost).
Figure 4 shows the progression of deep PILCO’s fitting as
more data is collected.

Our model can be seen as a Bayesian approach to data
efficient deep RL. We compare to recent deep RL algorithms
([8] and [9]). [8] use an actor-critique model-free algorithm
based on deterministic policy gradient. [9] train a continuous
version of model-free deep Q-learning using imagined trials
generated with a learnt model. For their low dimensional
cartpole swing-up task [8] require approximately 2.5 × 105

Fig. 3: Cost per trial (on log scale) for PILCO and Deep
PILCO for the cartpole swing-up task. Vertical lines show
estimates of number of trials required for model convergence
for [9] (purple, requiring ∼ 400 trials) and [8] (green,
requiring ∼ 2, 500 trials).

steps to achieve good results. This is equivalent to ap-
proximately 2.5 × 103 trials of data, based on Figure 2
in [8] (note that [8] used time horizon T = 2s and time
discretisation ∆t = 0.02s, slightly different from ours; they
also normalised their reward, which does not allow us to
compare to their converged reward directly). [9] require
approximately 400 trials for model convergence. These two
results are denoted with vertical lines in Figure 3 (as the
respective papers do not provide high resolution trial-cost
plots).

Lastly, we report model run time for both Deep PILCO as
well as PILCO. Deep PILCO can leverage GPU architecture,
and took 5.85 hours to run for the first 40 iterations. This is
with constant time complexity w.r.t. the number of trials, and
linear time complexity in input dimensionality Q and output
dimensionality D. PILCO (running on the CPU) took 20.7
hours for the 40 trials, and scales with O(N2Q2D2) time
complexity, with N number of trials. With more trials PILCO
will become much slower to run. Consequently, PILCO is
unsuited for tasks requiring a large number of trials or high-
dimensional state tasks.

V. ANALYSIS

We next analyse the results from the previous section, pro-
viding insights based on the different setups we experimented
with.

A. Dynamics Models of Finite Capacity

PILCO’s dynamics model is a Gaussian process, a non-
parametric model of infinite-capacity, effectively able to
memorises all observed transition data. As more data is
observed, the model’s flexibility increases to fit the additional
data. NNs on the other hand are of finite capacity, and must
“smooth” over different data points when fitting to the data.
This poses a difficulty in our setting since when fitting a NN
model to a sequence of trials, the same importance would
be given to new trials as old ones. But new trials are much
more important for the agent to learn, and with many old
trials a NN might not model the new ones well.

One possible solution would be to use a larger NN with
each iteration, making inference slower as we get more
data. Another solution is to downweigh older trials, and
use a weighted Euclidean loss (which can be seen as a

(a) Trial 1 (b) Trial 10

(c) Trial 20 (d) Trial 26
Fig. 4: Progression of model fitting and controller opti-
misation as more trials of data are collected. Each x-axis
is timestep t, and each y-axis is the pendulum angle θ in
radians (see Figure 2). The goal is to swing the pendulum
up such that mod(θ, 2π) ≈ 0. The green lines are samples
from the ground truth dynamics. The blue distribution is
our Gaussian-fitted predictive distribution of states at each
timestep. (a) After the first trial the model fit (blue) does not
yet have enough data to accurately capture the true dynamics
(green). Thus the policy performs poorly: the pendulum
remains downwards swinging between 2π and 4π. (b) After
10 trials, the the model fit (blue) predicts very well for the fist
13 timesteps before separating from the true rollouts (green).
The controller has stabilised the pendulum at 0π for about
10 timesteps (1 second). (c) After 20 trials the model fit and
policy are slightly improved. (d) From trial 26 onward, the
dynamics model successfully captured the true dynamics and
the policy successfully stabilises the pendulum upright at 0π
radians most trials.

naive form of “experience replay”). We experimented with an
exponential decay, such that data from the oldest trial either
had weight 0.01, 0.1 or 0.4. A disadvantage of this approach
is slower optimisation. It requires several passes over the
training dataset with most observations being inconsequential
to the optimisation and did not work well in practice for any
decay rate. We suspect this to be due to the finite capacity
of the NN, where the function complexity keeps increasing
but the model complexity does not.

Our solution was instead to keep the last 10 trials of data
only, similar to [8]’s “replay buffer”. A disadvantage of this
approach is that the agent might forget bad trials, and will
continuously attempt to explore these even with an good
controller.

B. Particle Methods and Moment Matching

In our method we moment-matched the output distribution
at each time step before propagating it to the next time step.

This forces the state distribution to be uni-modal, avoiding
bifurcation points. We hypothesised in Section III that this
is an important modelling choice in PILCO. To assess this
hypothesis, we experimented with an identical experiment
setup to the above, but without moment matching. Instead,
we pass the particles unchanged from the output of one time
step to the next.

Figure 5 shows the dynamics model fit (in a similar plot
to Figure 4). The agent is able to swing the pendulum up
and maintain it for 0.5s, but then loses control and has to
swing it up again. The state trajectories seem to bifurcate at
the origin, with half of the states swinging clockwise, and
half counter-clockwise. The controller seems to be located
at a local optimum, as the agent seems unable to escape
this behaviour within 100 iterations (either with the 10 trials
memory restriction, or without).

Imposing a moment matching modelling assumption, the
agent would incur much higher cost at time step 9 for
example. Instead of having half of the trajectories at 2π
and the other half at 0π (resulting in overall low cost), a
Gaussian fit to these trajectories will have mean π and a
large standard deviation. Sampling new particles from this
Gaussian will have almost all particles with a high cost.
More importantly though, these particles will have near-zero
gradients (using the exponential cost function). This allows
the controller optimiser to ignore these states, and go in the
direction of gradients from states with low cost that do not
bifurcate.

C. Importance of Being Uncertain About Model Dynamics

We assessed the importance of a probabilistic dynamics
model in our setting. This can easily be done by setting

Fig. 5: Pendulum angle θ (from Figure 2) as a function
of timesteps. Each trajectory corresponds to a single particle
sampled from the initial distribution at t = 0. A controller
is optimised using Deep PILCO and fixed. Blue trajectories
are pendulum angle following the learnt dynamics model
with the fixed controller, and green trajectories are pendulum
angle following the system (true) dynamics with the same
controller. Each blue trajectory follows a single sampled
function from the dynamics model (applying the same
dropout mask at each timestep). The learnt dynamics model
matches the system dynamics, and the particle distribution
successfully captures the multi-modal predictive distribution
of future states. However, without moment matching we
could not optimise a good controller from these multi-modal
distributions.

(a) Dropout = 0 (MAP) (b) Dropout = 0.05

(c) Dropout = 0.1 (d) Dropout = 0.2

Fig. 6: Effects of dropout probabilities on the dynamics
model after 75 trials. Each x-axis is timestep t, and each
y-axis is pendulum angle θ. MAP estimate fails to capture
the dynamics as it offers no probabilistic output (the depicted
uncertainty is that of the propagated input distribution). Too
high dropout probability (0.2) does not allow the model to
learn the system dynamics.

the dropout probability to p = 0, which results in a MAP
estimate. As can be seen in Figure 6a, even after 75 trials the
dynamics model would not converge to anything sensible.
This suggests that input uncertainty is not sufficient, and
propagating the input distribution with a MAP estimate
will not necessarily avoid model bias. The same behaviour
is observed with too high dropout probability (Figure 6d)
presumably as the model underfits. Dropout probabilities of
0.05 and 0.1 seem to work best (Figures 6b and 6c). Note
though that these values are dependent on model size, and
with larger NNs we would expect larger dropout probabilities
to work better.

VI. FUTURE WORK

An exciting set of options exist for future work. First, we
can easily extend the dynamics model to consider observa-
tion noise – even heteroscedastic observation noise [13]. For
example, heteroscedastic observation noise exists in using
a camera to observe the position of moving objects. The
speed of the pendulum increases uncertainty in observing the
pendulum’s position due to blurring of the image. Capturing
observation noise can be challenging with the standard
PILCO framework, but would be a simple extension in ours.
Second, we can consider observation noise and incorpo-
rate a filter, analogous to [14]. Third, several compression
techniques remain available to learn in high dimensional
spaces (e.g. pixels) by compressing down to low dimensional
state representations, avoiding the use of data-inefficient au-
toencoders. Fourth, we can increase gradient smoothness to
better facilitate the policy optimisation process by smoothing

the particles at each point with Gaussian bumps. Lastly,
we can increase data-efficiency using exploration. Since
we use probabilistic models throughout planning we can
use uncertainty-directed exploration which is much more
efficient and informed than undirected random exploration
techniques such as epsilon-greedy or Boltzmann distributions
[15].

REFERENCES

[1] M. Deisenroth and C. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[2] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 37, no. 2, pp. 408–
423, 2015.

[3] R. Sutton and A. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[4] W. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[5] C. Atkeson and J. Santamaria, “A comparison of direct and model-
based reinforcement learning,” in In International Conference on
Robotics and Automation. Citeseer, 1997.

[6] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” arXiv preprint
arXiv:1506.02142, 2015.

[7] A. McHutchon, “Nonlinear modelling and control using gaussian
processes,” Ph.D. dissertation, University of Cambridge, 2014.

[8] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[9] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous
deep q-learning with model-based acceleration,” arXiv preprint
arXiv:1603.00748, 2016.

[10] D. MacKay, “Bayesian methods for adaptive models,” Ph.D. disserta-
tion, California Institute of Technology, 1992.

[11] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[12] Y. Gal, “A theoretically grounded application of dropout in recurrent
neural networks,” arXiv:1512.05287, 2015.

[13] ——, “Homoscedastic and heteroscedastic models,”
https://github.com/yaringal/ HeteroscedasticDropoutUncertainty,
2016.

[14] R. McAllister and C. Rasmussen, “Data-efficient reinforcement learn-
ing in continuous-state POMDPs,” arXiv preprint arXiv:1602.02523,
2016.

[15] S. Thrun, “Efficient exploration in reinforcement learning,” 1992.

