
Dropout as a Bayesian Approximation: Insights and Applications

Yarin Gal YG279@CAM.AC.UK
Zoubin Ghahramani ZG201@CAM.AC.UK

University of Cambridge

Abstract
Deep learning techniques are used more and
more often, but they lack the ability to reason
about uncertainty over the features. Features ex-
tracted from a dataset are given as point esti-
mates, and do not capture how much the model is
confident in its estimation. This is in contrast to
probabilistic Bayesian models, which allow rea-
soning about model confidence, but often with
the price of diminished performance.

We show that a multilayer perceptron (MLP)
with arbitrary depth and non-linearities, with
dropout applied after every weight layer, is math-
ematically equivalent to an approximation to a
well known Bayesian model. This interpretation
offers an explanation to some of dropout’s key
properties, such as its robustness to over-fitting.
Our interpretation allows us to reason about un-
certainty in deep learning, and allows the intro-
duction of the Bayesian machinery into existing
deep learning frameworks in a principled way.
Our analysis suggests straightforward generalisa-
tions of dropout for future research which should
improve on current techniques.

1. Introduction
Deep learning works very well in practice for many tasks,
ranging from image processing (Krizhevsky et al., 2012)
to language modelling (Bengio et al., 2006). However the
framework has some major limitations as well. Our inabil-
ity to reason about uncertainty over the features is an ex-
ample of such. The features extracted from a dataset are
often given as point estimates. These do not allow us to
capture how much the model is confident in its estimation.
On the other hand, probabilistic Bayesian models such as
the Gaussian process (Rasmussen & Williams, 2006) of-

This paper is short version of “Dropout as a Bayesian Approxima-
tion: Representing Model Uncertainty in Deep Learning” by Gal
& Ghahramani (2015).

fer us the ability to reason about our confidence. But these
often come with a price of lessened performance.

Another major obstacle with deep learning techniques is
over-fitting. This problem has been largely answered with
the introduction of dropout (Hinton et al., 2012; Srivastava
et al., 2014). Indeed many modern models use dropout to
avoid over-fitting in practice. Over the last several years
many have tried to explain why dropout helps in avoid-
ing over-fitting, a property which is not often observed in
Bayesian models. Papers such as (Wager et al., 2013; Baldi
& Sadowski, 2013) have suggested that dropout performs
stochastic gradient descent on a regularised error function,
or is equivalent to an L2 regulariser applied after scaling
the features by some estimate.

Here we show that a multilayer perceptron (MLP) with ar-
bitrary depth and non-linearities, with dropout applied af-
ter every weight layer, is mathematically equivalent to an
approximation to the probabilistic deep Gaussian process
model (Damianou & Lawrence, 2013). We would like to
stress that no simplifying assumptions are made on the use
of dropout in the literature, and that the results derived
are applicable to any network architecture that makes use
of dropout exactly as it appears in practical applications.
We show that the dropout objective, in effect, minimises
the Kullback–Leibler divergence between an approximate
model and the deep Gaussian process.

We survey possible applications of this new interpretation,
and discuss insights shedding light on dropout’s proper-
ties. This interpretation of dropout as a Bayesian model
offers an explanation to some of its properties, such as
its ability to avoid over-fitting. Further, our insights al-
low us to treat MLPs with dropout as fully Bayesian mod-
els, and obtain uncertainty estimates over their features. In
practice, this allows the introduction of Bayesian machin-
ery into existing deep learning frameworks in a principled
way. Lastly, our analysis suggests straightforward gener-
alisations of dropout for future research which should im-
prove on current techniques.

The work presented here is an extensive theoretical treat-
ment of the above, with applications studied separately.

Dropout as a Bayesian Approximation: Insights and Applications

2. Background
We review dropout, and survey the Gaussian process
model1 and approximate variational inference quickly.
These tools will be used in the following section to derive
the main results of this work. We use the following notation
throughout the paper. Bold lower case letters denote vec-
tors, bold upper case letters denote matrices, and standard
weight letters denote scalar quantities. We use subscripts
to denote either entire rows / columns (with bold letters),
or specific elements. We use subscripts to denote variables
as well (such as W1 : Q × K,W2 : K × D), with cor-
responding lower case indices to refer to specific rows /
columns (wq,wk for the first variable and wk,wd for the
second). We use a second subscript to denote the element
index of a specific variable: w1,qk denotes the element at
row q column k of the variable W1.

2.1. Dropout

We review the dropout MLP model (Hinton et al., 2012;
Srivastava et al., 2014) quickly for the case of a single
hidden layer MLP. This is done for ease of notation, and
generalisation to multiple layers is straightforward. De-
note by W1,W2 the weight matrices connecting the first
layer to the hidden layer and connecting the hidden layer to
the output layer respectively. These linearly transforming
the layers’ inputs before applying some element-wise non-
linearity σ(·). Denote by b the biases by which we shift
the input of the non-linearity. We assume the model to out-
putD dimensional vectors while its input isQ dimensional
vectors, with K hidden units. Thus W1 is a Q×K matrix,
W2 is aK×D matrix, and b is aK dimensional vector. A
standard MLP model would output ŷ = σ(xW1 + b)W2

given some input x.2

Dropout is applied by sampling two binary vectors b1, b2
of dimensions Q and K respectively. The elements of the
vectors are distributed according to a Bernoulli distribution
with some parameter pi ∈ [0, 1] for i = 1, 2. Thus b1,q ∼
Bernoulli(p1) for q = 1, ..., Q, and b2,k ∼ Bernoulli(p2)
for k = 1, ...,K. Given an input x, 1−p1 proportion of the
elements of the input are set to zero: x◦b1 where ◦ signifies
the Hadamard product. The output of the first layer is given
by σ((x ◦ b1)W1 + b) ◦ b2, which is linearly transformed
to give the dropout model’s output ŷ =

(
(σ((x ◦ b1)W1 +

b)) ◦ b2
)
W2. This is equivalent to multiplying the weight

matrices by the binary vectors to zero out entire rows:

ŷ = σ(x(b1W1) + b)(b2W2).

The process is repeated for multiple layers. Note that

1For a full treatment of Gaussian Processes, see Rasmussen &
Williams (2006).

2Note that we omit the outer-most bias term as this is equiva-
lent to centring the output.

to keep notation clean we will write b1 when we mean
diag(b1) with the diag(·) operator mapping a vector to a
diagonal matrix whose diagonal is the elements of the vec-
tor.

To use the MLP model for regression we might use the eu-
clidean loss,

E =
1

2N

N∑
n=1

||yn − ŷn||22 (1)

where {y1, . . . ,yN} are N observed outputs, and
{ŷ1, . . . , ŷN} being the outputs of the model with corre-
sponding observed inputs {x1, . . . ,xN}.

To use the model for classification, predicting the prob-
ability of x being classified as 1, ..., D, we pass the
output of the model ŷ through an element-wise soft-
max function to obtain normalised scores: p̂nd =
exp(ŷnd)/ (

∑
d′ exp(ŷnd′)). Taking the log of this func-

tion results in a softmax loss,

E = − 1

N

N∑
n=1

log(p̂n,cn) (2)

where cn ∈ [1, 2, ..., D] is the observed class of input n.

During optimisation, this term is scaled by the learning rate
r1 and a regularisation term is added. We often use L2

regularisation weighted by some weight decay r2 (alterna-
tively, the derivatives might be scaled), resulting in a min-
imisation objective (often referred to as cost),

Ldropout := r1E + r2
(
||W1||22 + ||W2||22 + ||b||22

)
. (3)

We sample new realisations for the binary vectors bi for ev-
ery input point and every forward pass thorough the model
(evaluating the model’s output), and use the same values in
the backward pass (propagating the derivatives to the pa-
rameters).

The dropped weights b1W1 and b2W2 are often scaled by
1
pi

to maintain constant output magnitude. At test time no
sampling takes place. This is equivalent to initialising the
weights Wi with scale 1

pi
with no further scaling at training

time, and at test time scaling the weights Wi by pi. Note
that the probabilities pi can be optimised.

We will show that equations (1) to (3) arise in Gaussian pro-
cess approximation as well. Next we introduce the Gaus-
sian process model.

2.2. Gaussian Processes

The Gaussian process (GP) is a powerful tool in statistics
that allows us to model distributions over functions. It has
been applied in both the supervised and unsupervised do-
mains, for both regression and classification tasks (Ras-
mussen & Williams, 2006; Titsias & Lawrence, 2010; Gal

Dropout as a Bayesian Approximation: Insights and Applications

et al., 2015). The Gaussian process offers desirable proper-
ties such as uncertainty estimates over the function values,
robustness to over-fitting, and principled ways for hyper-
parameter tuning. The use of approximate variational in-
ference for the model allows us to scale it to large data via
stochastic and distributed inference (Hensman et al., 2013;
Gal et al., 2014).

Given a training dataset consisting of N inputs
{x1, . . . ,xN} and their corresponding outputs
{y1, . . . ,yN}, we would like to estimate a function
y = f(x) that is likely to have generated our observa-
tions. We denote the inputs X ∈ RN×Q and the outputs
Y ∈ RN×D.

What is a function that is likely to have generated our data?
Following the Bayesian approach we would put some prior
distribution over the space of functions p(f). This distri-
bution represents our prior belief as to which functions are
more likely and which are less likely to have generated our
data. We then look for the posterior distribution over the
space of functions given our dataset (X,Y):

p(f |X,Y) ∝ p(Y|X, f)p(f).

This distribution captures the most likely functions given
our observed data.

By modelling our distribution over the space of functions
with a Gaussian process we can analytically evaluate its
corresponding posterior in regression tasks, and estimate
the posterior in classification tasks. In practice what this
means is that for regression we place a joint Gaussian dis-
tribution over all function values,

F |X ∼ N (0,K(X,X)) (4)

Y | F ∼ N (F, τ−1IN)

with some precision hyper-parameter τ and where IN is the
identity matrix with dimensions N ×N . For classification
we sample from a categorical distribution with probabilities
given by passing τY through an element-wise softmax,

F |X ∼ N (0,K(X,X)) (5)
Y | F ∼ N (F, 0 · IN)

cn |Y ∼ Categorical

(
exp(τynd)/

(∑
d′

exp(τynd′)

))

for n = 1, ..., N with observed class label cn. Note that we
did not simply write Y = F because of notational conve-
nience that will allow us to treat regression and classifica-
tion together.

To model the data we have to choose a covariance func-
tion K(X,Y) for the Gaussian distribution. This function
defines the (scalar) similarity between every pair of input

points K(xi,xj). Given a finite dataset of sizeN this func-
tion induces an N × N covariance matrix which we will
denote K := K(X,X). For example we may choose a sta-
tionary squared exponential covariance function. We will
see below that certain non-stationary covariance functions
correspond to TanH (hyperbolic tangent) or ReLU (recti-
fied linear) MLPs.

Evaluating the Gaussian distribution above involves an in-
version of an N by N matrix, an operation that requires
O(N3) time complexity. Many approximations to the
Gaussian process result in a manageable time complexity.
Variational inference can be used for such, and will be ex-
plained next.

2.3. Variational Inference

To approximate the model above we could condition the
model on a finite set of random variables ω. We make a
modelling assumption and assume that the model depends
on these variables alone, making them into sufficient statis-
tics in our approximate model.

The predictive distribution for a new input point x∗ is then
given by

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y) dω,

with y∗ ∈ RD. The distribution p(ω|X,Y) cannot usually
be evaluated analytically. Instead we define an approximat-
ing variational distribution q(ω), whose structure is easy to
evaluate.

We would like our approximating distribution to be as close
as possible to the posterior distribution obtained from the
full Gaussian process. We thus minimise the Kullback–
Leibler (KL) divergence, intuitively a measure of similarity
between two distributions:

KL(q(ω) | p(ω|X,Y)),

resulting in the approximate predictive distribution

q(y∗|x∗) =

∫
p(y∗|x∗,ω)q(ω)dω. (6)

Minimising the Kullback–Leibler divergence is equiva-
lent to maximising the log evidence lower bound (Bishop,
2006),

LVI :=

∫
q(ω) log p(Y|X,ω)dω − KL(q(ω)||p(ω))

(7)

with respect to the variational parameters defining q(ω).
Note that the KL divergence in the last equation is between

Dropout as a Bayesian Approximation: Insights and Applications

the approximate posterior and the prior over ω. Max-
imising this objective will result in a variational distribu-
tion q(ω) that explains the data well (as obtained from the
first term—the likelihood) while still being close to prior—
preventing the model from over-fitting.

We next present a variational approximation to the Gaus-
sian process extending on (Gal & Turner, 2015), which
results in a model mathematically identical to the use of
dropout in arbitrarily structured MLPs with arbitrary non-
linearities.

3. Dropout as a Bayesian Approximation
We show that MLPs with dropout applied after every
weight layer are mathematically equivalent to approximate
variational inference in the deep Gaussian process. For
this we build on previous work (Gal & Turner, 2015) that
applied variational inference in the sparse spectrum Gaus-
sian process approximation (Lázaro-Gredilla et al., 2010).
Starting with the full Gaussian process we will develop an
approximation that will be shown to be equivalent to the
MLP optimisation objective with dropout (eq. (3)) with ei-
ther the euclidean loss (eq. (1)) in the case of regression
or softmax loss (eq. (2)) in the case of classification. This
view of dropout will allow us to derive new probabilistic
results in deep learning.

3.1. A Gaussian Process Approximation

We begin by defining our covariance function. Let σ
be some non-linear function such as the rectified linear
(ReLU) or the hyperbolic tangent function (TanH). We de-
fine K(x,y) to be

K(x,y) =

∫
p(w)p(b)σ(wTx + b)σ(wTy + b)dwdb

with p(w) a standard multivariate normal distribution of
dimensionality Q and some distribution p(b). It is trivial to
show that this defines a valid covariance function following
(Tsuda et al., 2002).

We use Monte Carlo integration with K terms to approxi-
mate the integral above. This results in

K̂(x,y) =
1

K

K∑
k=1

σ(wT
k x + bk)σ(wT

k y + bk)

with wk ∼ p(w) and bk ∼ p(b). K will be the number
of hidden units in our single hidden layer MLP approxima-
tion.

Using K̂ instead of K as the covariance function of the
Gaussian process yields the following generative model:

wk ∼ p(w), bk ∼ p(b),

W1 = [wk]Kk=1,b = [bk]Kk=1

K̂(x,y) =
1

K

K∑
k=1

σ(wT
k x + bk)σ(wT

k y + bk)

F |X,W1,b ∼ N (0, K̂(X,X))

Y | F ∼ N (F, τ−1IN), (8)

with W1 a Q×K matrix.

This results in the following predictive distribution:

p(Y|X) =

∫
p(Y|F)p(F|W1,b,X)p(W1)p(b)

where the integration is with respect to F,W1, and b.

Denoting the 1×K row vector

φ(x,W1,b) =

√
1

K
σ(WT

1 x + b)

and the N × K feature matrix Φ = [φ(xn,W1,b)]Nn=1,
we have K̂(X,X) = ΦΦT . We rewrite p(Y|X) as

p(Y|X) =

∫
N (Y; 0,ΦΦT + τ−1IN)p(W1)p(b)dW1db,

analytically integrating with respect to F.

The normal distribution of Y inside the integral above can
be written as a joint normal distribution over yd, the d’th
columns of theN×D matrix Y, for d = 1, ..., D. For each
term in the joint distribution, following identity (Bishop,
2006, page 93), we introduce a K × 1 auxiliary random
variable wd ∼ N (0, IK),

N (yd; 0,ΦΦT + τ−1IN) =∫
N (yd; Φwd, τ

−1IN)N (wd; 0, IK)dwd.

Writing W2 = [wd]
D
d=1 a K × D matrix, the above is

equivalent to3

p(Y|X) =

∫
p(Y|X,W1,W2,b)p(W1)p(W2)p(b)

where the integration is with respect to W1,W2, and b.

We have re-parametrised the GP model and introduced ad-
ditional auxiliary random variables W1,W2, and b. We
next approximate the posterior over these variables with
appropriate approximating variational distributions.

3This is equivalent to the weighted basis function interpreta-
tion of the Gaussian process (Rasmussen & Williams, 2006).

Dropout as a Bayesian Approximation: Insights and Applications

3.2. Variational Inference in the Approximate Model

Our sufficient statistics are W1,W2, and b. To per-
form variational inference in our approximate model we
need to define a variational distribution q(W1,W2,b) :=
q(W1)q(W2)q(b). We define q(W1) to be a Gaussian
mixture distribution with two components, factorised over
Q:4

q(W1) =

Q∏
q=1

q(wq), (9)

q(wq) = p1N (mq,σ
2IK) + (1− p1)N (0,σ2IK)

with some probability p1 ∈ [0, 1], scalar σ > 0 and mq ∈
RK . We put a similar approximating distribution over W2:

q(W2) =

K∏
k=1

q(wk), (10)

q(wk) = p2N (mk,σ
2ID) + (1− p2)N (0,σ2ID)

with some probability p2 ∈ [0, 1].

We put a simple Gaussian approximating distribution over
b:

q(b) = N (m,σ2IK). (11)

Next we evaluate the log evidence lower bound for the task
of regression, for which we optimise over M1 = [mq]

Q
q=1,

M2 = [mk]Kk=1, and m, to maximise Eq. (7). The task
of classification and an extension to multiple layers is dis-
cussed in (Gal & Ghahramani, 2015).

3.3. Evaluating the Log Evidence Lower Bound for
Regression

We need to evaluate the log evidence lower bound:

LGP-VI :=

∫
q(W1,W2,b) log p(Y|X,W1,W2,b)

− KL(q(W1,W2,b)||p(W1,W2,b)),
(12)

where the integration is with respect to W1,W2, and b.

We re-parametrise the integrand to not depend on
W1,W2, and b directly, but instead on the standard nor-
mal distribution and the Bernoulli distribution. Let ε1 ∼
N (0, IQ×K) and b1,q ∼ Bernoulli(p1) for q = 1, ..., Q,
and ε2 ∼ N (0, IK×D) and b2,k ∼ Bernoulli(p2) for
k = 1, ...,K. Finally let ε ∼ N (0, IK). We write

W1 = b1(M1 + σε1) + (1− b1)σε1

4Note that this is a bi-modal distribution defined over each
output dimensionality; as a result the joint distribution over W1

is highly multi-modal.

W2 = b2(M2 + σε2) + (1− b2)σε2

b = m + σε, (13)

allowing us to re-write the integral in the above equation as∫
q(W1,W2,b) log p(Y|X,W1,W2,b)dW1dW2db

=

∫
q(b1, ε1, b2, ε2, ε)

log p(Y|X,W1(b1, ε1),W2(b2, ε2),b(ε))

dε1db1dε2db2dε.

We estimate the integral using Monte Carlo integration
with a single sample to obtain:

LGP-MC := log p(Y|X,Ŵ1,Ŵ2, b̂)

− KL(q(W1,W2,b)||p(W1,W2,b))

with Ŵ1,Ŵ2, b̂ defined following eq. (13) with ε̂1 ∼
N (0, IQ×K), b̂1,q ∼ Bernoulli(p1), ε̂2 ∼ N (0, IK×D),
and b̂2,k ∼ Bernoulli(p2). Following (Blei et al., 2012;
Hoffman et al., 2013; Kingma & Welling, 2013; Rezende
et al., 2014; Titsias & Lázaro-Gredilla, 2014), optimising
the stochastic objective LGP-MC we would converge to the
same limit as LGP-VI.

For the task of regression we have

log p(Y|X,Ŵ1,Ŵ2, b̂) =

D∑
d=1

logN (yd; Φŵd, τ
−1IN)

= −ND
2

log(2π) +
ND

2
log(τ)

−
D∑
d=1

τ

2
||yd − Φŵd||22,

as the output dimensions of a multi-output Gaussian pro-
cess are assumed to be independent. Denote Ŷ = ΦW2.
We can then sum over the rows instead of the columns of
Ŷ and write

D∑
d=1

τ

2
||yd − ŷd||22 =

N∑
n=1

τ

2
||yn − ŷn||22.

Here ŷn = φ(xn,Ŵ1, b̂)Ŵ2 =
√

1
Kσ(xnŴ1 + b̂)Ŵ2.

We can’t evaluate the KL divergence term between a mix-
ture of Gaussians and a single Gaussian analytically. How-
ever we can perform Monte Carlo integration like in the
above. A further approximation for large K (number of
hidden units) and small σ2 yields a weighted sum of KL
divergences between the mixture components and the sin-
gle Gaussian (proposition 1 in the appendix). Intuitively,
this is because the entropy of a mixture of Gaussians with

Dropout as a Bayesian Approximation: Insights and Applications

a large enough dimensionality and randomly distributed
means tends towards the sum of the Gaussians’ volumes.
Following the proposition, for large enough K we can ap-
proximate the KL divergence term as

KL(q(W1)||p(W1)) ≈ QK(σ2 − log(σ2)− 1)

+
p1
2

Q∑
q=1

mT
q mq.

and similarly for KL(q(W2)||p(W2)). The term
KL(q(b)||p(b)) can be evaluated analytically as

KL(q(b)||p(b)) =
1

2

(
mTm +K(σ2 − log(σ2)− 1)

)
.

Next we explain the relation between the above equations
and the equations brought in section 2.1.

3.4. Log Evidence Lower Bound Optimisation

Ignoring the constant terms τ,σ we obtain the maximisa-
tion objective

LGP-MC ∝ −
τ

2

N∑
n=1

||yn − ŷn||22

− p1
2
||M1||22 −

p2
2
||M2||22 −

1

2
||m||22.

Note that in the Gaussian processes literature the terms τ,σ
will often be optimised as well.

Letting σ tend to zero, we get that the KL divergence
blows-up and tends to infinity. However, in real-world sce-
narios setting σ to be machine epsilon (10−33 for example
in quadruple precision decimal systems) results in a con-
stant value logσ = −76. With high probability samples
from a Gaussian distribution with such a small standard
deviation will be represented on a computer, in effect, as
zero. Thus the random variable realisations Ŵ1,Ŵ2, b̂
can be approximated as

Ŵ1 ≈ b̂1M1, Ŵ2 ≈ b̂2M2, b̂ ≈m.

Note that Ŵ1 are not maximum a posteriori (MAP) esti-
mates, but random variables realisations. This gives us

ŷn ≈
√

1

K
σ(xn(b̂1M1) + m)(b̂2M2).

Scaling the optimisation objective by a positive constant γ
doesn’t change the parameter values at its optimum. We
thus scale the objective to get

LGP-MC ∝ −
γτ

2

N∑
n=1

||yn − ŷn||22 (14)

− γp1
2
||M1||22 −

γp2
2
||M2||22 −

γ

2
||m||22

(15)

and we recovered equation (1) for an appropriate setting of
γ and model precision τ . Maximising eq. (14) results in the
same optimal parameters as minimising eq. (3). Note that
eq. (14) is a scaled unbiased estimator of eq. (12). With cor-
rect stochastic optimisation scheduling both will converge
to the same limit.

The optimisation of LGP-MC proceeds as follows. We sam-
ple realisations b̂1, b̂2 to evaluate the lower-bound and its
derivatives. We perform a single optimisation step (for ex-
ample a single gradient descent step), and repeat, sampling
new realisations.

We can make several interesting observations at this point.
First, as is commonly known, the ratio between the con-
stant scaling the likelihood term in the dorpout objective
(the first term, usually referred to as the learning rate) and
that of the regularisation terms (the rest of the terms, usu-
ally referred to as the weight-decays) gives us the model
precision: r1

r2
= γτ/2

γ/2 = τ . Second, it seems that the
weight-decay for the dropped-out weights should be scaled
by the probability of the weights to not be dropped. This
might explain why doubling the learning rate of the bias
during MLP optimisation works well in practice in dropout
networks with p = 0.5. Lastly, it is known that setting
the dropout probability to zero (p1 = p2 = 1) results
in a standard MLP. Following the derivation above, this
would result in delta function approximating distributions
on the weights (replacing eqs. (9)-(11)). As was discussed
in (Lázaro-Gredilla et al., 2010) this leads to model over-
fitting. Empirically it seems that the Bernoulli approximat-
ing distribution is sufficient to considerably prevent over-
fitting.

We have presented the derivation for a single hidden layer
MLP. An extension of the derivation to multiple layers is
given below.

4. Insights and Applications
Our derivation suggests many applications and insights, in-
cluding the representation of model uncertainty in deep
learning, better model regularisation, computationally ef-
ficient Bayesian convolutional neural networks, use of
dropout in recurrent neural networks, and the principled
development of dropout variants, to name a few. These are
briefly discussed here, and studied more in depth in sepa-
rate work.

4.1. Insights

The Gaussian process’s robustness to over-fitting can be
contributed to several different aspects of the model and is

Dropout as a Bayesian Approximation: Insights and Applications

discussed in detail in (Rasmussen & Williams, 2006). Our
interpretation offers an explanation to dropout’s ability to
avoid over-fitting.

Our derivation also suggests that an approximating varia-
tional distribution should be placed over the bias b. This
could be sampled jointly with the weights W. Note that it
is possible to interpret dropout as doing so when used with
non-linearities with σ(0) = 0. This is because the product
by the vector of Bernoulli random variables can be passed
through the non-linearity in this case. However the GP in-
terpretation changes in this case, as the inputs are randomly
set to zero rather than the weights. By sampling Bernoulli
variables for the bias weights as well, the model might be-
come more robust.

In (Srivastava et al., 2014) alternative distributions to the
Bernoulli are discussed. For example, it is suggested that
multiplying the weights by N (1,σ2) results in similar re-
sults to dropout (although this becomes a more costly op-
eration at run time). This can be seen as an alternative ap-
proximating variational distribution where we set q(wk) =
mk + mkε with ε ∼ N (0, I).

We noted in the text that the weight-decay for the dropped-
out weights should be scaled by the probability of the
weights to not be dropped. This follows from the KL ap-
proximation. This might explain why doubling the learn-
ing rate of the bias during MLP optimisation works well in
practice in dropout networks with p = 0.5.

We also note that the model brought in section 2.1 does not
use a bias at the output layer. This is equivalent to shifting
the data by a constant amount and thus not treated in our
derivation.

4.2. Applications

Our derivation suggests an estimate for dropout models us-
ing T forward passes through the network and averaging
the results (referred to as MC dropout, compared to stan-
dard dropout with weight averaging). This result has been
presented in the literature before as model averaging (Sri-
vastava et al., 2014). Our interpretation suggests a new look
as to why MC dropout is more sensible than the current ap-
proach of averaging the weights. Furthermore, with the
obtained samples we can estimate the model’s confidence
in its predictions and take actions accordingly. For exam-
ple, in the case of classification, the model might return a
result with high uncertainty, in which case we might decide
to pass the input to a human to classify. Alternatively, one
can use a weak and fast model to perform classification,
and use a more elaborate but slower model only on inputs
for which the weak model in uncertain. Uncertainty is im-
portant in reinforcement learning (RL) (Szepesvári, 2010)
as well. With this information an agent can decide when

to exploit and when to explore its environment. Recent ad-
vances in RL have made use of MLPs to estimate agents’
Q-value functions, a function that estimates the quality of
different states and actions in the environment (Mnih et al.,
2013). Epsilon greedy search is often used in this setting,
where an agent selects the its currently estimated best ac-
tion with some probability, and explores otherwise. With
uncertainty estimates over the agent’s Q-value function,
techniques such as Thompson sampling (Thompson, 1933)
can be used to train the model faster. These ideas are stud-
ied in separate work.

Following our interpretation, one should apply dropout af-
ter each weight layer and not only after inner-product lay-
ers at the end of the model. This is to avoid parameter
over-fitting on all layers as the dropout model, in effect,
integrates over the parameters. The use of dropout after a
subset of the layers corresponds to interleaving MAP es-
timates and fully Bayesian estimates. The application of
dropout after every weight layer is not used in practice
however, as empirical results using standard dropout sug-
gest inferior performance. The use of MC dropout, how-
ever, with dropout applied after every weight layer results
in much better empirical performance on some MLP struc-
tures. One can also interpret the approximation above as
approximate variational inference in Bayesian neural net-
works (NNs). Thus, dropout applied after every weight
layer is equivalent to variational inference in Bayesian
NNs. This allows us to develop new Bayesian NN archi-
tectures which are not directly related to the Gaussian pro-
cess, using operations such as pooling and convolutions.
This leads to a good, efficient, and trivial approximations
to Bayesian convolutional neural networks (convnets). We
discuss these ideas with empirical evaluation in separate
work.

Another possible application is the adaptation of dropout
to recurrent neural networks (RNNs). Currently, dropout is
not used with these models as the repeated application of
noise over potentially thousands of layers results in a very
weak signal at the output. GP dynamical models (Wang
et al., 2005) and recursive GPs with perfect integrators cor-
respond to the ideas behind RNNs and long-short-term-
memory (LSTM) networks (Hochreiter & Schmidhuber,
1997). The GP models integrate over the parameters and
thus avoid over-fitting. Seen as a GP approximation one
would expect there to exist a suitable dropout approxima-
tion for these tasks as well.

Model ensembles are often used in deep learning as well,
where the same model is trained several times and at test
time the results of all models are averaged. This is compu-
tationally very expensive as either training time is increased
considerably, or many computational resources are used at
the same time. One would expect that stochastically simu-

Dropout as a Bayesian Approximation: Insights and Applications

lating forward passes through a dropout network will result
in similar performance.

Lastly, our interpretation allows the development of prin-
cipled extensions of dropout. The use of non-diminishing
σ2 (eqs. (9) to (11)) and the use of a mixture of Gaussians
with more than two components is an immediate example
of such. For example the use of a low rank covariance ma-
trix would allow us to capture complex relations between
the weights. These approximations could result in alter-
native uncertainty estimates to the ones obtained with MC
dropout. This is subject to current research.

5. Conclusions
We have shown that a multilayer perceptron with arbitrary
depth and non-linearities and with dropout applied after
every weight layer is mathematically equivalent to an ap-
proximation to the deep Gaussian process. This interpreta-
tion offers an explanation to some of dropout’s key proper-
ties. Our analysis suggests straightforward generalisations
of dropout for future research which should improve on
current techniques.

Acknowledgments
The authors would like to thank Mr Shane Gu, Mr Nilesh
Tripuraneni, Prof Yoshua Bengio, and Prof Phil Blun-
som for helpful comments. Yarin Gal is supported by the
Google European Fellowship in Machine Learning.

References
Baldi, Pierre and Sadowski, Peter J. Understanding

dropout. In Advances in Neural Information Processing
Systems, pp. 2814–2822, 2013.

Bengio, Yoshua, Schwenk, Holger, Senécal, Jean-
Sébastien, Morin, Fréderic, and Gauvain, Jean-Luc.
Neural probabilistic language models. In Innovations in
Machine Learning, pp. 137–186. Springer, 2006.

Bishop, Christopher M. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387310738.

Blei, David M, Jordan, Michael I, and Paisley, John W.
Variational Bayesian inference with stochastic search.
In Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pp. 1367–1374, 2012.

Damianou, Andreas and Lawrence, Neil. Deep Gaussian
processes. In Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, pp.
207–215, 2013.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. arXiv:1506.02142, 2015.

Gal, Yarin and Turner, Richard. Improving the Gaus-
sian process sparse spectrum approximation by repre-
senting uncertainty in frequency inputs. In Proceedings
of the 32nd International Conference on Machine Learn-
ing (ICML-15), 2015.

Gal, Yarin, van der Wilk, Mark, and Rasmussen, Carl. Dis-
tributed variational inference in sparse Gaussian process
regression and latent variable models. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N.D., and Wein-
berger, K.Q. (eds.), Advances in Neural Information Pro-
cessing Systems 27, pp. 3257–3265. Curran Associates,
Inc., 2014.

Gal, Yarin, Chen, Yutian, and Ghahramani, Zoubin. Latent
Gaussian processes for distribution estimation of mul-
tivariate categorical data. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-
15), 2015.

Hensman, James, Fusi, Nicolo, and Lawrence, Neil D.
Gaussian processes for big data. In Nicholson, Ann and
Smyth, Padhraic (eds.), UAI. AUAI Press, 2013.

Hinton, Geoffrey E, Srivastava, Nitish, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan R. Improving
neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John. Stochastic variational inference. The Jour-
nal of Machine Learning Research, 14(1):1303–1347,
2013.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

Lázaro-Gredilla, Miguel, Quiñonero-Candela, Joaquin,
Rasmussen, Carl Edward, and Figueiras-Vidal,
Anı́bal R. Sparse spectrum Gaussian process re-
gression. The Journal of Machine Learning Research,
11:1865–1881, 2010.

Dropout as a Bayesian Approximation: Insights and Applications

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan, and
Riedmiller, Martin. Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602, 2013.

Rasmussen, Carl Edward and Williams, Christopher K. I.
Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press,
2006. ISBN 026218253X.

Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan.
Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning (ICML-
14), pp. 1278–1286, 2014.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Szepesvári, Csaba. Algorithms for reinforcement learn-
ing. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 4(1):1–103, 2010.

Thompson, William R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, pp. 285–294, 1933.

Titsias, Michalis and Lawrence, Neil. Bayesian Gaussian
process latent variable model. Thirteenth International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 6:844–851, 2010.

Titsias, Michalis and Lázaro-Gredilla, Miguel. Doubly
stochastic variational Bayes for non-conjugate inference.
In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 1971–1979, 2014.

Tsuda, Koji, Kin, Taishin, and Asai, Kiyoshi. Marginal-
ized kernels for biological sequences. Bioinformatics,
18(suppl 1):S268–S275, 2002.

Wager, Stefan, Wang, Sida, and Liang, Percy S. Dropout
training as adaptive regularization. In Advances in Neu-
ral Information Processing Systems, pp. 351–359, 2013.

Wang, Jack, Hertzmann, Aaron, and Blei, David M. Gaus-
sian process dynamical models. In Advances in neural
information processing systems, pp. 1441–1448, 2005.

A. KL of a Mixture of Gaussians
Proposition 1. Let

q(x) =

L∑
i=1

piN (x;µi,Σi)

be a mixture of Gaussians with L components and µi ∈
RK normally distributed, and let p(x) = N (0, IK).

The KL divergence between q(x) and p(x) can be approx-
imated as:

KL(q(x)||p(x)) ≈
L∑
i=1

pi
2

(
µTi µi + tr(Σi)−K − log |Σi|

)
for large enough K.

Proof. We have

KL(q(x)||p(x)) =

∫
q(x) log

q(x)

p(x)
dx

=

∫
q(x) log q(x)dx−

∫
q(x) log p(x)dx

= −H(q(x))−
∫
q(x) log p(x)dx

where H(q(x)) is the entropy of q(x). The second term in
the last line can be evaluated analytically, but the entropy
term has to be approximated.

We begin by approximating the entropy term. We write

H(q(x)) = −
L∑
i=1

pi

∫
N (x;µi,Σi) log q(x)dx

= −
L∑
i=1

pi

∫
N (ε; 0, I) log q(µi + Liε)dε

≈ −
L∑
i=1

pi

(
1

T

T∑
t=1

log q(µi + Liεit)

)
for some T > 0 with LiL

T
i = Σi and εit ∼ N (0, I).

Now, the term inside the logarithm can be written as

q(µi + Liεit)

=

L∑
j=1

piN (µi + Liεit;µj ,Σj)

=

L∑
j=1

pi(2π)−K/2|Σj |−1/2 exp
{
− 1

2
||µj − µi − Liεit||2Σj

}
.

where || · ||Σ is the Mahalanobis distance. Since µi,µj are
assumed to be normally distributed, the quantity µj−µi−

Dropout as a Bayesian Approximation: Insights and Applications

Liεit is also normally distributed. Using the expectation of
the generalised χ2 distribution with K degrees of freedom,
we have that for K >> 0 there exists that ||µj − µi −
Liεit||2Σj

>> 0 for i 6= j. Finally, we have for i = j that
||µi − µi − Liεit||2Σi

= εTitL
T
i L−T

i L−1
i Liεit = εTitεit.

Therefore the last equation can be written as

q(µi + Liεit) ≈ pi(2π)−K/2|Σi|−1/2 exp
{
− 1

2
εTitεit

}
.

This gives us

H(q(x))

≈ −
L∑
i=1

pi log

(
1

T

T∑
t=1

pi(2π)−K/2|Σi|−1/2 exp
{
− 1

2
εTitεit

})

=

L∑
i=1

pi
2

(
log |Σi|+

1

T

T∑
t=1

εTitεit
)

+ C

whereC = −
∑L
i=1 pi

(
log pi−K

2 log(2π)

)
. Since εTitεit

distributes according to a χ2 distribution, it’s expectation is
K, and the last term can be approximated as

H(q(x)) ≈
L∑
i=1

pi
2

(
log |Σi|+K

)
+ C

Next, evaluating the first term of the KL divergence we get∫
q(x) log p(x)dx =

L∑
i=1

pi

∫
N (x;µi,Σi) log p(x)dx

for p(x) = N (0, IK) it is easy to validate that this is equiv-
alent to − 1

2

∑L
i=1 pi

(
µTi µi + tr(Σi)

)
.

Finally, we get

KL(q(x)||p(x)) ≈
L∑
i=1

pi
2

(
µTi µi + tr(Σi)−K − log |Σi|

)
.

