
Distributed Variational Inference in Sparse Gaussian
Process Regression and Latent Variable Models

Yarin Gal • Mark van der Wilk • Carl E. Rasmussen

yg279@cam.ac.uk

June 25th, 2014

yg279@cam.ac.uk

Outline

Gaussian process regression and latent variable models

Why do we want to scale these?

Distributed inference

Utility in scaling-up GPs

New horizons in big data

2 of 24

GP regression & latent variable models

Gaussian processes (GPs) are a powerful tool for probabilistic
inference over functions.

I GP regression captures non-linear
functions

I Can be seen as an infinite limit of
single layer neural networks

I GP latent variable models are an
unsupervised version of regression,
used for manifold learning

I Can be seen as a non-linear
generalisation of PCA

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

4

5

3 of 24

GP regression & latent variable models

GPs offer:
I uncertainty estimates,

I robustness to over-fitting,

I and principled ways for tuning hyper-parameters

4 of 24

GP latent variable models

GP latent variable models are used for tasks such as...

I Dimensionality reduction

I Face reconstruction

I Human pose estimation and tracking

I Matching silhouettes

I Animation deformation and
segmentation

I WiFi localisation

I State-of-the-art results for face
recognition 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 of 24

GP latent variable models

GP latent variable models are used for tasks such as...

I Dimensionality reduction

I Face reconstruction

I Human pose estimation and tracking

I Matching silhouettes

I Animation deformation and
segmentation

I WiFi localisation

I State-of-the-art results for face
recognition

5 of 24

GP latent variable models
GP latent variable models are used for tasks such as...

I Dimensionality reduction

I Face reconstruction

I Human pose estimation and tracking

I Matching silhouettes

I Animation deformation and
segmentation

I WiFi localisation

I State-of-the-art results for face
recognition

5 of 24

GP latent variable models
GP latent variable models are used for tasks such as...

I Dimensionality reduction

I Face reconstruction

I Human pose estimation and tracking

I Matching silhouettes

I Animation deformation and
segmentation

I WiFi localisation

I State-of-the-art results for face
recognition

5 of 24

GP latent variable models
GP latent variable models are used for tasks such as...

I Dimensionality reduction

I Face reconstruction

I Human pose estimation and tracking

I Matching silhouettes

I Animation deformation and
segmentation

I WiFi localisation

I State-of-the-art results for face
recognition

5 of 24

GP regression

Regression setting:

I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

I This implies a joint Gaussian distribution over function values:

p(F |X) = N (F ;µ(X),K), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F) = N (Y ;F , β−1In)

6 of 24

GP regression

Regression setting:

I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

I This implies a joint Gaussian distribution over function values:

p(F |X) = N (F ;µ(X),K), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F) = N (Y ;F , β−1In)

6 of 24

GP regression

Regression setting:

I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

I This implies a joint Gaussian distribution over function values:

p(F |X) = N (F ;µ(X),K), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F) = N (Y ;F , β−1In)

6 of 24

GP regression

Regression setting:

I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

I This implies a joint Gaussian distribution over function values:

p(F |X) = N (F ;µ(X),K), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F) = N (Y ;F , β−1In)

6 of 24

GP regression

Regression setting:

I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

I This implies a joint Gaussian distribution over function values:

p(F |X) = N (F ;µ(X),K), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F) = N (Y ;F , β−1In)

6 of 24

GP latent variable models

Latent variable models setting:

I Infer both the inputs, which are now latent, and the latent
function mappings at the same time

I Model identical to regression, with a prior over now latents X

Xn ∼ N (Xn;0, I), F (Xn) ∼ GP(0, k(X ,X)), Yn ∼ N (Fn, β
−1I)

I In approximate inference we look for variational lower bound to:

p(Y) =

∫
p(Y |F)p(F |X)p(X)d(F ,X)

I This leads to Gaussian approximation to the posterior over X

q(X) :≈ p(X |Y)

7 of 24

GP latent variable models

Latent variable models setting:

I Infer both the inputs, which are now latent, and the latent
function mappings at the same time

I Model identical to regression, with a prior over now latents X

Xn ∼ N (Xn;0, I), F (Xn) ∼ GP(0, k(X ,X)), Yn ∼ N (Fn, β
−1I)

I In approximate inference we look for variational lower bound to:

p(Y) =

∫
p(Y |F)p(F |X)p(X)d(F ,X)

I This leads to Gaussian approximation to the posterior over X

q(X) :≈ p(X |Y)

7 of 24

GP latent variable models

Latent variable models setting:

I Infer both the inputs, which are now latent, and the latent
function mappings at the same time

I Model identical to regression, with a prior over now latents X

Xn ∼ N (Xn;0, I), F (Xn) ∼ GP(0, k(X ,X)), Yn ∼ N (Fn, β
−1I)

I In approximate inference we look for variational lower bound to:

p(Y) =

∫
p(Y |F)p(F |X)p(X)d(F ,X)

I This leads to Gaussian approximation to the posterior over X

q(X) :≈ p(X |Y)

7 of 24

GP latent variable models

Latent variable models setting:

I Infer both the inputs, which are now latent, and the latent
function mappings at the same time

I Model identical to regression, with a prior over now latents X

Xn ∼ N (Xn;0, I), F (Xn) ∼ GP(0, k(X ,X)), Yn ∼ N (Fn, β
−1I)

I In approximate inference we look for variational lower bound to:

p(Y) =

∫
p(Y |F)p(F |X)p(X)d(F ,X)

I This leads to Gaussian approximation to the posterior over X

q(X) :≈ p(X |Y)

7 of 24

Why do we want to scale GPs?

I Naive models are often used with big data (linear regression,
ridge regression, random forests, etc.)

I These don’t offer many of the desirable properties of GPs
(non-linearity, robustness, uncertainty, etc.)

I Scaling GP regression and latent variable models allows for
non-linear regression, density estimation, data imputation,
dimensionality reduction, etc. on big datasets

8 of 24

However...

Problem – time and space complexity

I Evaluating p(Y |X) directly is an expensive operation

I Involves the inversion of the n by n matrix K

I requiring O(n3) time complexity

9 of 24

Sparse approximation!

Solution – sparse approximation!

I A collection of M “inducing inputs” – a set of points in the same
input space with corresponding values in the output space.

I These summarise the characteristics of the function using less
points than the training data.

I Given the dataset, we want to learn an optimal subset of
inducing inputs.

I Requires O(nm2 + m3) time complexity.

[Quiñonero-Candela and Rasmussen, 2005]

10 of 24

Sparse approximation!

Solution – sparse approximation!

I A collection of M “inducing inputs” – a set of points in the same
input space with corresponding values in the output space.

I These summarise the characteristics of the function using less
points than the training data.

I Given the dataset, we want to learn an optimal subset of
inducing inputs.

I Requires O(nm2 + m3) time complexity.

[Quiñonero-Candela and Rasmussen, 2005]

10 of 24

Sparse approximation!

Solution – sparse approximation!

I A collection of M “inducing inputs” – a set of points in the same
input space with corresponding values in the output space.

I These summarise the characteristics of the function using less
points than the training data.

I Given the dataset, we want to learn an optimal subset of
inducing inputs.

I Requires O(nm2 + m3) time complexity.

[Quiñonero-Candela and Rasmussen, 2005]

10 of 24

Sparse approximation!

Solution – sparse approximation!

I A collection of M “inducing inputs” – a set of points in the same
input space with corresponding values in the output space.

I These summarise the characteristics of the function using less
points than the training data.

I Given the dataset, we want to learn an optimal subset of
inducing inputs.

I Requires O(nm2 + m3) time complexity.

[Quiñonero-Candela and Rasmussen, 2005]

10 of 24

Sparse approximation
Sparse approximation in pictures:

Regression on 5000 points dataset

11 of 24

Sparse approximation
Sparse approximation in pictures:

I We can summarise the data using a small number of points

Regression on 500 points subset (in red)

11 of 24

Sparse approximation
Sparse approximation in pictures:

I We can summarise the data using a small number of points

Regression on 50 points subset (in red)

11 of 24

Distributed inference

Distributed Inference in
GPs

12 of 24

Why do we want distributed inference?

Usual datasets used with full GPs [O(n3)]

13 of 24

Why do we want distributed inference?

Usual datasets used with Sparse GPs [O(nm2 + m3), m << n]

13 of 24

Why do we want distributed inference?

Big data

13 of 24

Why do we want distributed inference?

Distributed Sparse GPs – O(nm2

T + m3) = O(n + m3),
for T = m2 nodes, m << n

13 of 24

Distributing the inference

I The data points become independent of one another given the
inducing inputs

I We can write the evidence lower bound as:

log p(Y) ≥
n∑

i=1

∫
q(u)q(Xi)p(Fi |Xi ,u) log p(Yi |Fi)d(Fi ,Xi ,u)

−KL(q(u)||p(u))− KL(q(X)||p(X))

with inducing inputs u and approximating distributions q(·)

I We can analytically integrate out q(u) and still keep a
factorised form

I We can compute each term in the factorised form
independently of the others with the Map-Reduce framework.

14 of 24

Distributing the inference

I The data points become independent of one another given the
inducing inputs

I We can write the evidence lower bound as:

log p(Y) ≥
n∑

i=1

∫
q(u)q(Xi)p(Fi |Xi ,u) log p(Yi |Fi)d(Fi ,Xi ,u)

−KL(q(u)||p(u))− KL(q(X)||p(X))

with inducing inputs u and approximating distributions q(·)

I We can analytically integrate out q(u) and still keep a
factorised form

I We can compute each term in the factorised form
independently of the others with the Map-Reduce framework.

14 of 24

Distributing the inference

I The data points become independent of one another given the
inducing inputs

I We can write the evidence lower bound as:

log p(Y) ≥
n∑

i=1

∫
q(u)q(Xi)p(Fi |Xi ,u) log p(Yi |Fi)d(Fi ,Xi ,u)

−KL(q(u)||p(u))− KL(q(X)||p(X))

with inducing inputs u and approximating distributions q(·)

I We can analytically integrate out q(u) and still keep a
factorised form

I We can compute each term in the factorised form
independently of the others with the Map-Reduce framework.

14 of 24

Distributing the inference

I The data points become independent of one another given the
inducing inputs

I We can write the evidence lower bound as:

log p(Y) ≥
n∑

i=1

∫
q(u)q(Xi)p(Fi |Xi ,u) log p(Yi |Fi)d(Fi ,Xi ,u)

−KL(q(u)||p(u))− KL(q(X)||p(X))

with inducing inputs u and approximating distributions q(·)

I We can analytically integrate out q(u) and still keep a
factorised form

I We can compute each term in the factorised form
independently of the others with the Map-Reduce framework.

14 of 24

Map-Reduce framework

[http://mohamednabeel.blogspot.co.uk/]

15 of 24

http://mohamednabeel.blogspot.co.uk/

Characteristics of distributed inference

The inference procedure should:

I distribute the computational load evenly across nodes,

I scale favourably with the number of nodes,

I and have low overhead in the global steps.

16 of 24

Characteristics of distributed inference

0 5 10 15 20 25 30 35 40
iter

17.0

17.1

17.2

17.3

17.4

17.5

17.6

T
h
re

a
d
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

Load balancing - 5 cores

0 20 40 60 80 100 120 140 160 180
iter

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

T
h
re

a
d
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)
Load balancing - 30 cores

Distribution of computational load

17 of 24

Characteristics of distributed inference

10 20 30 40 50
dataset size (103)

0

5

10

15

20

25

30

35

40

tim
e

/ i
te

r (
s)
Time scaling with data

Suggested inference
GPy

5 10 15 20 25 30
available cores

Scalability with the number of nodes

17 of 24

Characteristics of distributed inference

100 101

cores

100

101

102

ti
m

e
 /

 i
te

r
(s

)
Time scaling with cores

Negligible overhead in the global steps (constant time – O(m3))

17 of 24

Utility in scaling-up GPs

I We want to predict flight delays from various flight-record
characteristics (flight date and time, flight distance, etc.)

I Can we improve on GP prediction using increasing amounts of
data?

I We use different subset sizes of data: 7K, 70K, and 700K

18 of 24

Utility in scaling-up GPs

Size 7K 70K 700K

Dist GP 33.56 33.11 32.95

Root mean square error (RMSE) on flight dataset 7K-700K

I With more data we can learn better inducing inputs!

Year Month DayofMonth DayOfWeek DepTime ArrTime AirTime Distance plane_age0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ARD parameters for flight 700K

19 of 24

Utility in scaling-up GPs

GP latent variable model on the full MNIST dataset (60K, 784 dim.):

I Used a density model for each digit

I No pre-processing (the model is non-specialised)

I Trained the models on 10K and all 60K points

Size 10K 60K
Dist GP 8.98% 5.95%

Classification error on a subset and full MNIST

I Improvement of 3.03 percentage points

I Training on the full MNIST dataset took 20 minutes for the
longest running model

20 of 24

Utility in scaling-up GPs

GP latent variable model on the full MNIST dataset (60K, 784 dim.):

I Used a density model for each digit

I No pre-processing (the model is non-specialised)

I Trained the models on 10K and all 60K points

Size 10K 60K
Dist GP 8.98% 5.95%

Classification error on a subset and full MNIST

I Improvement of 3.03 percentage points

I Training on the full MNIST dataset took 20 minutes for the
longest running model

20 of 24

Utility in scaling-up GPs

GP latent variable model on the full MNIST dataset (60K, 784 dim.):

I Used a density model for each digit

I No pre-processing (the model is non-specialised)

I Trained the models on 10K and all 60K points

Size 10K 60K
Dist GP 8.98% 5.95%

Classification error on a subset and full MNIST

I Improvement of 3.03 percentage points

I Training on the full MNIST dataset took 20 minutes for the
longest running model

20 of 24

Utility in scaling-up GPs

GP latent variable model on the full MNIST dataset (60K, 784 dim.):

I Used a density model for each digit

I No pre-processing (the model is non-specialised)

I Trained the models on 10K and all 60K points

Size 10K 60K
Dist GP 8.98% 5.95%

Classification error on a subset and full MNIST

I Improvement of 3.03 percentage points

I Training on the full MNIST dataset took 20 minutes for the
longest running model

20 of 24

Utility in scaling-up GPs

GP latent variable model on the full MNIST dataset (60K, 784 dim.):

I Used a density model for each digit

I No pre-processing (the model is non-specialised)

I Trained the models on 10K and all 60K points

Size 10K 60K
Dist GP 8.98% 5.95%

Classification error on a subset and full MNIST

I Improvement of 3.03 percentage points

I Training on the full MNIST dataset took 20 minutes for the
longest running model

20 of 24

New horizons in big data

But these models give us much more...

I The MNIST trained models are density estimation models

I They allow us to perform image imputation,

I Generate new digits by sampling from the posterior, etc.

21 of 24

New horizons in big data

Furthermore, real big data is complex and non-linear – and naive
models may under-perform on it

I Back to flight regression –

I Flight 2M dataset compared to common approaches in big
data:

Dataset Mean Linear Ridge RF Dist GP
Flight 2M 38.92 37.65 37.65 37.33 35.31

RMSE of regression over flight data with 2M points

I These are just error rates – we can do much more with GPs
I robust, offer uncertainty bounds, etc.

22 of 24

New horizons in big data

Furthermore, real big data is complex and non-linear – and naive
models may under-perform on it

I Back to flight regression –

I Flight 2M dataset compared to common approaches in big
data:

Dataset Mean Linear Ridge RF Dist GP
Flight 2M 38.92 37.65 37.65 37.33 35.31

RMSE of regression over flight data with 2M points

I These are just error rates – we can do much more with GPs
I robust, offer uncertainty bounds, etc.

22 of 24

New horizons in big data

Furthermore, real big data is complex and non-linear – and naive
models may under-perform on it

I Back to flight regression –

I Flight 2M dataset compared to common approaches in big
data:

Dataset Mean Linear Ridge RF Dist GP
Flight 2M 38.92 37.65 37.65 37.33 35.31

RMSE of regression over flight data with 2M points

I These are just error rates – we can do much more with GPs
I robust, offer uncertainty bounds, etc.

22 of 24

Conclusions

I We showed that the inference scales well with data and
computational resources

I We demonstrated the utility in scaling GPs to big data

I The results show that GPs perform better than many common
models often used for big data

23 of 24

Conclusions

I Developing the inference we wrote an introductory tutorial [Gal
and van der Wilk, 2014] with detailed derivations

I The code developed is open source1

I 300 lines of Python with detailed and documented examples

I Pointers between equations in the tutorial and in code

1See https://github.com/markvdw/GParML
24 of 24

https://github.com/markvdw/GParML

	Gaussian process regression and latent variable models
	Why do we want to scale these?
	Distributed inference
	Utility in scaling-up GPs
	New horizons in big data

