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Outline

Gaussian process regression and latent variable models

Why do we want to scale these?

Distributed inference

Utility in scaling-up GPs

New horizons in big data

2 of 24



GP regression & latent variable models

Gaussian processes (GPs) are a powerful tool for probabilistic
inference over functions.

I GP regression captures non-linear
functions

I Can be seen as an infinite limit of
single layer neural networks

I GP latent variable models are an
unsupervised version of regression,
used for manifold learning

I Can be seen as a non-linear
generalisation of PCA
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GP regression & latent variable models

GPs offer:
I uncertainty estimates,

I robustness to over-fitting,

I and principled ways for tuning hyper-parameters
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GP latent variable models

GP latent variable models are used for tasks such as...

I Dimensionality reduction

I Face reconstruction

I Human pose estimation and tracking

I Matching silhouettes

I Animation deformation and
segmentation

I WiFi localisation

I State-of-the-art results for face
recognition 1 2 3
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GP regression

Regression setting:

I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

I This implies a joint Gaussian distribution over function values:

p(F |X ) = N (F ;µ(X ),K ), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F ) = N (Y ;F , β−1In)
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GP latent variable models

Latent variable models setting:

I Infer both the inputs, which are now latent, and the latent
function mappings at the same time

I Model identical to regression, with a prior over now latents X

Xn ∼ N (Xn;0, I), F (Xn) ∼ GP(0, k(X ,X )), Yn ∼ N (Fn, β
−1I)

I In approximate inference we look for variational lower bound to:

p(Y ) =

∫
p(Y |F )p(F |X )p(X )d(F ,X )

I This leads to Gaussian approximation to the posterior over X

q(X ) :≈ p(X |Y )
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Why do we want to scale GPs?

I Naive models are often used with big data (linear regression,
ridge regression, random forests, etc.)

I These don’t offer many of the desirable properties of GPs
(non-linearity, robustness, uncertainty, etc.)

I Scaling GP regression and latent variable models allows for
non-linear regression, density estimation, data imputation,
dimensionality reduction, etc. on big datasets
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However...

Problem – time and space complexity

I Evaluating p(Y |X ) directly is an expensive operation

I Involves the inversion of the n by n matrix K

I requiring O(n3) time complexity
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Sparse approximation!

Solution – sparse approximation!

I A collection of M “inducing inputs” – a set of points in the same
input space with corresponding values in the output space.

I These summarise the characteristics of the function using less
points than the training data.

I Given the dataset, we want to learn an optimal subset of
inducing inputs.

I Requires O(nm2 + m3) time complexity.

[Quiñonero-Candela and Rasmussen, 2005]
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Sparse approximation
Sparse approximation in pictures:

Regression on 5000 points dataset
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Sparse approximation
Sparse approximation in pictures:

I We can summarise the data using a small number of points

Regression on 500 points subset (in red)

11 of 24



Sparse approximation
Sparse approximation in pictures:

I We can summarise the data using a small number of points

Regression on 50 points subset (in red)
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Distributed inference

Distributed Inference in
GPs
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Why do we want distributed inference?

Usual datasets used with full GPs [O(n3)]
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Why do we want distributed inference?

Big data
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Why do we want distributed inference?

Distributed Sparse GPs – O(nm2

T + m3) = O(n + m3),
for T = m2 nodes, m << n
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Distributing the inference

I The data points become independent of one another given the
inducing inputs

I We can write the evidence lower bound as:

log p(Y ) ≥
n∑

i=1

∫
q(u)q(Xi)p(Fi |Xi ,u) log p(Yi |Fi)d(Fi ,Xi ,u)

−KL(q(u)||p(u))− KL(q(X )||p(X ))

with inducing inputs u and approximating distributions q(·)

I We can analytically integrate out q(u) and still keep a
factorised form

I We can compute each term in the factorised form
independently of the others with the Map-Reduce framework.
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Map-Reduce framework

[http://mohamednabeel.blogspot.co.uk/]
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Characteristics of distributed inference

The inference procedure should:

I distribute the computational load evenly across nodes,

I scale favourably with the number of nodes,

I and have low overhead in the global steps.
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Characteristics of distributed inference
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Characteristics of distributed inference
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Characteristics of distributed inference
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Utility in scaling-up GPs

I We want to predict flight delays from various flight-record
characteristics (flight date and time, flight distance, etc.)

I Can we improve on GP prediction using increasing amounts of
data?

I We use different subset sizes of data: 7K, 70K, and 700K
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Utility in scaling-up GPs

Size 7K 70K 700K

Dist GP 33.56 33.11 32.95

Root mean square error (RMSE) on flight dataset 7K-700K

I With more data we can learn better inducing inputs!

Year Month DayofMonth DayOfWeek DepTime ArrTime AirTime Distance plane_age0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ARD parameters for flight 700K
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Utility in scaling-up GPs

GP latent variable model on the full MNIST dataset (60K, 784 dim.):

I Used a density model for each digit

I No pre-processing (the model is non-specialised)

I Trained the models on 10K and all 60K points

Size 10K 60K
Dist GP 8.98% 5.95%

Classification error on a subset and full MNIST

I Improvement of 3.03 percentage points

I Training on the full MNIST dataset took 20 minutes for the
longest running model
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New horizons in big data

But these models give us much more...

I The MNIST trained models are density estimation models

I They allow us to perform image imputation,

I Generate new digits by sampling from the posterior, etc.
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New horizons in big data

Furthermore, real big data is complex and non-linear – and naive
models may under-perform on it

I Back to flight regression –

I Flight 2M dataset compared to common approaches in big
data:

Dataset Mean Linear Ridge RF Dist GP
Flight 2M 38.92 37.65 37.65 37.33 35.31

RMSE of regression over flight data with 2M points

I These are just error rates – we can do much more with GPs
I robust, offer uncertainty bounds, etc.
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Conclusions

I We showed that the inference scales well with data and
computational resources

I We demonstrated the utility in scaling GPs to big data

I The results show that GPs perform better than many common
models often used for big data

23 of 24



Conclusions

I Developing the inference we wrote an introductory tutorial [Gal
and van der Wilk, 2014] with detailed derivations

I The code developed is open source1

I 300 lines of Python with detailed and documented examples

I Pointers between equations in the tutorial and in code

1See https://github.com/markvdw/GParML
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