In Short:

e How can we do non-approximate parallel inference in the Dirichlet process?

e Recent work by Lovell, Adams, and Mansingka [2012] and Williamson, Dubey,
and Xing [2013] suggested a re-parametrisation of the process to derive such
inference.

e We show that the approach suggested is impractical due to an extremely
unbalanced distribution of the data.

e \We show that the suggested approach fails most requirements of parallel inference
— the load balance is independent of the size of the dataset and the
number of nodes.

e We end with suggestions of alternative paths of research.

Requirements of Distributed Samplers

Given a network with many nodes (computers in a network or cores in a cluster), we
would like to have inference that:

e distributes the computational load evenly across the nodes,
e scales favourably with the number of nodes,
e has low overhead in the global steps,

e and converges to the true posterior distribution.

Parallel Inference in the DP

e Two-staged Chinese restaurant process was introduced in Lovell, Adams,
and Mansingka [2012].

e Each data point (customer) chooses one of the K nodes (tables) according to its
popularity:
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for some vector of weights (1) where s, is the node allocation of point s.

e In each node k the data points follow the usual Chinese restaurant process (CRP)
with parameter ajy,.

e The resulting random partition has the same distribution as the CRP with param-
eter a as proved in [Williamson et al., 2013].

e Given many tables, the asymptotic number of tables (nodes) and their configura-
tion drawn from the first stage of the process converges to that of a sample from
a CRP with the same parameter.
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The Pathology

Actual samples from a Dirichlet process with 50 data points don’t look like this:

The expected number of tables in a restaurant with n customers is given by
o log(n)

and the sizes of the different tables follow an exponential decay, so the the number
of customers sitting next to each table would actually be
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parallel inference would send 94% of the data to a single machine, and

an actual sample would be...

. So for n = 50 data points and a = 0.1 the
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Pitfalls in the use of Parallel Inference for the Dirichlet Process

What Should We Do Instead?

Does there exist a setting of the inference which would give better load balance?
What alternative approaches exit?

¢ Optimal number of nodes. Use the inference when a small number of nodes is
available. K = |« nodes in the network would result in uniform ~ for example.

e Optimal initialisation. Initialise the sampler close to the posterior to have
many evenly balanced clusters, to get a less distorted distribution of the load.

e Metropolis—Hastings corrections.

— Split the cluster representation among different nodes.
— A recent attempt is presented in Chang and Fisher Il [2013].

— Suitable for the case when the posterior is known in advance and the initialisation
can reflect that.

— However we suspect that by introducing additional random moves that depend
on <« in an inverse way this limitation might be overcome.

Future Research

e Better approximate parallel inference.

— Current approach uses Gibbs sampling after distributing the data evenly across
the nodes [Asuncion et al., 2008]. We synchronise their state only in the global
step, leading the distribution to diverge from the true posterior.

— Williamson et al. [2013] reported this to have slow convergence in practice.

— Can this approximate parallel inference be adjusted to have better mixing?
e Use distributions alternative to the Dirichlet process for clustering.

— Miller and Harrison [2013] showed that the Dirichlet process posterior is incon-
sistent in the number of cluster.

— Suggested an alternative distribution for clustering: a Poisson mixture of Dirich-
let distributions.

— This might open the door for more efficient parallel inference.
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