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Gaussian Process Approximation

The Gaussian process (GP)
I Is awesome

I ... but with a great computational cost – O(N3) time complexity
for N data points:

p(Y|X) = N
(
Y; 0,K(X,X) + τ−1IN

)
with Q dimensional input x, D dimensional output y, and
stationary covariance function K.
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Many Approximations

Full GP:
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I Sparse pseudo-input cannot handle complex functions well:
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I Sparse spectrum is known to over-fit:
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Main Idea:

I Variational Sparse Spectrum GP (VSSGP)
I use variational inference for the sparse spectrum approximation

I avoids over-fitting, efficiently captures globally complex
behaviour

I In short—
I we replace the GP covariance function with a finite Monte Carlo

approximation

I we view this as a random covariance function

I conditioned on data this random variable has an intractable
posterior

I we approximate this posterior with variational inference
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In more detail (with a squared exponential covariance function)—

Given Fourier transform of the covariance function:

K(x− y) = σ2e−
(x−y)T (x−y)

2

= σ2
∫
N (w; 0, IQ) cos

(
2πwT (x− y)

)
dw.



Fourier transform of the squared exponential covariance function:

K(x− y) = σ2
∫
N (w; 0, IQ) cos

(
2πwT (x− y)

)
dw,

Auxiliary variable b:

K(x− y) = 2σ2
∫
N (w; 0, IQ)Unif[0,2π]

cos
(
2πwT x + b

)
cos

(
2πwT y + b

)
dwdb.



Auxiliary variable b:

K(x− y) = 2σ2
∫
N (w; 0, IQ)Unif[0,2π]

cos
(
2πwT x + b

)
cos

(
2πwT y + b

)
dwdb,

Monte Carlo integration with K terms:

K̂(x− y) =
2σ2

K

K∑
k=1

cos
(
2πwT

k x + bk
)

cos
(
2πwT

k y + bk
)

with wk ∼ N (0, IQ), bk ∼ Unif[0,2π].

This is a random covariance function.



Monte Carlo integration with K terms:

K̂(x− y) =
2σ2

K

K∑
k=1

cos
(
2πwT

k x + bk
)

cos
(
2πwT

k y + bk
)
,

Rewrite the covariance function with Φ ∈ RN×K

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

Φn,k (ω) =

√
2σ2

K
cos

(
2πwT

k xn + bk
)
,

K̂(x− y) = Φ(ω)Φ(ω)T .



Rewrite the covariance function with Φ ∈ RN×K

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

Φn,k (ω) =

√
2σ2

K
cos

(
2πwT

k xn + bk
)
,

K̂(x− y) = Φ(ω)Φ(ω)T ,

Integrate the GP over the random covariance function

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

p(Y|X,ω) = N
(
Y; 0,Φ(ω)Φ(ω)T + τ−1IN

)
p(Y|X) =

∫
p(Y|X,ω) p(ω)dω

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.



Integrate the GP over the random covariance function

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

p(Y|X,ω) = N
(
Y; 0,Φ(ω)Φ(ω)T + τ−1IN

)
p(Y|X) =

∫
p(Y|X,ω)p(ω)dω

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.

Use variational distribution q(ω) =
∏

q(wk )q(bk ) to
approximate posterior p(ω|X,Y):

q(wk ) = N (µk ,ΣK ), q(bk ) = Unif(αk , βk ),

with ΣK diagonal.



Maximise log evidence lower bound

LVSSGP =
1
2

D∑
d=1

(
log(|τ−1 Σ |) + τyT

d Eq(ω)(Φ) Σ Eq(ω)(ΦT ) yd + ...

)
− KL(q(ω)||p(ω))

with Σ = ( Eq(ω)(ΦT Φ) + τ−1I)−1.



Maximise log evidence lower bound

LVSSGP =
1
2

D∑
d=1

(
log(|τ−1 Σ |) + τyT

d Eq(ω)(Φ) Σ Eq(ω)(ΦT ) yd + ...

)
− KL(q(ω)||p(ω))

with Σ = ( Eq(ω)(ΦT Φ) + τ−1I)−1.

KL and expectations analytical with

Eq(w)

(
cos(wT x + b)

)
= e−

1
2 xT Σx cos(µT x + b).

Requires O(NK 2 + K 3) time complexity.
Parallel inference with T workers: ↘ O(NK 2

T + K 3).



Factorised VSSGP

Factorised VSSGP (fVSSGP)
I We often use large K .

I K by K matrix inversion is still slow: O(K 3).

I It is silly to invert the whole matrix every time
— slightly changing the parameters we expect the inverse to
not change too much.

I We can do better with an additional auxiliary variable.
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We integrated the GP over the random covariance function

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

p(Y|X,ω) = N
(
Y; 0,Φ(ω)Φ(ω)T + τ−1IN

)
p(Y|X) =

∫
p(Y|X,ω)p(ω)dω,

Introduce auxiliary random variables A ∈ RK×D

A ∼ N (0, IK×D),

p(Y|X,A,ω) = N
(
Y; Φ(ω)A, τ−1IN

)
p(Y|X) =

∫
p(Y|X,A,ω)p(A)p(ω)dωdA.



Introduce auxiliary random variables A ∈ RK×D

A ∼ N (0, IK×D),

p(Y|X,A,ω) = N
(
Y; Φ(ω)A, τ−1IN

)
p(Y|X) =

∫
p(Y|X,A,ω)p(A)p(ω)dωdA,

Use variational distribution q(ω) =
∏

q(wk )q(bk )
∏

q(ad ) to
approximate posterior p(ω,A|X,Y):

q(ad ) = N (md ,sd )

over the rows of A with sd diagonal.



Maximise log evidence lower bound

LfVSSGP =
D∑

d=1

(
τyT

d Eq(ω)

(
Φ
)
md −

τ

2
tr
(

Eq(ω)(ΦT Φ)(sd + mdmT
d )
)

+ ...

)
− KL(q(A)||p(A))− KL(q(ω)||p(ω)).

Requires O(NK 2) time complexity — no matrix inversion.
Parallel inference with T workers↘ O(NK 2

T ).



Stochastic Factorised VSSGP

Stochastic Factorised VSSGP (sfVSSGP)
I We often use large N.

I N matrix products of size K × K is still slow: O(NK 2).

I It is silly to evaluate the objective over the entire dataset
— might have redundant data.

I We can do even better with stochastic optimisation.
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Maximise log evidence lower bound

LsfVSSGP ≈
N
|S|
∑
n∈S

D∑
d=1

Lnd − KL(q(A)||p(A))− KL(q(ω)||p(ω))

with random data subset S this is an unbiased estimator of LfVSSGP .

O(SK 2) time complexity with S << N size of random
subset.



Time Complexity Comparison

Full GP O(N3)

SPGP / SSGP / VSSGP O(NK 2 + K 3)

Factorised SPGP O(NK 2 + K 3)

Factorised VSSGP O(NK 2)

Stochastic SPGP O(SK 2 + K 3), S << N

Stochastic fVSSGP O(SK 2), S << N

with K number of inducing points.
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Example results
Interpolation on the reconstructed solar irradiance dataset (SE
covariance function, K = 50 inducing inputs):

Sparse pseudo-input GP Sparse Spectrum GP

Random Projections (K = 500) Full GP

Variational Sparse Spectrum
GP

Solar SPGP SSGP RP1 RP2 GP VSSGP
Train 0.23 0.15 0.32 0.04 0.08 0.13
Test 0.61 0.63 0.65 0.76 0.50 0.41

Interpolation RMSE on train / test
sets
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Many more results

Many more results in the paper:

I Variational SSGP properties (uncertainty increases far from
data)

I From SSGP to variational SSGP (big improvement)

I VSSGP, factorised VSSGP, and stochastic factorised VSSGP
(more assumptions = worse results; still better than SSGP)

I Stochastic variational inference comparison (better than SPGP
SVI)

I Speed-accuracy trade-offs (better accuracy with larger K )
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Many more results

Many more results in the paper:

I Variational SSGP properties (uncertainty increases far from
data)

I From SSGP to variational SSGP (big improvement)

I VSSGP, factorised VSSGP, and stochastic factorised VSSGP
(more assumptions = worse results; still better than SSGP)

I Stochastic variational inference comparison (better than SPGP
SVI)

I Speed-accuracy trade-offs (better accuracy with larger K )

Thank you
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