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The Gaussian process (GP)
» |s awesome

» ... but with a great computational cost — O(N?) time complexity
for N data points:

p(Y[X) = N (Y;0,K(X,X) + 7 'y)

with Q dimensional input X, D dimensional output y, and
stationary covariance function K.

20f 20



o8 UNIVERSITY OF
CAMBRIDGE

Many Approximations
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» Variational Sparse Spectrum GP (VSSGP)
» use variational inference for the sparse spectrum approximation

» avoids over-fitting, efficiently captures globally complex
behaviour
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Main Idea: CAMBRIDGE

» Variational Sparse Spectrum GP (VSSGP)

» use variational inference for the sparse spectrum approximation

» avoids over-fitting, efficiently captures globally complex
behaviour

» In short—

» we replace the GP covariance function with a finite Monte Carlo
approximation

» we view this as a random covariance function

» conditioned on data this random variable has an intractable
posterior

» we approximate this posterior with variational inference
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In more detail (with a squared exponential covariance function)—

Given Fourier transform of the covariance function:

_ 9T xy)

K(x —y) =o?e z
= o? /N(w; 0,1g) cos (2w’ (x —y))dw.



Fourier transform of the squared exponential covariance function:

K(x —y) = o2 /N(w; 0,1g) cos (27w’ (x —y))dw,

Auxiliary variable b:

K(x —y) =202 / N (w; 0,1q)Unif[0, 27]

cos (27w 'x + b) cos (2rwy + b)dwdb.



Auxiliary variable b:

K(x —y) =202 / N(w; 0,1q)Unif[0, 27]

cos (2rw’x + b) cos (27w’y + b)dwdb,

Monte Carlo integration with K terms:
~ 202 K . .
K(x —y) = = > cos (2rw[x + by) cos (2rw]y + by)
k=1

with wy ~ A(0,1g), by ~ Unif[0, 27].

This is a random covariance function.



Monte Carlo integration with K terms:

K(x Z (27w X + by) cos (2nw]y + by),

Rewrite the covariance function with ¢ ¢ RV*K

wy ~ N(0,1g), by ~ Unif[0,27], w = {wy, bk }K_,

20’2 T
pi(w) = —¢ ©o0s (2w Xn + by),

K(x —y) = o(w)d(w)" .



Rewrite the covariance function with » € RVxK

wyi ~ N(0,lg), bk ~ Unif[0,27], w = {Wx, bx}K_,

O p(w) = 2; 0s (27W] Xy + by),
K(x - y) = d(w)d(w)T .

Integrate the GP over the random covariance function
Wy ~ N(07 IQ)7 bk ~ Unif[0,27r], w = {wk7 bk}5(<21
p(Y|X,w) = N(Y; 0,0(w)d(w)” +7 "Iy )
p(YIX) = [ p(YIX,w) p)d

p(y*[x*, X,Y) = /p(y*]x*,w)p(w|x, Y)dw



Integrate the GP over the random covariance function

wi ~ N(0,1g), bx ~ Unif[0,27], w = {Wx, bx}K_,
p(Y|X,w) = N (Y;0,d(w)d(w)” +77"1y)

pYIX) = [ p(YIX.w)p(e)de

P X X, Y) = [ Py I w)p(ew]X, V),

Use variational distribution g(w) = [] q(wk)q(bx) to
approximate posterior p(w|X,Y):

q(wk) = N(uk, Zk), q(bk) = Unif(ay, Bk),

with ¥ diagonal.



Maximise log evidence lower bound

D
Crssor = 3 3 (109(r E1) + 77 Eqtai(®) & Eqy(®T) e + -
d=1
- KL(g(e)|[p())

with X = ( Egy(®7®) + ')~



Maximise log evidence lower bound

D
Crssor = 3 3 (109(r E1) + 77 Eqtai(®) & Eqy(®T) e + -
a=1
— KL(g(w)l|p(w))
with T = ( Ege)(®T®) + 771"
KL and expectations analytical with

Eqowy(cos(w'x + b)) = e 2 ™ cos(uTx + b).

Requires O(NK? + K?®) time complexity.
Parallel inference with T workers: ~\ (9(’\’7’(2 + K3).
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Factorised VSSGP (fVSSGP)
» We often use large K.

K by K matrix inversion is still slow: O(K?).

v

v

It is silly to invert the whole matrix every time
— slightly changing the parameters we expect the inverse to
not change too much.

v

We can do better with an additional auxiliary variable.
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We integrated the GP over the random covariance function
wy ~ N(0,lg), bx ~ Unif[0,27], w = {Wx, bx}K_,
p(YIX,w) = N (Y; 10, 0(@)d(w)" + 7 'In)

pYIX) = [ p(YIX.w)p(e)de

Introduce auxiliary random variables A ¢ RK*D
A ~ N(0,lkxp),
p(YIX, A, w) =N(Y; d(w)A, 7 'y )

p(Y|X) = / PYIX, A, w)p(A)p(w)dwdA.



Introduce auxiliary random variables A ¢ RK*P

A ~ N(0,lkxp),
p(YIX, A, w) = N(Y; d(w)A, 77 y)

pYIX) = / P(YIX, A, w)p(A)p(w)dwdA,

Use variational distribution q(w) = [ g(wk)q(bk) [ g(ag) to
approximate posterior p(w, A|X,Y):

q(ag) = N(my,sq)

over the rows of A with sy diagonal.



Maximise log evidence lower bound

D

Livssap = Y (Tyg Eqw)(®)my — %tr( Eq(w)(®T®)(sg + mgm]) )
d—1

+ > — KL(q(A)[[p(A)) — KL(g(w)l|p(w))-

Requires O(NK?) time complexity — no matrix inversion.
Parallel inference with T workers N\, O(M¥),



ml,. UNIVERSITY OF

Stochastic Factorised VSSGP CAMBRIDGE

Stochastic Factorised VSSGP (sfVSSGP)
» We often use large N.

» N matrix products of size K x K is still slow: O(NK?).

» It is silly to evaluate the objective over the entire dataset
— might have redundant data.

» We can do even better with stochastic optimisation.
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Maximise log evidence lower bound

Lstvssgp ~ 5 ’ZZ Lng — (A)llp(A)) — KL(g(w)l|p(w))

neS d=1

with random data subset S this is an unbiased estimator of Lq/s56p.

O(SK?) time complexity with S << N size of random
subset.
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Full GP O(N3)
SPGP / SSGP / VSSGP O(NK? + K®)
Factorised SPGP O(NK? + K?)
Factorised VSSGP O(NK?)
Stochastic SPGP O(SK? + K®),S << N
Stochastic fVSSGP O(SK?), S<< N

with K number of inducing points.
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Interpolation on the reconstructed solar irradiance dataset (SE
covariance function, K = 50 inducing inputs):
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Random Projections (K = 500) Full GP
2t ' N N ] Solar | SPGP | SSGP | RPy | RP, | GP | VSSGP
1 . . . . . ' : ! Train | 023 | 0.15 | 0.32|0.04 | 0.08 | 0.13
_‘i A ' ; P w ' Test | 0.61 0.63 | 0.65|0.76 | 0.50 | 0.41

1‘650 17‘00I 1750 * 1‘800 18‘50I 1900 : 1‘950
Variational Sparse Spectrum
GP

Interpolation RMSE on train / test
sets
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Many more results in the paper:

» Variational SSGP properties (uncertainty increases far from
data)
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Many more results in the paper:

» Variational SSGP properties (uncertainty increases far from
data)

» From SSGP to variational SSGP (big improvement)

» VSSGP, factorised VSSGP, and stochastic factorised VSSGP
(more assumptions = worse results; still better than SSGP)

» Stochastic variational inference comparison (better than SPGP
SVI)

» Speed-accuracy trade-offs (better accuracy with larger K)

Thank you
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