

Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs

Yarin Gal • Richard Turner

yg279@cam.ac.uk

Gaussian Process Approximation

The Gaussian process (GP)

- ▶ Is awesome
- ▶ ... but with a great computational cost $-\mathcal{O}(N^3)$ time complexity for N data points:

$$p(\mathbf{Y}|\mathbf{X}) = \mathcal{N}(\mathbf{Y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \tau^{-1} \mathbf{I}_N)$$

with Q dimensional input \mathbf{x} , D dimensional output \mathbf{y} , and stationary covariance function \mathbf{K} .

Many Approximations

Full GP:

► Sparse pseudo-input cannot handle complex functions well:

► Sparse spectrum is known to over-fit:

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

In more detail (with a squared exponential covariance function)—

Given Fourier transform of the covariance function:

$$egin{aligned} \mathbf{K}(\mathbf{x}-\mathbf{y}) &= \sigma^2 e^{-rac{(\mathbf{x}-\mathbf{y})^T(\mathbf{x}-\mathbf{y})}{2}} \ &= \sigma^2 \int \mathcal{N}(\mathbf{w};\mathbf{0},\mathbf{I}_Q) \cos \left(2\pi \mathbf{w}^T(\mathbf{x}-\mathbf{y})\right) \mathrm{d}\mathbf{w}. \end{aligned}$$

Fourier transform of the squared exponential covariance function:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = \sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \cos(2\pi \mathbf{w}^T (\mathbf{x} - \mathbf{y})) d\mathbf{w},$$

Auxiliary variable *b*:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = 2\sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \mathsf{Unif}[0, 2\pi]$$
$$\cos (2\pi \mathbf{w}^T \mathbf{x} + b) \cos (2\pi \mathbf{w}^T \mathbf{y} + b) \mathsf{dwd}b.$$

Auxiliary variable b:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = 2\sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \mathsf{Unif}[0, 2\pi]$$
$$\cos (2\pi \mathbf{w}^T \mathbf{x} + b) \cos (2\pi \mathbf{w}^T \mathbf{y} + b) \mathsf{dwd}b,$$

Monte Carlo integration with K terms:

$$\widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) = \frac{2\sigma^2}{K} \sum_{k=1}^{K} \cos(2\pi \mathbf{w}_k^T \mathbf{x} + b_k) \cos(2\pi \mathbf{w}_k^T \mathbf{y} + b_k)$$

with $\mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_Q)$, $b_k \sim \text{Unif}[\mathbf{0}, 2\pi]$.

This is a random covariance function.

Monte Carlo integration with *K* terms:

$$\widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) = \frac{2\sigma^2}{K} \sum_{k=1}^{K} \cos(2\pi \mathbf{w}_k^T \mathbf{x} + b_k) \cos(2\pi \mathbf{w}_k^T \mathbf{y} + b_k),$$

Rewrite the covariance function with $\Phi \in \mathbb{R}^{N \times K}$

$$\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[0, 2\pi], \quad \boldsymbol{\omega} = \{\mathbf{w}_k, b_k\}_{k=1}^K$$

$$\Phi_{n,k}(\boldsymbol{\omega}) = \sqrt{\frac{2\sigma^2}{K}}\cos\left(2\pi\mathbf{w}_k^T\mathbf{x}_n + b_k\right),$$

$$\widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) = \Phi(\boldsymbol{\omega})\Phi(\boldsymbol{\omega})^T.$$

Rewrite the covariance function with $\Phi \in \mathbb{R}^{N \times K}$

$$\begin{aligned} \mathbf{w}_k &\sim \mathcal{N}(0, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[0, 2\pi], \quad \boldsymbol{\omega} = \{\mathbf{w}_k, b_k\}_{k=1}^K \\ \Phi_{n,k}(\boldsymbol{\omega}) &= \sqrt{\frac{2\sigma^2}{K}} \cos \left(2\pi \mathbf{w}_k^T \mathbf{x}_n + b_k\right), \\ \widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) &= \Phi(\boldsymbol{\omega}) \Phi(\boldsymbol{\omega})^T, \end{aligned}$$

Integrate the GP over the random covariance function

$$\begin{aligned} \mathbf{w}_k &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[\mathbf{0}, 2\pi], \quad \boldsymbol{\omega} = \{\mathbf{w}_k, b_k\}_{k=1}^K \\ p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) &= \mathcal{N}\big(\mathbf{Y}; \quad \mathbf{0}, \Phi(\boldsymbol{\omega})\Phi(\boldsymbol{\omega})^T + \tau^{-1}\mathbf{I}_N \big) \\ p(\mathbf{Y}|\mathbf{X}) &= \int p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) p(\boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega} \\ p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) &= \int p(\mathbf{y}^*|\mathbf{x}^*, \boldsymbol{\omega}) p(\boldsymbol{\omega}|\mathbf{X}, \mathbf{Y}) \mathrm{d}\boldsymbol{\omega}. \end{aligned}$$

Integrate the GP over the random covariance function

$$\begin{aligned} \mathbf{w}_k &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[\mathbf{0}, 2\pi], \quad \omega = \{\mathbf{w}_k, b_k\}_{k=1}^K \\ & p(\mathbf{Y}|\mathbf{X}, \omega) = \mathcal{N}\left(\mathbf{Y}; \mathbf{0}, \Phi(\omega)\Phi(\omega)^T + \tau^{-1}\mathbf{I}_N\right) \\ & p(\mathbf{Y}|\mathbf{X}) = \int p(\mathbf{Y}|\mathbf{X}, \omega)p(\omega)d\omega \\ & p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega)p(\omega|\mathbf{X}, \mathbf{Y})d\omega. \end{aligned}$$

Use variational distribution $q(\omega) = \prod q(\mathbf{w}_k)q(b_k)$ to approximate posterior $p(\omega|\mathbf{X},\mathbf{Y})$:

$$q(\mathbf{w}_k) = \mathcal{N}(\mu_k, \Sigma_K), \quad q(b_k) = \mathsf{Unif}(\alpha_k, \beta_k),$$

with Σ_K diagonal.

Maximise log evidence lower bound

$$\mathcal{L}_{VSSGP} = \frac{1}{2} \sum_{i=1}^{D} \left(\log(|\tau^{-1} \mathbf{\Sigma}|) + \tau \mathbf{y}_{d}^{T} E_{q(\omega)}(\Phi) \mathbf{\Sigma} E_{q(\omega)}(\Phi^{T}) \mathbf{y}_{d} + \ldots \right)$$

$$d=1$$
 \\
 $-\operatorname{\mathsf{KL}}(q(\omega)||p(\omega))$

with
$$\Sigma = (E_{q(\omega)}(\Phi^T \Phi) + \tau^{-1}I)^{-1}$$
.

with
$$\Sigma = (E_{\star}, (\Phi^T \Phi) + \tau^{-1})$$

Maximise log evidence lower bound

$$\mathcal{L}_{VSSGP} = \frac{1}{2} \sum_{d=1}^{D} \left(\log(|\tau^{-1} \mathbf{\Sigma}|) + \tau \mathbf{y}_{d}^{T} E_{q(\omega)}(\Phi) \mathbf{\Sigma} E_{q(\omega)}(\Phi^{T}) \mathbf{y}_{d} + \dots \right) - \text{KL}(q(\omega)||p(\omega))$$

with
$$\Sigma = (E_{q(\omega)}(\Phi^T \Phi) + \tau^{-1}I)^{-1}$$
.

KL and expectations analytical with

$$E_{q(\mathbf{w})}(\cos(\mathbf{w}^T\mathbf{x}+b)) = e^{-\frac{1}{2}\mathbf{x}^T\Sigma\mathbf{x}}\cos(\mu^T\mathbf{x}+b).$$

Requires $\mathcal{O}(NK^2 + K^3)$ time complexity. Parallel inference with T workers: $\searrow \mathcal{O}(\frac{NK^2}{T} + K^3)$.

Factorised VSSGP (fVSSGP)

- ▶ We often use large *K*.
- ▶ *K* by *K* matrix inversion is still slow: $\mathcal{O}(K^3)$.
- ► It is silly to invert the whole matrix every time
 - slightly changing the parameters we expect the inverse to not change too much.
- We can do better with an additional auxiliary variable.

We integrated the GP over the random covariance function

$$\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[0, 2\pi], \quad \omega = \{\mathbf{w}_k, b_k\}_{k=1}^K$$

$$p(\mathbf{Y}|\mathbf{X}, \omega) = \mathcal{N}(\mathbf{Y}; \mathbf{0}, \Phi(\omega)\Phi(\omega)^T + \tau^{-1}\mathbf{I}_N)$$

$$p(\mathbf{Y}|\mathbf{X}) = \int p(\mathbf{Y}|\mathbf{X}, \omega)p(\omega)d\omega,$$

Introduce auxiliary random variables $\mathbf{A} \in \mathbb{R}^{K \times D}$

$$\begin{split} \mathbf{A} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K \times D}), \\ p(\mathbf{Y} | \mathbf{X}, \mathbf{A}, \boldsymbol{\omega}) &= \mathcal{N}(\mathbf{Y}; \boxed{\Phi(\boldsymbol{\omega}) \mathbf{A}, \tau^{-1} \mathbf{I}_{N}}) \\ p(\mathbf{Y} | \mathbf{X}) &= \int p(\mathbf{Y} | \mathbf{X}, A, \boldsymbol{\omega}) p(A) p(\boldsymbol{\omega}) \mathrm{d} \boldsymbol{\omega} \mathrm{d} \mathbf{A}. \end{split}$$

Introduce auxiliary random variables $\mathbf{A} \in \mathbb{R}^{K \times D}$

$$\begin{split} \mathbf{A} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K \times D}), \\ p(\mathbf{Y} | \mathbf{X}, \mathbf{A}, \boldsymbol{\omega}) &= \mathcal{N} \left(\mathbf{Y}; \Phi(\boldsymbol{\omega}) \mathbf{A}, \tau^{-1} \mathbf{I}_{N} \right) \\ p(\mathbf{Y} | \mathbf{X}) &= \int p(\mathbf{Y} | \mathbf{X}, A, \boldsymbol{\omega}) p(A) p(\boldsymbol{\omega}) \mathrm{d} \boldsymbol{\omega} \mathrm{d} \mathbf{A}, \end{split}$$

Use variational distribution $q(\omega) = \prod q(\mathbf{w}_k)q(b_k) \prod q(\mathbf{a}_d)$ to approximate posterior $p(\omega, \mathbf{A}|\mathbf{X}, \mathbf{Y})$:

$$q(\mathbf{a}_d) = \mathcal{N}(\mathbf{m}_d, \mathbf{s}_d)$$

over the rows of A with \mathbf{s}_d diagonal.

Maximise log evidence lower bound

$$\mathcal{L}_{fVSSGP} = \sum_{d=1}^{D} \left(\tau \mathbf{y}_{d}^{T} E_{q(\omega)}(\Phi) \mathbf{m}_{d} - \frac{\tau}{2} \text{tr} \left(E_{q(\omega)}(\Phi^{T} \Phi) (\mathbf{s}_{d} + \mathbf{m}_{d} \mathbf{m}_{d}^{T}) \right) + \dots \right) - \text{KL}(q(\mathbf{A}) || p(\mathbf{A})) - \text{KL}(q(\omega) || p(\omega)).$$

Requires $\mathcal{O}(NK^2)$ time complexity — no matrix inversion. Parallel inference with T workers $\searrow \mathcal{O}(\frac{NK^2}{\tau})$.

Stochastic Factorised VSSGP

Stochastic Factorised VSSGP (sfVSSGP)

- ▶ We often use large *N*.
- ▶ *N* matrix products of size $K \times K$ is still slow: $\mathcal{O}(NK^2)$.
- It is silly to evaluate the objective over the entire dataset
 might have redundant data.
- ▶ We can do even better with **stochastic optimisation**.

Maximise log evidence lower bound

$$\mathcal{L}_{sfVSSGP} pprox rac{N}{|S|} \sum_{\mathbf{r},\mathbf{r},\mathbf{r}} \sum_{\mathbf{r},\mathbf{r},\mathbf{r}}^{D} \mathcal{L}_{nd} - \mathsf{KL}(q(\mathbf{A})||p(\mathbf{A})) - \mathsf{KL}(q(\omega)||p(\omega))$$

with random data subset S this is an unbiased estimator of $\mathcal{L}_{\mathit{fVSSGP}}$.

 $\mathcal{O}(SK^2)$ time complexity with S << N size of random subset.

Time Complexity Comparison

Full GP	$\mathcal{O}(N^3)$		
SPGP / SSGP / VSSGP	$\mathcal{O}(NK^2+K^3)$		
Factorised SPGP	$\mathcal{O}(NK^2+K^3)$		
Factorised VSSGP	$\mathcal{O}(NK^2)$		
Stochastic SPGP	$\mathcal{O}(SK^2 + K^3), S << N$		
Stochastic fVSSGP	$\mathcal{O}(SK^2), S << N$		

with *K* number of inducing points.

Example results

Interpolation on the reconstructed solar irradiance dataset (SE covariance function, K = 50 inducing inputs):

Solar	SPGP	SSGP	RP ₁	RP ₂	GP	VSSGP
						0.13
Test	0.61	0.63	0.65	0.76	0.50	0.41

Variational Sparse Spectrum

Interpolation RMSE on train / test sets

- Variational SSGP properties (uncertainty increases far from data)
- ► From SSGP to variational SSGP (big improvement)
- VSSGP, factorised VSSGP, and stochastic factorised VSSGP (more assumptions = worse results; still better than SSGP)
- Stochastic variational inference comparison (better than SPGP SVI)
- ► Speed-accuracy trade-offs (better accuracy with larger *K*)

- Variational SSGP properties (uncertainty increases far from data)
- ► From SSGP to variational SSGP (big improvement)
- VSSGP, factorised VSSGP, and stochastic factorised VSSGP (more assumptions = worse results; still better than SSGP)
- Stochastic variational inference comparison (better than SPGP SVI)
- ► Speed-accuracy trade-offs (better accuracy with larger *K*)

- Variational SSGP properties (uncertainty increases far from data)
- From SSGP to variational SSGP (big improvement)
- VSSGP, factorised VSSGP, and stochastic factorised VSSGP (more assumptions = worse results; still better than SSGP)
- Stochastic variational inference comparison (better than SPGP SVI)
- ► Speed-accuracy trade-offs (better accuracy with larger *K*)

- Variational SSGP properties (uncertainty increases far from data)
- From SSGP to variational SSGP (big improvement)
- VSSGP, factorised VSSGP, and stochastic factorised VSSGP (more assumptions = worse results; still better than SSGP)
- Stochastic variational inference comparison (better than SPGP SVI)
- ► Speed-accuracy trade-offs (better accuracy with larger *K*)

- Variational SSGP properties (uncertainty increases far from data)
- From SSGP to variational SSGP (big improvement)
- VSSGP, factorised VSSGP, and stochastic factorised VSSGP (more assumptions = worse results; still better than SSGP)
- Stochastic variational inference comparison (better than SPGP SVI)
- ► Speed-accuracy trade-offs (better accuracy with larger *K*)

Many more results in the paper:

- Variational SSGP properties (uncertainty increases far from data)
- From SSGP to variational SSGP (big improvement)
- VSSGP, factorised VSSGP, and stochastic factorised VSSGP (more assumptions = worse results; still better than SSGP)
- Stochastic variational inference comparison (better than SPGP SVI)
- ► Speed-accuracy trade-offs (better accuracy with larger *K*)

Thank you