
Pitfalls in the use of Parallel Inference for the
Dirichlet Process
Yarin Gal, Zoubin Ghahramani

mlg.eng.cam.ac.uk/yarin

June 24, 2014

mlg.eng.cam.ac.uk/yarin

Outline

• The Dirichlet process

• Parallel inference

• Non-approximate parallel inference in the Dirichlet process

•What can go wrong

• How can we try to fix it

2 of 24

The Dirichlet Process

Sampling from the Dirichlet process – the Chinese restaurant
process

I A restaurant with 4 tables and 2, 4, 4, and 6 customers sitting
around each one

3 of 24

The Dirichlet Process

Real world applications – Natural Language Processing

I Language modelling
I A derivative model (the Hierarchical Pitman–Yor process) was

shown to correspond to the state-of-the-art in language
modelling

I Machine Translation
I Used to obtain state-of-the-art results in Bayesian word

alignment

I Working with huge datasets (tens of GBs)

I Development cycle taking weeks at a time

I Usually using small values for the concentration parameter
(α = 0.1 is common)

4 of 24

The Dirichlet Process

I Inference is slow!

I A common problem with non-parametric techniques

I Possible solutions:

I Variational inference - an approximate approach

I Parallel MCMC inference

5 of 24

Parallel inference

Given a network with many nodes (computers in a network or cores
in a cluster), we would like to have an inference that:

I distributes the computational load evenly across the nodes,
I scales favourably with the number of nodes,
I has low overhead in the global steps,
I and converges to the true posterior distribution

6 of 24

Parallel inference in the DP

I Approximate parallel inference (Asuncion, Smyth, and Welling
[2008])

I Gives slower convergence (Williamson et al., [2013])

I Non-approximate parallel inference using a re-parametrisation
of the Dirichlet process

I Recently suggested, independently, by Lovell, Adams, and
Mansingka [2012] and Williamson, Dubey, and Xing [2013]

7 of 24

Parallel inference in the DP

Two-staged Chinese restaurant process [Lovell et al., 2012]:

I Each data point (customer) chooses one of the K nodes
(tables) according to its popularity:

P(data point n chooses node k | α) =
αµk +

∑n−1
i=1 I(szi = k)

α+ n − 1
,

with some weights µk where szi is the node allocation of point i
– this is equivalent to the Dirichlet-Categorical distribution.

I In each node k the data points follow the usual Chinese
restaurant process (CRP) with parameter αµk .

I The resulting random partition has the same distribution as the
CRP with parameter α.

8 of 24

Parallel inference in the DP
For a network with 10 nodes we split the data using a sample from
a Dirichlet distribution with 10 components:

I Each table corresponding to a single node and each customer
to a data point sent to that node

9 of 24

However...

However...

I Samples from the Dirichlet distribution with parameter smaller
than 1 have most of the mass concentrated around the corners
of the simplex

10 of 24

However...

I and in the limit of K we obtain samples from the Dirichlet
process with parameter α:

DP (α)

I This means that the expected number of nodes used is the
same as the expected number of tables in a restaurant with
parameter α

I (we can augment the number of nodes by sending multiple jobs
to the same machine)

11 of 24

However...

Actual samples from a Dirichlet process with 50 data points don’t
look like this:

I The expected number of tables in a restaurant with n
customers is given by

α log(n)

12 of 24

However...

So a sample from a Dirichlet process with 50 data points would look
more like this:

Which means that only a constant number of nodes, dependent on
the number of data points, would be used.

13 of 24

However...

Even worse, the sizes of the different tables follows an exponential
decay, so the the number of customers sitting next to each table
would actually be

C, Cq, Cq2, Cq3, · · ·

for q =
α

1 + α
and C =

1
1 + α

, so an actual sample would be...

14 of 24

However...

6%

94%

for n = 50 data points and α = 0.1.
15 of 24

However...

So for n = 50 data points and α = 0.1 the parallel inference would
send 94% of the data to a single machine.

I Sampling from the finite Dirichlet distribution with K
components (nodes in a network) and different parameter
values we get a load balance:

of nodes α = 0.1 α = 2
K = 101 94%, 6%, 0%, 0%, ... 54%, 23%, 12%, 6%, ...
K = 102 94%, 6%, 0%, 0%, ... 48%, 22%, 12%, 7%, ...
K = 103 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...
K = 104 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...
K = 105 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...

Figure: Average load on each node in decreasing order

16 of 24

However...

And in general, for a Dirichlet process with parameter α, 95% of the
data for would be sent to

≈ 1.3
log(α+ 1)− log(α)

nodes,

I independently of the size of the dataset,

I independently of the number of nodes in the network,

I and dependent only on the parameter used to model the
data

17 of 24

What can we do?

What can we do?

I We can try to initialise the sampler near the posterior

I We could use approximate inference with Metropolis–Hastings
corrections

I We can develop better approximate inference approaches

I Don’t use the Dirichlet process?

18 of 24

What can we do?

We can try to initialise the sampler near the posterior

I When we know the data has many clusters which are evenly
balanced

I Initialise the sampler randomly with many evenly sized clusters

I ... however still doesn’t answer many real-world cases

I ... and the distribution of the clusters between the nodes has
the same skewed balance

19 of 24

What can we do?
We could also use approximate inference with Metropolis–Hastings
corrections, splitting the cluster representation among the nodes

I A recent attempt is presented in [Chang and Fisher III, 2013]:

I Data is decoupled for each finite K (number of components of
the DP) conditioned on the probability of each component,

I This gives approximate inference with a finite mixture model,

I The sampler transitions between subspaces of possible
distributions (finite mixture models with different K) via
split-merge Metropolis–Hastings proposals,

I The split proposals depend linearly on α, while the merge
proposals depend linearly on α−1.

I Suitable for the case when the posterior is known in advance
and the initialisation can reflect that...

20 of 24

What can we do?

I This is because for different values of α we might accept no
split/merge proposals:

100 initial clusters 1 initial cluster
splits merges splits merges

α = 0.2 0.00 1.48 0.03 0.00
α = 1 0.01 1.29 0.03 0.00
α = 5 0.32 0.16 0.15 0.00

I However we suspect that by introducing additional random
moves that depend on α in an inverse way this limitation might
be overcome.

21 of 24

What can we do?

Develop better approximate inference

I Current approach uses Gibbs sampling after distributing the
data evenly across the different nodes and in the global step
we sync. the state of the nodes (Asuncion, Smyth, and Welling
[2008])

I Was reported by Williamson et al., [2013] to have slow
convergence

22 of 24

What can we do?

And finally, don’t use the Dirichlet process

I Recently shown that the Dirichlet process is inconsistent in the
number of cluster

I An alternative distribution for clustering has been suggested:
using a Poisson distribution mixture of Dirichlet distributions

I Might open the door for more efficient parallel inference

23 of 24

Conclusions

I Scaling up inference for the Dirichlet process is still an open
problem...

I ... which has to be solved if we want it to be used in industry
and real-world applications!

24 of 24

	 The Dirichlet process
	 Parallel inference
	 Non-approximate parallel inference in the Dirichlet process
	 What can go wrong
	 How can we try to fix it

