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The Dirichlet Process

Sampling from the Dirichlet process – the Chinese restaurant
process

I A restaurant with 4 tables and 2, 4, 4, and 6 customers sitting
around each one
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The Dirichlet Process

Real world applications – Natural Language Processing

I Language modelling
I A derivative model (the Hierarchical Pitman–Yor process) was

shown to correspond to the state-of-the-art in language
modelling

I Machine Translation
I Used to obtain state-of-the-art results in Bayesian word

alignment

I Working with huge datasets (tens of GBs)

I Development cycle taking weeks at a time

I Usually using small values for the concentration parameter
(α = 0.1 is common)
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The Dirichlet Process

I Inference is slow!

I A common problem with non-parametric techniques

I Possible solutions:

I Variational inference - an approximate approach

I Parallel MCMC inference
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Parallel inference

Given a network with many nodes (computers in a network or cores
in a cluster), we would like to have an inference that:

I distributes the computational load evenly across the nodes,
I scales favourably with the number of nodes,
I has low overhead in the global steps,
I and converges to the true posterior distribution
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Parallel inference in the DP

I Approximate parallel inference (Asuncion, Smyth, and Welling
[2008])

I Gives slower convergence (Williamson et al., [2013])

I Non-approximate parallel inference using a re-parametrisation
of the Dirichlet process

I Recently suggested, independently, by Lovell, Adams, and
Mansingka [2012] and Williamson, Dubey, and Xing [2013]
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Parallel inference in the DP

Two-staged Chinese restaurant process [Lovell et al., 2012]:

I Each data point (customer) chooses one of the K nodes
(tables) according to its popularity:

P(data point n chooses node k | α) =
αµk +

∑n−1
i=1 I(szi = k)

α+ n − 1
,

with some weights µk where szi is the node allocation of point i
– this is equivalent to the Dirichlet-Categorical distribution.

I In each node k the data points follow the usual Chinese
restaurant process (CRP) with parameter αµk .

I The resulting random partition has the same distribution as the
CRP with parameter α.
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Parallel inference in the DP
For a network with 10 nodes we split the data using a sample from
a Dirichlet distribution with 10 components:

I Each table corresponding to a single node and each customer
to a data point sent to that node
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However...

However...

I Samples from the Dirichlet distribution with parameter smaller
than 1 have most of the mass concentrated around the corners
of the simplex
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However...

I and in the limit of K we obtain samples from the Dirichlet
process with parameter α:

DP (α)

I This means that the expected number of nodes used is the
same as the expected number of tables in a restaurant with
parameter α

I (we can augment the number of nodes by sending multiple jobs
to the same machine)
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However...

Actual samples from a Dirichlet process with 50 data points don’t
look like this:

I The expected number of tables in a restaurant with n
customers is given by

α log(n)
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However...

So a sample from a Dirichlet process with 50 data points would look
more like this:

Which means that only a constant number of nodes, dependent on
the number of data points, would be used.
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However...

Even worse, the sizes of the different tables follows an exponential
decay, so the the number of customers sitting next to each table
would actually be

C, Cq, Cq2, Cq3, · · ·

for q =
α

1 + α
and C =

1
1 + α

, so an actual sample would be...
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However...

6%

94%

for n = 50 data points and α = 0.1.
15 of 24



However...

So for n = 50 data points and α = 0.1 the parallel inference would
send 94% of the data to a single machine.

I Sampling from the finite Dirichlet distribution with K
components (nodes in a network) and different parameter
values we get a load balance:

# of nodes α = 0.1 α = 2
K = 101 94%, 6%, 0%, 0%, ... 54%, 23%, 12%, 6%, ...
K = 102 94%, 6%, 0%, 0%, ... 48%, 22%, 12%, 7%, ...
K = 103 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...
K = 104 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...
K = 105 94%, 6%, 0%, 0%, ... 48%, 21%, 12%, 7%, ...

Figure: Average load on each node in decreasing order
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However...

And in general, for a Dirichlet process with parameter α, 95% of the
data for would be sent to

≈ 1.3
log(α+ 1)− log(α)

nodes,

I independently of the size of the dataset,

I independently of the number of nodes in the network,

I and dependent only on the parameter used to model the
data
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What can we do?

What can we do?

I We can try to initialise the sampler near the posterior

I We could use approximate inference with Metropolis–Hastings
corrections

I We can develop better approximate inference approaches

I Don’t use the Dirichlet process?
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What can we do?

We can try to initialise the sampler near the posterior

I When we know the data has many clusters which are evenly
balanced

I Initialise the sampler randomly with many evenly sized clusters

I ... however still doesn’t answer many real-world cases

I ... and the distribution of the clusters between the nodes has
the same skewed balance
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What can we do?
We could also use approximate inference with Metropolis–Hastings
corrections, splitting the cluster representation among the nodes

I A recent attempt is presented in [Chang and Fisher III, 2013]:

I Data is decoupled for each finite K (number of components of
the DP) conditioned on the probability of each component,

I This gives approximate inference with a finite mixture model,

I The sampler transitions between subspaces of possible
distributions (finite mixture models with different K ) via
split-merge Metropolis–Hastings proposals,

I The split proposals depend linearly on α, while the merge
proposals depend linearly on α−1.

I Suitable for the case when the posterior is known in advance
and the initialisation can reflect that...
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What can we do?

I This is because for different values of α we might accept no
split/merge proposals:

100 initial clusters 1 initial cluster
splits merges splits merges

α = 0.2 0.00 1.48 0.03 0.00
α = 1 0.01 1.29 0.03 0.00
α = 5 0.32 0.16 0.15 0.00

I However we suspect that by introducing additional random
moves that depend on α in an inverse way this limitation might
be overcome.
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What can we do?

Develop better approximate inference

I Current approach uses Gibbs sampling after distributing the
data evenly across the different nodes and in the global step
we sync. the state of the nodes (Asuncion, Smyth, and Welling
[2008])

I Was reported by Williamson et al., [2013] to have slow
convergence
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What can we do?

And finally, don’t use the Dirichlet process

I Recently shown that the Dirichlet process is inconsistent in the
number of cluster

I An alternative distribution for clustering has been suggested:
using a Poisson distribution mixture of Dirichlet distributions

I Might open the door for more efficient parallel inference
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Conclusions

I Scaling up inference for the Dirichlet process is still an open
problem...

I ... which has to be solved if we want it to be used in industry
and real-world applications!
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