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...Modern deep learning

Conceptually simple models

• Tremendous attention from popular media,
• Fundamentally affected how ML is used in

industry,
• Driven by pragmatic developments...
• of tractable models...
• that work well...
• and scale well.

Yet we don’t understand many of these tools...
• E.g. stochastic regularisation techniques
• Used in most modern deep learning models
• Dropout randomly sets units to zero
• MGN multiplies units by N (1, 1)

• This somehow circumvents over-fitting
• And improves performance

...Bayesian Neural Networks

• Place prior p(Wi):

Wi ∼ N (0, I)

for i ≤ L (and write ω := {Wi}Li=1).

• Output is a r.v. f
(
x,ω

)
= WLσ

(
...W2σ

(
W1x + b1

)
...
)
.

• Softmax likelihood for classification: p
(
y|x,ω

)
= softmax

(
f
(
x,ω

))
or a Gaussian for regression: p

(
y|x,ω

)
= N

(
y; f

(
x,ω

)
, τ−1I

)
.

• But difficult to evaluate posterior p
(
ω|X,Y

)
.

...Modern deep learning as Approximate inference

• Define qθ
(
ω
)

to approximate posterior p
(
ω|X,Y

)
:

qθ(ω) =
∏

qMi
(Wi)

Wi = Mi · diag([zi,j]Ki

j=1)

zi,j ∼ Bernoulli(pi) for i = 1, ..., L, j = 1, ..., Ki−1

with zi,j Bernoulli r.v. and variational params θ = {Mi}Li=1 (set of matrices).
• KL divergence to minimise:

KL
(
qθ
(
ω
)
|| p

(
ω|X,Y

))
∝ −

∫
qθ
(
ω
)
log p

(
Y|X,ω

)
dω + KL

(
qθ
(
ω
)
|| p

(
ω
))

=: L(θ)
• Approximate the integral with MC integration ω̂ ∼ qθ(ω):

L̂(θ) := − log p
(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p

(
ω
))

• Unbiased estimator converges to the same optima as L(θ)
Eω̂∼qθ(ω)

(
L̂(θ)

)
= L(θ)

• For inference, repeat:
– Sample ω̂ ∼ qθ(ω)

– And minimise w.r.t. θ (one step)
L̂(θ) = − log p

(
Y|X, ω̂

)
+ KL

(
qθ
(
ω
)
|| p

(
ω
))

= Dropout training.

...Bayesian Convolutional Neural Networks

How do we use dropout et al. with convolutional neural networks (convnets)?

LeNet convnet structure (LeCun et al., 1998)
Why not use dropout et al. with convolutions?
• It doesn’t work, Low co-adaptation in convolutions
• Because it’s not used correctly

– Standard dropout multiples weights by 0.5 with normal forwards pass
– Instead, use predictive mean, approximated with MC integration:

Eqθ(y∗|x∗)

(
y∗) = 1

T

T∑
t=1

ŷ(x∗, ω̂t) with ω̂t ∼ qθ
(
ω
)
.

– In practice, average stochastic forward passes through the network

Performing dropout after convolutions and averaging forward passes

= approximate inference in Bayesian
convnets.

...MNIST results
Normal LeNet Bayesian LeNet
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...Many unanswered questions left...

• Interpretable models?
– Rich literature in interpretable

Bayesian models
– Combine Bayesian and deep mod-

els in a principled way?

• Combine Bayesian techniques & deep models?

– Unsupervised learning – Bayesian data analysis?
– Bayesian models with complex data? (sequence

data, image data)

• Practical deep learning uncertainty?

– Capture language ambiguity?
– Weight uncertainty for model debugging?

Image Source: cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

• Principled extensions of deep learning?
– Dropout in recurrent networks?
– New appr. distributions = new stochastic reg. techniques

qθ(ω) =?

– Model compression: Wi ∼ discrete distribution with con-
tinuous base measure?

Work in progress!
Full paper: “On Modern Deep Learning and Variational Inference”. Photos
taken from Wikimedia or original work.


