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What’s symbolic differentiation?

I Symbolic differentiation is not automatic differentiation, nor
numerical differentiation [source: Wikipedia].

I Symbolic computation is a scientific area that refers to the
study and development of algorithms and software for
manipulating mathematical expressions and other
mathematical objects.
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What’s Theano?

I Theano was the priestess of Athena in
Troy [source: Wikipedia].

I It is also a Python package for symbolic
differentiation.

I Open source project primarily developed
at the University of Montreal.

I Symbolic equations compiled to run
efficiently on CPU and GPU.

I Computations are expressed using a
NumPy-like syntax:

I numpy.exp() – theano.tensor.exp()

I numpy.sum() – theano.tensor.sum()
Figure: Athena

5 of 39



How does Theano work?
Internally, Theano builds a graph structure composed of:

I interconnected variable nodes (red),

I operator (op) nodes (green),

I and “apply” nodes (blue, representing the application of an op
to some variables)

1 import theano.tensor as T
2 x = T.dmatrix(’x’)
3 y = T.dmatrix(’y’)
4 z = x + y
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Theano basics – differentiation

Computing automatic differentiation is simple with the graph
structure.

I The only thing tensor.grad() has to do is to traverse the graph
from the outputs back towards the inputs.

I Gradients are composed using the chain rule.

Code for derivatives of x2:

1 x = T.scalar(’x’)
2 f = x**2
3 df_dx = T.grad(f, [x]) # results in 2x
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Theano graph optimisation

When compiling a Theano graph, graph optimisation...
I Improves the way the computation is carried out,

I Replaces certain patterns in the graph with faster or more
stable patterns that produce the same results,

I And detects identical sub-graphs and ensures that the same
values are not computed twice (mostly ).

For example, one optimisation is to replace the pattern xy
y by x .
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Act I

The Practice

9 of 39



Theano in practice – example
1 >>> import theano.tensor as T
2 >>> from theano import function
3 >>> x = T.dscalar(’x’)
4 >>> y = T.dscalar(’y’)
5 >>> z = x + y # same graph as before
6
7 >>> f = function([x, y], z) # compiling the graph
8 # the function inputs are x and y, its output is z
9 >>> f(2, 3) # evaluating the function on integers

10 array(5.0)
11 >>> f(16.3, 12.1) # ...and on floats
12 array(28.4)
13
14 >>> z.eval({x : 16.3, y : 12.1})
15 array(28.4) # a quick way to debug the graph
16
17 >>> from theano import pp
18 >>> print pp(z) # print the graph
19 (x + y)
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Theano in practice – note
If you don’t have Theano installed, you can SSH into one of the
following computers and use the Python console:

I riemann
I dirichlet
I bernoulli
I grothendieck
I robbins
I explorer

Syntax (from an external network):

1 ssh [user name]@gate.eng.cam.ac.uk
2 ssh [computer name]
3 python
4 >>> import theano
5 >>> import theano.tensor as T

Exercise files are on http://goo.gl/r5uwGI

11 of 39

http://goo.gl/r5uwGI


Theano basics – exercise 1

1. Type and run the following code:

1 import theano
2 import theano.tensor as T
3 a = T.vector() # declare variable
4 out = a + a**10 # build symbolic expression
5 f = theano.function([a], out) # compile function
6 print f([0, 1, 2]) # prints ‘array([0, 2, 1026])’

2. Modify the code to compute a2 + 2ab + b2 element-wise.
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Theano basics – solution 1

1 import theano
2 import theano.tensor as T
3 a = T.vector() # declare variable
4 b = T.vector() # declare variable
5 out = a**2 + 2*a*b + b**2 # build symbolic expression
6 f = theano.function([a, b], out) # compile function
7 print f([1, 2], [4, 5]) # prints [ 25. 49.]
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Theano basics – exercise 2

Implement the Logistic Function:

s(x) =
1

1 + e−x

(adapt your NumPy implementation, you will need to replace “np”
with “T”; this will be used later in Logistic regression)
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Theano basics – solution 2

1 >>> x = T.dmatrix(’x’)
2 >>> s = 1 / (1 + T.exp(-x))
3 >>> logistic = theano.function([x], s)
4 >>> logistic([[0, 1], [-1, -2]])
5 array([[ 0.5 , 0.73105858],
6 [ 0.26894142, 0.11920292]])

Note that the operations are performed element-wise.
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Theano basics – multiple inputs outputs

We can compute the elementwise difference, absolute difference,
and squared difference between two matrices a and b at the same
time.

1 >>> a, b = T.dmatrices(’a’, ’b’)
2 >>> diff = a - b
3 >>> abs_diff = abs(diff)
4 >>> diff_squared = diff**2
5 >>> f = function([a, b], [diff, abs_diff, diff_squared])
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Theano basics – shared variables
Shared variables allow for functions with internal states.

I hybrid symbolic and non-symbolic variables,

I value may be shared between multiple functions,

I used in symbolic expressions but also have an internal value.
The value can be accessed and modified by the .get value() and
.set value() methods.

Accumulator
The state is initialized to zero. Then, on each function call, the state
is incremented by the function’s argument.

1 >>> state = theano.shared(0)
2 >>> inc = T.iscalar(’inc’)
3 >>> accumulator = theano.function([inc], state,
4 updates=[(state, state+inc)])
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Theano basics – updates parameter

I Updates can be supplied with a list of pairs of the form
(shared-variable, new expression),

I Whenever function runs, it replaces the value of each shared
variable with the corresponding expression’s result at the end.

In the example above, the accumulator replaces state’s value with
the sum of state and the increment amount.

1 >>> state.get_value()
2 array(0)
3 >>> accumulator(1)
4 array(0)
5 >>> state.get_value()
6 array(1)
7 >>> accumulator(300)
8 array(1)
9 >>> state.get_value()

10 array(301)
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Act II

Two Example Models: Logistic Regression and
a Deep Net

19 of 39



Theano basics – exercise 3
I Logistic regression is a probabilistic linear classifier.

I It is parametrised by a weight matrix W and a bias vector b.

I The probability that an input vector x is classified as 1 can be
written as:

P(Y = 1|x ,W ,b) =
1

1 + e−(Wx+b) = s(Wx + b)

I The model’s prediction ypred is the class whose probability is
maximal, specifically for every x :

ypred = 1(P(Y = 1|x ,W ,b) > 0.5)

I And the optimisation objective (negative log-likelihood) is

−y log(s(Wx + b))− (1− y) log(1− s(Wx + b))

(you can put a Gaussian prior over W if you so desire.)
Using the Logistic Function, implement Logistic Regression.
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Theano basics – exercise 3
1 ...
2 x = T.matrix("x")
3 y = T.vector("y")
4 w = theano.shared(np.random.randn(784), name="w")
5 b = theano.shared(0., name="b")
6
7 # Construct Theano expression graph
8 prediction, obj, gw, gb # Implement me!
9

10 # Compile
11 train = theano.function(inputs=[x,y],
12 outputs=[prediction, obj],
13 updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
14 predict = theano.function(inputs=[x], outputs=prediction)
15
16 # Train
17 for i in range(training_steps):
18 pred, err = train(D[0], D[1])
19 ...
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Theano basics – solution 3

1 ...
2 # Construct Theano expression graph
3 # Probability that target = 1
4 p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))
5 # The prediction thresholded
6 prediction = p_1 > 0.5
7 # Cross-entropy loss function
8 obj = -y * T.log(p_1) - (1-y) * T.log(1-p_1)
9 # The cost to minimize

10 cost = obj.mean() + 0.01 * (w ** 2).sum()
11 # Compute the gradient of the cost
12 gw, gb = T.grad(cost, [w, b])
13 ...
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Theano basics – exercise 4

Implement an MLP, following section Example: MLP in
http://nbviewer.ipython.org/github/craffel/
theano-tutorial/blob/master/Theano%20Tutorial.
ipynb#example-mlp
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Theano basics – solution 4

1 class Layer(object):
2 def __init__(self, W_init, b_init, activation):
3 n_output, n_input = W_init.shape
4 self.W = theano.shared(value=W_init.astype(theano.config.floatX),
5 name=’W’,
6 borrow=True)
7 self.b = theano.shared(value=b_init.reshape(-1, 1).astype(theano.config.floatX),
8 name=’b’,
9 borrow=True,

10 broadcastable=(False, True))
11 self.activation = activation
12 self.params = [self.W, self.b]
13
14 def output(self, x):
15 lin_output = T.dot(self.W, x) + self.b
16 return (lin_output if self.activation is None else self.activation(lin_output))
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Theano basics – solution 4

1 class MLP(object):
2 def __init__(self, W_init, b_init, activations):
3 self.layers = []
4 for W, b, activation in zip(W_init, b_init, activations):
5 self.layers.append(Layer(W, b, activation))
6
7 self.params = []
8 for layer in self.layers:
9 self.params += layer.params

10
11 def output(self, x):
12 for layer in self.layers:
13 x = layer.output(x)
14 return x
15
16 def squared_error(self, x, y):
17 return T.sum((self.output(x) - y)**2)
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Theano basics – solution 4

1 def gradient_updates_momentum(cost, params,
2 learning_rate, momentum):
3 updates = []
4 for param in params:
5 param_update = theano.shared(param.get_value()*0.,
6 broadcastable=param.broadcastable)
7 updates.append((param,
8 param - learning_rate*param_update))
9 updates.append((param_update, momentum*param_update

10 + (1. - momentum)*T.grad(cost, param)))
11 return updates
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Epilogue

Rapid Prototyping of Probabilistic Models with
Stochastic Variational Inference
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Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning
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Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning

Stochastic Variational Inference (SVI) can be used for rapid
prototyping as well, with several advantages over probabilistic

programming.

28 of 39



Rapid Prototyping

I SVI is not usually considered as means of speeding-up
development

I But this new inference technique allows us to simplify the
derivations for a large class of models

I With this we can take advantage of effective symbolic
differentiation

I Models are often mathematically too cumbersome otherwise

I Similar principles have been used for rapid model
prototyping in deep learning for NLP for quite some time
[Socher, Ng, and Manning 2010, 2011, 2012]
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What is SVI?

I SVI is simply variational inference used with noisy gradients
– we thus replace the optimisation with stochastic optimisation

I Variational inference
I We approximate the posterior of the latent variables with

distributions from a tractable family (q(X ) for example)

Example model: X → Y

log P(Y ) ≥
∫

q(X ) log
P(Y |X )P(X )

q(X )
= Eq[log P(Y |X )]− KL(q||P)
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What is SVI?
I Stochastic variational inference

I Often used to speed-up inference using mini-batches

log P(Y ) ≥ N
|S|
∑
i∈S

Eq[log P(Yi |Xi)]− KL(q||P)

summing over random subsets of the data points

I But can also be used to approximate integrals through Monte
Carlo integration [Kingma and Welling 2014, Rezende et al.
2014, Titsias and Lazaro-Gredilla 2014]

Eq[log P(Y |X )] ≈ 1
K

K∑
i=1

log P(Y |Xi), Xi ∼ q(X )

summing over samples from the approximating distribution

I Optimising these objectives relies on non-deterministic gradients
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Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]
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Rapid Prototyping with SVI

With Monte Carlo integration we can greatly simplify model and
inference description

Example model: X→ Y

Lower bound:
1. Simulate Xi ∼ q(X ) for i ≤ K
2. Evaluate P(Y |Xi)

3. Return 1
K
∑K

i=1 log P(Y |Xi)− KL(q||P)

Objective:

qopt = arg max
q(X)

1
K

K∑
i=1

log P(Y |Xi)− KL(q||P)
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Rapid Prototyping with SVI

Example model: X→ Y
Objective:

qopt = arg max
q(X)

1
K

K∑
i=1

log P(Y |Xi)− KL(q||P)

Symbolic differentiation is straight-forward in this representation:

∂

∂θ
log P(Y |X ),

∂

∂θ
KL

are easy to compute for a large class of models [Titsias and
Lazaro-Gredilla 2014]
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Rapid Prototyping with SVI
Examples: Bayesian logistic regression, variable selection,
Gaussian process (GP) hyper-parameter estimation, and more
[Titsias and Lazaro-Gredilla 2014]

Example: Bayesian logistic regression
Given dataset with xi ∈ Rd and yi ∈ {0,1} for n ≤ N, we define

P(Y |X , η) =
N∏

i=1

σ(yixT
i η)

for some vector of weights η with prior P(η) = N (0, Id).
Define

q(η|θ = {µ,C}) = N (η;µ,CCT )

Symbolically differentiate and optimise wrt

∂

∂θ
log
( N∏

i=1

σ(yixT
i η)
)
,
∂

∂θ
KL
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Concrete example

Non-linear density estimation of categorical data (work in
progress with Yutian Chen)
Model (using sparse GP with M inducing inputs / outputs Z and U):

X ∼ N (0, I)
(FK ,UK ) ∼ GP(X ,Z )

Y ∼ Softmax(F1, ...,FK )

Approximating distributions: q(X ,F ,U) = q(X )q(U)p(F |X ,U),
defining q(xn) = N (mn, s2

n) and q(uk ) = N (µk ,CCT )

We have (with ε· ∼ N (0, I)):
xn = mn + snεn

uk = µk + Cεk

fnk = KnMK−1
MMuk +

√
Knn − KnMK−1

MMKMnεnk

yn = Softmax(fn1, ..., fnK )
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Concrete example
I Original approach took half a year to develop –

I Deriving variational inference
I Researching appropriate bound in the statistics literature
I Derivations for the model

I Implementation (hundreds of lines of python code)

I New approach –
I Derivations took a day
I Programming took a day (15 lines of Python)
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Disadvantages of this approach

I Studying how symbolic differentiation works is important
though –

I Careless implementation can take long to run
I But careful implementation (together with mini batches) can

actually scale well!

I Only suitable when variational inference is; As usual in
variational inference depends on the family of approximating
distributions

I We can have large variance in the approximate integration
I Either use more samples (slower to run),
I Or use variance reduction techniques [Wang, Chen, Smola, and

Xing 2013]
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Thank you

39 of 39


	The Theory
	Theano in practice
	Two Example Models: Logistic Regression and a Deep Net
	Rapid Prototyping of Probabilistic Models with SVI (time permitting)

