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Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning
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machine learning

Today I’m going to argue that Stochastic Variational Inference (SVI)
can be used for rapid prototyping as well, with several advantages

over probabilistic programming.
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Rapid Prototyping

I SVI is not usually considered as means of speeding-up
development

I But this new inference technique allows us to simplify the
derivations for a large class of models

I With this we can take advantage of effective symbolic
differentiation

I Models are often mathematically too cumbersome otherwise

I Similar principles have been used for rapid model
prototyping in deep learning for NLP for quite some time
[Socher, Ng, and Manning 2010, 2011, 2012]
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What is SVI?

I SVI is simply variational inference used with noisy gradients
– we thus replace the optimisation with stochastic optimisation

I Variational inference
I We approximate the posterior of the latent variables with

distributions from a tractable family (q(X ) for example)

Example model: X → Y

log P(Y ) ≥
∫

q(X ) log
P(Y |X )P(X )

q(X )
= Eq[log P(Y |X )]− KL(q||P)
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What is SVI?
I Stochastic variational inference

I Often used to speed-up inference using mini-batches

log P(Y ) ≥ N
|S|
∑
i∈S

Eq[log P(Yi |Xi)]− KL(q||P)

summing over random subsets of the data points

I But can also be used to approximate integrals through Monte
Carlo integration [Kingma and Welling 2014, Rezende et al.
2014, Titsias and Lazaro-Gredilla 2014]

Eq[log P(Y |X )] ≈ 1
K

K∑
i=1

log P(Y |Xi), Xi ∼ q(X )

summing over samples from the approximating distribution

I Optimising these objectives relies on non-deterministic gradients
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Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]
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Rapid Prototyping with SVI

With Monte Carlo integration we can greatly simplify model and
inference description

Example model: X→ Y

Lower bound:
1. Simulate Xi ∼ q(X ) for i ≤ K
2. Evaluate P(Y |Xi)

3. Return 1
K
∑K

i=1 log P(Y |Xi)− KL(q||P)

Objective:

qopt = arg max
q(X)

1
K

K∑
i=1

log P(Y |Xi)− KL(q||P)
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Rapid Prototyping with SVI

Example model: X→ Y
Objective:

qopt = arg max
q(X)

1
K

K∑
i=1

log P(Y |Xi)− KL(q||P)

Symbolic differentiation is straight-forward in this representation:

∂

∂θ
log P(Y |X ),

∂

∂θ
KL

are easy to compute for a large class of models [Titsias and
Lazaro-Gredilla 2014]
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Rapid Prototyping with SVI
Examples: Bayesian logistic regression, variable selection,
Gaussian process (GP) hyper-parameter estimation, and more
[Titsias and Lazaro-Gredilla 2014]

Example: Bayesian logistic regression
Given dataset with xi ∈ Rd and yi ∈ {0,1} for n ≤ N, we define

P(Y |X , η) =
N∏

i=1

σ(yixT
i η)

for some vector of weights η with prior P(η) = N (0, Id).
Define

q(η|θ = {µ,C}) = N (η;µ,CCT )

Symbolically differentiate and optimise wrt

∂

∂θ
log
( N∏

i=1

σ(yixT
i η)
)
,
∂

∂θ
KL

9 of 13



Concrete example

Non-linear density estimation of categorical data (work in
progress with Yutian Chen)
Model (using sparse GP with M inducing inputs / outputs Z and U):

X ∼ N (0, I)
(FK ,UK ) ∼ GP(X ,Z )

Y ∼ Softmax(F1, ...,FK )

Approximating distributions: q(X ,F ,U) = q(X )q(U)p(F |X ,U),
defining q(xn) = N (mn, s2

n) and q(uk ) = N (µk ,CCT )

We have (with ε· ∼ N (0, I)):
xn = mn + snεn

uk = µk + Cεk

fnk = KnMK−1
MMuk +

√
Knn − KnMK−1

MMKMnεnk

yn = Softmax(fn1, ..., fnK )
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Concrete example
I Original approach took half a year to develop –

I Deriving variational inference
I Researching appropriate bound in the statistics literature
I Derivations for the model

I Implementation (hundreds of lines of python code)

I New approach –
I Derivations took a day
I Programming took a day (15 lines of Python)
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Disadvantages of this approach

I Studying how symbolic differentiation works is important
though –

I Careless implementation can take long to run
I But careful implementation (together with mini batches) can

actually scale well!

I Only suitable when variational inference is; As usual in
variational inference depends on the family of approximating
distributions

I We can have large variance in the approximate integration
I Either use more samples (slower to run),
I Or use variance reduction techniques [Wang, Chen, Smola, and

Xing 2013]
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Thank you

Also thanks to Yutian Chen , Shakir Mohamed , and Richard

Socher
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