
Rapid Prototyping of Probabilistic Models
using Stochastic Variational Inference

Yarin Gal

yg279@cam.ac.uk

October 1st, 2014

yg279@cam.ac.uk

Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning

2 of 13

Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning

2 of 13

Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning

2 of 13

Rapid Prototyping

I In data analysis we often have to develop new models

I This can be a lengthy process
I We need to derive appropriate inference
I Often cumbersome implementation which changes regularly

I Rapid prototyping is used to answer similar problems in
manufacturing

I “Quick fabrication of scale models of a physical part”
I Probabilistic programming can be used for rapid prototyping in

machine learning

Today I’m going to argue that Stochastic Variational Inference (SVI)
can be used for rapid prototyping as well, with several advantages

over probabilistic programming.

2 of 13

Rapid Prototyping

I SVI is not usually considered as means of speeding-up
development

I But this new inference technique allows us to simplify the
derivations for a large class of models

I With this we can take advantage of effective symbolic
differentiation

I Models are often mathematically too cumbersome otherwise

I Similar principles have been used for rapid model
prototyping in deep learning for NLP for quite some time
[Socher, Ng, and Manning 2010, 2011, 2012]

3 of 13

What is SVI?

I SVI is simply variational inference used with noisy gradients
– we thus replace the optimisation with stochastic optimisation

I Variational inference
I We approximate the posterior of the latent variables with

distributions from a tractable family (q(X) for example)

Example model: X → Y

log P(Y) ≥
∫

q(X) log
P(Y |X)P(X)

q(X)
= Eq[log P(Y |X)]− KL(q||P)

4 of 13

What is SVI?
I Stochastic variational inference

I Often used to speed-up inference using mini-batches

log P(Y) ≥ N
|S|
∑
i∈S

Eq[log P(Yi |Xi)]− KL(q||P)

summing over random subsets of the data points

I But can also be used to approximate integrals through Monte
Carlo integration [Kingma and Welling 2014, Rezende et al.
2014, Titsias and Lazaro-Gredilla 2014]

Eq[log P(Y |X)] ≈ 1
K

K∑
i=1

log P(Y |Xi), Xi ∼ q(X)

summing over samples from the approximating distribution

I Optimising these objectives relies on non-deterministic gradients

5 of 13

What is SVI?
I Stochastic variational inference

I Often used to speed-up inference using mini-batches

log P(Y) ≥ N
|S|
∑
i∈S

Eq[log P(Yi |Xi)]− KL(q||P)

summing over random subsets of the data points

I But can also be used to approximate integrals through Monte
Carlo integration [Kingma and Welling 2014, Rezende et al.
2014, Titsias and Lazaro-Gredilla 2014]

Eq[log P(Y |X)] ≈ 1
K

K∑
i=1

log P(Y |Xi), Xi ∼ q(X)

summing over samples from the approximating distribution

I Optimising these objectives relies on non-deterministic gradients

5 of 13

What is SVI?
I Stochastic variational inference

I Often used to speed-up inference using mini-batches

log P(Y) ≥ N
|S|
∑
i∈S

Eq[log P(Yi |Xi)]− KL(q||P)

summing over random subsets of the data points

I But can also be used to approximate integrals through Monte
Carlo integration [Kingma and Welling 2014, Rezende et al.
2014, Titsias and Lazaro-Gredilla 2014]

Eq[log P(Y |X)] ≈ 1
K

K∑
i=1

log P(Y |Xi), Xi ∼ q(X)

summing over samples from the approximating distribution

I Optimising these objectives relies on non-deterministic gradients

5 of 13

Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]

6 of 13

Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]

6 of 13

Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]

6 of 13

Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]

6 of 13

Stochastic optimisation

I Using gradient descent with noisy gradients and decreasing
learning-rates, we are guaranteed to converge to an optimum

θt+1 = θt + αf ′(θt)

I Learning-rates (α) are hard to tune...
I Use learning-rate free optimisation (again, from deep learning)

I AdaGrad [Duchi et. al 2011], AdaDelta [Zeiler 2012]

I RMSPROP [Tieleman and Hinton 2012, Lecture 6.5,
COURSERA: Neural Networks for Machine Learning]

θt+1 = θt +
α√
rt

f ′(θt); rt = (1− γ)f ′(θ)2 + γrt−1

and increase α times 1 + ε if the last two grads’ directions agree

I These have been compared to each other and others
empirically in a variety of settings in [Schaul 2014]

6 of 13

Rapid Prototyping with SVI

With Monte Carlo integration we can greatly simplify model and
inference description

Example model: X→ Y

Lower bound:
1. Simulate Xi ∼ q(X) for i ≤ K
2. Evaluate P(Y |Xi)

3. Return 1
K
∑K

i=1 log P(Y |Xi)− KL(q||P)

Objective:

qopt = arg max
q(X)

1
K

K∑
i=1

log P(Y |Xi)− KL(q||P)

7 of 13

Rapid Prototyping with SVI

Example model: X→ Y
Objective:

qopt = arg max
q(X)

1
K

K∑
i=1

log P(Y |Xi)− KL(q||P)

Symbolic differentiation is straight-forward in this representation:

∂

∂θ
log P(Y |X),

∂

∂θ
KL

are easy to compute for a large class of models [Titsias and
Lazaro-Gredilla 2014]

8 of 13

Rapid Prototyping with SVI
Examples: Bayesian logistic regression, variable selection,
Gaussian process (GP) hyper-parameter estimation, and more
[Titsias and Lazaro-Gredilla 2014]

Example: Bayesian logistic regression
Given dataset with xi ∈ Rd and yi ∈ {0,1} for n ≤ N, we define

P(Y |X , η) =
N∏

i=1

σ(yixT
i η)

for some vector of weights η with prior P(η) = N (0, Id).
Define

q(η|θ = {µ,C}) = N (η;µ,CCT)

Symbolically differentiate and optimise wrt

∂

∂θ
log
(N∏

i=1

σ(yixT
i η)
)
,
∂

∂θ
KL

9 of 13

Concrete example

Non-linear density estimation of categorical data (work in
progress with Yutian Chen)
Model (using sparse GP with M inducing inputs / outputs Z and U):

X ∼ N (0, I)
(FK ,UK) ∼ GP(X ,Z)

Y ∼ Softmax(F1, ...,FK)

Approximating distributions: q(X ,F ,U) = q(X)q(U)p(F |X ,U),
defining q(xn) = N (mn, s2

n) and q(uk) = N (µk ,CCT)

We have (with ε· ∼ N (0, I)):
xn = mn + snεn

uk = µk + Cεk

fnk = KnMK−1
MMuk +

√
Knn − KnMK−1

MMKMnεnk

yn = Softmax(fn1, ..., fnK)
10 of 13

Concrete example
I Original approach took half a year to develop –

I Deriving variational inference
I Researching appropriate bound in the statistics literature
I Derivations for the model

I Implementation (hundreds of lines of python code)

I New approach –
I Derivations took a day
I Programming took a day (15 lines of Python)

11 of 13

Concrete example
I Original approach took half a year to develop –

I Deriving variational inference
I Researching appropriate bound in the statistics literature
I Derivations for the model
I Implementation (hundreds of lines of python code)

I New approach –
I Derivations took a day
I Programming took a day (15 lines of Python)

11 of 13

Disadvantages of this approach

I Studying how symbolic differentiation works is important
though –

I Careless implementation can take long to run
I But careful implementation (together with mini batches) can

actually scale well!

I Only suitable when variational inference is; As usual in
variational inference depends on the family of approximating
distributions

I We can have large variance in the approximate integration
I Either use more samples (slower to run),
I Or use variance reduction techniques [Wang, Chen, Smola, and

Xing 2013]

12 of 13

Disadvantages of this approach

I Studying how symbolic differentiation works is important
though –

I Careless implementation can take long to run
I But careful implementation (together with mini batches) can

actually scale well!

I Only suitable when variational inference is; As usual in
variational inference depends on the family of approximating
distributions

I We can have large variance in the approximate integration
I Either use more samples (slower to run),
I Or use variance reduction techniques [Wang, Chen, Smola, and

Xing 2013]

12 of 13

Disadvantages of this approach

I Studying how symbolic differentiation works is important
though –

I Careless implementation can take long to run
I But careful implementation (together with mini batches) can

actually scale well!

I Only suitable when variational inference is; As usual in
variational inference depends on the family of approximating
distributions

I We can have large variance in the approximate integration
I Either use more samples (slower to run),
I Or use variance reduction techniques [Wang, Chen, Smola, and

Xing 2013]

12 of 13

Thank you

Also thanks to Yutian Chen , Shakir Mohamed , and Richard

Socher
13 of 13

