o 137 fremeres

若stuidy
圈 UNIVERSITY OF
 CAMBRIDGE

Representations of Meaning

Yarin Gal

yg279@cam.ac.uk

Aristotle's famous example:

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal

Computations Linguistics (1950s)

Linguistics

Linguistics

Linguistics

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$
- Identity and cut rule-

- Conjunction-

$$
\frac{\Gamma \vdash A ; \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge R
$$

- Implication-

- Structural rules-

- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$

- Conjunction-

- Implication-

- Structural rules-

- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$
- Identity and cut rule-

$$
\overline{A \vdash A} \mathrm{ld} \quad \frac{\Gamma \vdash A ; \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}
$$

- Conjunction-

- Implication-

- Structural rules-

- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$
- Identity and cut rule-

$$
\overline{A \vdash A} \text { ld } \quad \frac{\Gamma \vdash A ; A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}
$$

- Conjunction-

$$
\frac{\Gamma \vdash A ; \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge R \quad \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge L
$$

- Implication-

- Structural rules-

- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$
- Identity and cut rule-

$$
\overline{A \vdash A} \mathrm{ld} \quad \frac{\Gamma \vdash A ; \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}
$$

- Conjunction-

$$
\frac{\Gamma \vdash A ; \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge R \quad \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge L
$$

- Implication-

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow R \quad \frac{\Gamma \vdash A ; \quad B, \Delta \vdash C}{\Gamma, A \rightarrow B, \Delta \vdash C} \rightarrow L
$$

- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$
- Identity and cut rule-

$$
\overline{A \vdash A} \mathrm{ld} \quad \frac{\Gamma \vdash A ; \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}
$$

- Conjunction-

$$
\frac{\Gamma \vdash A ; \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge R \quad \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge L
$$

- Implication-

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow R \quad \frac{\Gamma \vdash A ; \quad B, \Delta \vdash C}{\Gamma, A \rightarrow B, \Delta \vdash C} \rightarrow L
$$

- Structural rules-
$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$ Exchange $\quad \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$ Contraction $\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$ Weakening
- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus (1934)

- $A_{1}, \ldots, A_{n} \vdash A$: A can be proved from assumptions A_{1}, \ldots, A_{n}
- Γ, Δ : finite lists of formulas, define $\Gamma, A:=\Gamma \cup\{A\}$
- Identity and cut rule-

$$
\overline{A \vdash A} \mathrm{ld} \quad \frac{\Gamma \vdash A ; A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}
$$

- Conjunction-

$$
\frac{\Gamma \vdash A ; \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge R \quad \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge L
$$

- Implication-

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow R \quad \frac{\Gamma \vdash A ; \quad B, \Delta \vdash C}{\Gamma, A \rightarrow B, \Delta \vdash C} \rightarrow L
$$

- Structural rules-
$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$ Exchange $\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$ Contraction $\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$ Weakening
- Equivalent to the Natural Deduction system.

Gentzen Sequent Calculus - Example

- The sentences "All men are mortal" and "Socrates is a man" are mapped to

$$
\text { man } \vdash \text { mortal; } \quad \text { Socrates } \vdash \text { man. }
$$

Using the cut rule we get

$$
\frac{\text { man } \vdash \text { mortal; } \quad \text { Socrates } \vdash \text { man }}{\text { Socrates } \vdash \text { mortal }} \text { Cut }
$$

And infer that Socrates is mortal.

- But, what about

$$
\text { went } \rightarrow \text { pub } \stackrel{?}{\vdash} \text { went } \rightarrow \text { bar }
$$

Vector space over \mathbb{R}

You shall know a word by the company it keeps.
-Firth, J. R. 1957:11

6 of 18

圂包 UNIVERSITYOF (2) CAMBRIDGE

Dimensionality reduction

The Johnson-Lindenstrauss Lemma

For any $0<\epsilon<1 / 2$ and any integer $m>4$, let $k=\frac{20 \log m}{\epsilon^{2}}$. Then, for any set V of m points in $\mathbb{R}^{N}, \exists f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ s.t. $\forall u, v \in V$:

$$
(1 \epsilon)\|u v\|^{2} \leq\|f(u) f(v)\|^{2} \leq(1+\epsilon)\|u v\|^{2}
$$

e.g. $f(x)=\frac{1}{\sqrt{k}} A x$ with $A_{i j} \in \mathcal{N}(0,1)$.

Vector space over \mathbb{R} - Example

diaes

A category C consists of:

- A set ob(C) of objects,
- A set hom (\mathbf{C}) of morphisms, or arrows. Each arrow f has a source object A and target object B,
- An identity arrow id_{A} for every object A.
- An associative composition operation between arrows o.

Composing $f: A \rightarrow B$ and $g: B \rightarrow C$ gives $g \circ f$ from A to C.

Symmetric monoidal closed categories CAMBRIDGE

A symmetric monoidal closed category is

- a category C
- equipped with a symmetric associative bifunctor \otimes : $\mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}$ called the tensor product
- and an object / called the identity object ${ }^{1}$.
- For all objects A and B there is an object

$$
A \multimap B
$$

and an arrow

$$
e v_{A, B}:(A \multimap B) \otimes A \rightarrow B .
$$

For every arrow $f: C \otimes A \rightarrow B$, there is a unique arrow $\Lambda(f): C \rightarrow(A \multimap B)$ such that $e v_{A, B} \circ\left(\Lambda(f) \otimes \mathrm{id}_{A}\right)=f$.

[^0]
Symmetric monoidal closed categories CAMBRIDGE

The category of finite dimensional vector spaces is a symmetric monoidal closed category.

- The tensor product is the tensor product of vector spaces,
- and $A \multimap B$ is the vector space of linear maps.

Symmetric monoidal closed categories CAMBRIDGE

Gentzen sequent calculus without the Contraction and Weakening rules also corresponds to symmetric monoidal closed categories.

- Known as linear logic,
- A "resource-sensitive" logic ${ }^{2}$,
- The tensor product is the conjunction \wedge,
- and $A \multimap B$ is the implication \rightarrow.

For example, the identity and cut rule -

$$
\overline{A \vdash A} \mathrm{ld} \quad \frac{\Gamma \vdash A ; A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}
$$

are equivalent to

$$
\overline{\operatorname{ld}_{A}: A \rightarrow A} \quad \frac{f: \Gamma \rightarrow A ; \quad g: A \otimes \Delta \rightarrow B}{g \circ\left(f \otimes \operatorname{ld}_{\Delta}\right): \Gamma \otimes \Delta \rightarrow B}
$$

[^1]
Compositional Distributional repr.

The Compositional Distributional representation:

- Let $N=\mathbb{R}$ be a noun vector space, with nouns represented as vectors,
- Let $V=\mathbb{R}^{3}$ be a verb vector space, with verbs represented as third-order tensors,
- Let S be a sentence vector space, representing sentences as the tensor product $N \otimes V \otimes N$,
- Finally let T be a truth value vector space, a lower dimensional vector space to which we project products.

Compositional Distributional - Example Eitil CAMERRITOEE

For example,

- "Dogs" and "Cats" are represented as vectors d and c
- "chase" is represented as $T \in \mathbb{R}^{3}$
- "Dogs chase cats" is represented as $d \otimes T \otimes c$

For simplicity, we use a binary noun vector space, and T is a binary matrix:

- The first dimension of N is "likes chasing small fluffy animals" and the 2nd and 3rd dimensions are "is small" and "is fluffy",
- A cat is represented as small and fluffy $c=[0,1,1]$, a dog likes to chase small and fluffy animals $d=[1,0,0]$,
- Tensor "chase" preserves vectors from the left that have the "likes chasing small fluffy animals" property and vectors from the right that have the "is small and is fluffy properties,

$$
T=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
c=[0,1,1], \quad d=[1,0,0] \\
T=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad t=d T c^{T}
\end{gathered}
$$

- The proposition "dogs chase cats" is mapped to $d T c^{T}=1$ - a high "truthness" value.
- The proposition "cats chase dogs" is mapped to $c T d^{\top}=0-$ low truthness.

Thank you for listening

The talk was based on［Gal，2013］．

围 Gal, Y. (2013).
Semantics, modelling, and the problem of representation of meaning - a brief survey of recent literature.
Technical report, University of Cambridge.

[^0]: ${ }^{1}$ The symmetry, associativity and identity are define through natural isomorphisms.

[^1]: ${ }^{2}$ It is possible to recover the expressive power of standard Gentzen sequent calculus with the addition of some connectives.

