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Logic in Ancient Greece (~ 300 BC)  “i* CAMBRIDGE

Aristotle’s famous example:
» All men are mortal
» Socrates is a man
» Therefore, Socrates is mortal
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» Aq,...,An b A: Acan be proved from assumptions Aq, ..., An
» I, A: finite lists of formulas, define ', A:=T U {A}
» |dentity and cut rule— F(FA AAFB
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AF A rare oW
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v

A1, ...,An B A: A can be proved from assumptions Ay, ..., A,
I, A: finite lists of formulas, define ', A:=T U {A}
Identity and cut rule— FEA AAFB

ArAd rLAFB

Conjunction—
r-A AFB o rABFC
NAFAAB NAANBEC

A /

Cut

v

AL
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v

A1, ...,An B A: A can be proved from assumptions Ay, ..., A,
I, A: finite lists of formulas, define ', A:=T U {A}
Identity and cut rule— FEA AAFB

A /

AT A rarg U
» Conjunction—
r-A AFB o rABFC il
NNAFAAB NNAANBEC
» Implication—
rA-B r'EA BAFC

L

FTFASE rASBAIC
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v

A1, ...,An B A: A can be proved from assumptions Ay, ..., A,
I, A: finite lists of formulas, define ', A:=T U {A}
Identity and cut rule— FEA AAFB

A /

AT A rarg U
» Conjunction—
r-A AFB o rABFC il
NNAFAAB NNAANBEC
» Implication—
rA-B r'EA BAFC
TFASB MASBAFrC -
» Structural rules—
rABAKFC rAAR

B , r-B _
m—AwExchange FAFB Contraction mWeakenlng
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Gentzen Sequent Calculus (1934) "} CAMBRIDGE

v

A1, ...,An B A: A can be proved from assumptions Ay, ..., A,
I, A: finite lists of formulas, define ', A:=T U {A}
Identity and cut rule— FEA AAFB

A /

AT A rarg U
» Conjunction—
r-A AFB o rAB-c .,
NAFAAB NAANBEC
» Implication—
rA-B rA; B,A+C
TFASB MASBAFrC -
» Structural rules—
:::g’,i:—ﬁthxchange %Contraction %Weakening

» Equivalent to the Natural Deduction system.

(based on notes by Samson Abramsky)
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Gentzen Sequent Calculus — Example ™" CAMBRIDGE

» The sentences “All men are mortal” and “Socrates is a man”
are mapped to

man - mortal; Socrates - man.

Using the cut rule we get

man ~ mortal; Socrates - man

Cut
Socrates - mortal

And infer that Socrates is mortal.
» But, what about

?
went — pub F went — bar
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|
You shall know a word by the company it keeps.

—Firth, J. R. 1957:11




Vector space over R

2B UNIVERSITY OF
“§- CAMBRIDGE
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Dimensionality reduction “#* CAMBRIDGE

The Johnson-Lindenstrauss Lemma
Forany 0 < e < 1/2 and any integer m > 4, let k = =32 Then,
for any set V of mpoints in RN, 3f : RN — Rk s.t. Vu,v e V :

()lluv]® < [IF(WW)IZ < (1 +€)luv]]?

e.g. f(x) = \/LRAX with A; € N(0, 1).
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A category C consists of:
» A set ob(C) of objects,

» A set hom(C) of morphisms, or arrows. Each arrow f has a
source object A and target object B,

» An identity arrow id4 for every object A.
» An associative composition operation between arrows o.
Composing f: A— Bandg: B— Cgives go f from Ato C.
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. . . UNIVERSITY OF
Symmetric monoidal closed categories ™" CAMBRIDGE

A symmetric monoidal closed category is
» a category C

» equipped with a symmetric associative bifunctor : C x C — C
called the tensor product

» and an object / called the identity object!.
» For all objects A and B there is an object

A—B

and an arrow
evap: (A—O B)@A—) B.

For every arrow f: C ® A — B, there is a unique arrow
A(f) : C — (A — B) such that eva g o (A(f) @ id4) = f.

"The symmetry, associativity and identity are define through natural
isomorphisms.
11 0of 18



. . . UNIVERSITY OF
Symmetric monoidal closed categories ™" CAMBRIDGE

The category of finite dimensional vector spaces is a symmetric
monoidal closed category.

» The tensor product is the tensor product of vector spaces,
» and A — Bis the vector space of linear maps.

12 of 18
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Symmetric monoidal closed categories ™" CAMBRIDGE

Gentzen sequent calculus without the Contraction and Weakening
rules also corresponds to symmetric monoidal closed categories.

» Known as linear logic,

» A “resource-sensitive” logic?,

» The tensor product is the conjunction A,
» and A — B is the implication —.

For example, the identity and cut rule —
d r-A;, AARFB

AF A rare U

are equivalent to
f-T—-A g:-AA—B
ldg:A— A go(feldpa): T®A—B

2]t is possible to recover the expressive power of standard Gentzen sequent
calculus with the addition of some connectives.
13 0of 18



Compositional Distributional repr. "§" CAMBRIDGE

The Compositional Distributional representation:

» Let N = R be a noun vector space, with nouns represented as
vectors,

» Let V = R3 be a verb vector space, with verbs represented as
third-order tensors,

» Let S be a sentence vector space, representing sentences as
the tensor product N@ V @ N,

» Finally let T be a truth value vector space, a lower dimensional
vector space to which we project products.
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Compositional Distributional — Example™™ CAMBRIDGE

For example,
» “Dogs” and “Cats” are represented as vectors d and ¢
» “chase” is represented as T € R3
» “Dogs chase cats” is representedas d ® T ® ¢

For simplicity, we use a binary noun vector space, and T is a
binary matrix:
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Compositional Distributional — Example“a’“’ CAMBRIDGE

» The first dimension of N is “likes chasing small fluffy animals”
and the 2nd and 3rd dimensions are “is small’ and “is fluffy”,

» A cat is represented as small and fluffy ¢ = [0, 1, 1], a dog likes
to chase small and fluffy animals d = [1,0, 0],

» Tensor “chase” preserves vectors from the left that have the
“likes chasing small fluffy animals” property and vectors from
the right that have the “is small and is fluffy properties,
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Compositional Distributional — Example™™ CAMBRIDGE

C:[0?171]’ d:[17070]

0 1 1
T=|00 0|, t=dTc’
000

» The proposition “dogs chase cats” is mapped to dTe¢’ =1-a
high “truthness” value.

» The proposition “cats chase dogs” is mapped to cTd” =0 —
low truthness.
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The talk was based on [Gal, 2013].



3 Gal, Y. (2013).
Semantics, modelling, and the problem of representation of
meaning — a brief survey of recent literature.
Technical report, University of Cambridge.
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