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Pillar I: Deep learning

Conceptually simple models

Data: X = {x1,x2, ...,xN}, Y = {y1,y2, ...,yN}
Model: given matrices W and non-linear func. σ(·), define “network”

ỹi(xi) = W2 · σ
(
W1xi

)
Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.
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Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.

Deep learning is awesome
I Simple and modular

I Huge attention from
practitioners and engineers

I Great software tools

I Scales with data and
compute

I Real-world impact

... but has many issues
I What does a model not know?

I Uninterpretable black-boxes

I Easily fooled (AI safety)

I Lacks solid mathematical
foundations (mostly ad hoc)

I Crucially relies on big data
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Why should I care about uncertainty?

I We need a way to tell what our model knows and what not.
I We train a model to recognise dog breeds

I And are given a cat to classify

I What would you want your model to do?

I Similar problems in decision making, physics, life science, etc.

I Uncertainty gives insights into the black-box when it fails
—where am I not certain?

I Uncertainty might even be useful to identify when attacked with
adversarial examples!

I Lastly, need less data if label only where model is uncertain:
wear-and-tear in robotics, expert time in medical analysis
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Pillar II: Bayes
The language of uncertainty

I Probability theory
I Specifically Bayesian probability theory (1750!)

When applied to Information Engineering...
I Bayesian modelling

I Built on solid mathematical foundations
I Orthogonal to deep learning...

4 of 16



A simple way to tie the two pillars together

I “Dropout”: a popular method in deep learning, cited hundreds
and hundreds of times

I Works by randomly setting network units to zero

I This somehow improves performance and reduces over-fitting

I Used in almost all modern deep learning models
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A simple way to tie the two pillars together

I Can be shown that dropout training is identical to approximate
inference in Bayesian modelling [Gal, 2016],

I Connecting Deep Learning to Bayesian probability theory.

I The mathematically grounded connection gives a treasure
trove of new research opportunities:

I uncertainty in deep learning, e.g. interpretability and AI safety
I principled extensions to deep learning
I enable deep learning in small data domains
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A simple way to tie the two pillars together

I Can be shown that dropout training is identical to approximate
inference in Bayesian modelling [Gal, 2016],

I Connecting Deep Learning to Bayesian probability theory.

I The mathematically grounded connection gives a treasure
trove of new research opportunities:

I uncertainty in deep learning, e.g. interpretability and AI safety
I principled extensions to deep learning
I enable deep learning in small data domains

More in a second. First, some theory.
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Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)
I This is called approximate variational inference.

7 of 16



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)
I This is called approximate variational inference.

7 of 16



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)
I This is called approximate variational inference.

7 of 16



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)

I This is called approximate variational inference.

7 of 16

qθ1(W)

p(W|X,Y)



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)

I This is called approximate variational inference.

7 of 16

qθ2(W)

p(W|X,Y)



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)

I This is called approximate variational inference.

7 of 16

qθ3(W)

p(W|X,Y)



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)

I This is called approximate variational inference.

7 of 16

qθ4(W)

p(W|X,Y)



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)

I This is called approximate variational inference.

7 of 16

qθ5(W) p(W|X,Y)



Some theory

From Bayesian neural networks to Dropout

I Place prior p(W) dist. on weights, making these r.v.s

I Given dataset X,Y, the r.v. W has a posterior: p
(
W|X,Y

)
I Which is difficult to evaluate—many great researchers tried

I Can define simple distribution qM(·) and approximate
qM(W) ≈ p

(
W|X,Y

)
I This is called approximate variational inference.

7 of 16



Some theory

Theorem (Dropout as approximate variational inference)

Define qM(W) := M · diag(Bernoulli)

with variational parameter M.
The optimisation objective of (stochastic) variational inference with
qM(W) is identical to the objective of a dropout neural network.

Proof.
See Gal [2016].
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The optimisation objective of (stochastic) variational inference with
qM(W) is identical to the objective of a dropout neural network.

Proof.
See Gal [2016].

Implementing inference with qM(W)
=

Implementing dropout training.
Line to line.
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Some theory

Theorem (Dropout as approximate variational inference)

Define qM(W) := M · diag(Bernoulli)

with variational parameter M.
The optimisation objective of (stochastic) variational inference with
qM(W) is identical to the objective of a dropout neural network.

Corollary (Model uncertainty with dropout)

Given p(y∗|fW(x∗)) = N (y∗; fW(x∗), τ−1I) for some τ > 0, the
model’s predictive variance can be estimated with the unbiased
estimator:

Ṽar[y∗] := τ−1I +
1
T

T∑
t=1

fŴt (x∗)T fŴt (x∗)− Ẽ[y∗]T Ẽ[y∗]

with Ŵt ∼ q∗
M(W).
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Some code, just for fun

In practical terms1, given point x :

I drop units at test time

I repeat 10 times

I and look at mean and sample variance.

I Or in Python:

1 y = []
2 for _ in xrange(10):
3 y.append(model.output(x, dropout=True))
4 y_mean = numpy.mean(y)
5 y_var = numpy.var(y)

1Friendly introduction given in yarin.co/blog
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Uncertainty in deep learning

What would be the CO2 concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

Normal deep learning: Bayesian perspective:

What can we do with this?
Deep learning with small data • Interpretable AI • Safe AI
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Enabling Deep Learning with small data

Human-in-the-loop AI for Galaxy Zoo morphology
classification

with Lewis Smith [work done w. Chris Lintott, Zooniverse Citizen Science Project]
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Interpretable AI

Bayesian deep learning for exoplanet atmospheric retrieval

with Adam Cobb [work done with NASA Goddard while at NASA FDL]
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Safe AI

Uncertainties in computer vision

I Aleatoric uncertainty, capturing inherent noise in the data
I Epistemic uncertainty, capturing model’s lack of knowledge

with Alex Kendall
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Safe AI

Informal settlement detection

with Tim Rudner [work done with ESA while at FDL Europe]
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ML in Space (literally)

Flood detection, from space

with Lewis Smith [work done with ESA while at FDL Europe]
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OATML
Oxford Applied and Theoretical Machine Learning Group
http://oatml.ox.ac.uk
Researchers coming from academia (Oxford, Cam-
bridge, MILA, Yale, U of Toronto, U of Amsterdam, etc)
.. and industry (Google, DeepMind, Twitter, etc)
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