THE ALAN
TURING
INSTITUTE

ML in Space (MLSS Moscow, 2019)

Yarin Gal

yarin@cs.ox.ac.uk

Unless specified otherwise, photos are either original work or taken from Wikimedia, under Creative Commons license


mailto:yarin@cs.ox.ac.uk
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Pillar I: Deep learning

Data: X = {X1 , X2, ..., XN}, Y= {y1,y2, ...,yN}
Model: given matrices W and non-linear func. o(-), define “network”

Vi(x;) = W5 - o (W1X;)

Objective: find W for which y;(x;) is close to y; for all i < N.
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Pillar I: Deep learning

Data: X = {x1,Xo2,.... Xy}, Y = {y1,¥2, ..., Yn}
Model: given matrices W and non-linear func. o(-), define “network”

Vi(xi)) = Wz - o (WqX))

Objective: find W for which y;(x;) is close to y; for all i < N.

Deep learning is awesome v’
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Simple and modular

Huge attention from
practitioners and engineers

Great software tools

Scales with data and
compute

Real-world impact

... but has many issues X

v

v

v

v
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What does a model not know?
Uninterpretable black-boxes
Easily fooled (Al safety)

Lacks solid mathematical
foundations (mostly ad hoc)

Crucially relies on big data
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» We need a way to tell what our model knows and what not.

» We train a model to recognise dog breeds
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Why should | care about uncertainty?

» We need a way to tell what our model knows and what not.
» We train a model to recognise dog breeds

» And are given a cat to classify

30of 16



NIVERSITY OF

» We need a way to tell what our model knows and what not.

» We train a model to recognise dog breeds
» And are given a cat to classify

» What would you want your model to do?




Why should | care about uncertainty?

» We need a way to tell what our model knows and what not.
» We train a model to recognise dog breeds

» And are given a cat to classify
» What would you want your model to do?

» Similar problems in decision making, physics, life science, etc.
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Why should | care about uncertainty?

» We need a way to tell what our model knows and what not.

» Uncertainty gives insights into the black-box when it fails
—where am | not certain?

» Uncertainty might even be useful to identify when attacked with
adversarial examples!

1.0% kit fox 8.0% goldfish
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Why should | care about uncertainty?

» We need a way to tell what our model knows and what not.

» Uncertainty gives insights into the black-box when it fails
—where am | not certain?

» Uncertainty might even be useful to identify when attacked with
adversarial examples!

» Lastly, need less data if label only where model is uncertain:
wear-and-tear in robotics, expert time in medical analysis
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Pillar 1l: Bayes

The language of uncertainty
» Probability theory
» Specifically Bayesian probability theory (1750!)
When applied to Information Engineering...
» Bayesian modelling

o T &

cfffe

APRIORIUS PRAGHATICIIS FREQUENTISTUS SAPIEIIS EAYESIANIS Std:o

» Built on solid mathematical foundations
» Orthogonal to deep learning...
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A simple way to tie the two pillars together =

» “Dropout”: a popular method in deep learning, cited hundreds
and hundreds of times
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A simple way to tie the two pillars together

» “Dropout”: a popular method in deep learning, cited hundreds
and hundreds of times

» Works by randomly setting network units to zero
» This somehow improves performance and reduces over-fitting

» Used in almost all modern deep learning models
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A simple way to tie the two pillars together

» Can be shown that dropout training is identical to approximate
inference in Bayesian modelling [Gal, 2016],
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A simple way to tie the two pillars together

» Can be shown that dropout training is identical to approximate
inference in Bayesian modelling [Gal, 2016],

» Connecting Deep Learning to Bayesian probability theory.

» The mathematically grounded connection gives a treasure
trove of new research opportunities:
» uncertainty in deep learning, e.g. interpretability and Al safety
» principled extensions to deep learning
» enable deep learning in small data domains

More in a second. First, some theory.
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Some theory

» Place prior p(W) dist. on weights, making these r.v.s

» Given dataset X, Y, the r.v. W has a posterior: p(W|X,Y)
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» Place prior p(W) dist. on weights, making these r.v.s
» Given dataset X, Y, the r.v. W has a posterior: p(W|X,Y)
» Which is difficult to evaluate—many great researchers tried

» Can define simple distribution gy(-) and approximate
au(W) ~ p(W|X,Y)
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Some theory

v

Place prior p(W) dist. on weights, making these r.v.s

v

Given dataset X, Y, the r.v. W has a posterior: p(W|X,Y)

v

Which is difficult to evaluate—many great researchers tried

v

Can define simple distribution gy(-) and approximate
am(W) ~ p(WIX.Y)

v

This is called approximate variational inference.
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Some theory

Define agm(W) := M - diag(Bernoulli)

with variational parameter M.

The optimisation objective of (stochastic) variational inference with
agm(W) is identical to the objective of a dropout neural network.

See Gal [2016]. O

8of 16



Some theory

Define gm(W) := M - diag(Bernoulli)

with variational parameter M.

The optimisation objective of (stochastic) variational inference with
agm(W) is identical to the objective of a dropout neural network.

See Gal [2016]. O

Implementing inference with gu(W)

Implementing dFopout training.
Line to line.
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Some theory

Define agu(W) := M - diag(Bernoulli)

with variational parameter M.

The optimisation objective of (stochastic) variational inference with
gm(W) is identical to the objective of a dropout neural network.

Given p(y*[fW(x*)) = N(y*; W (x*), 7~ 1) for some + > 0, the
model’s predictive variance can be estimated with the unbiased
estimator:

-

Varly*] := 1+ Z )T (x*) — Bly*] Ely’]

with Wy ~ g5y (W).
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a b~ wnn =

Some code, just for fun

In practical terms’, given point x:

» drop units at test time

v

repeat 10 times

v

and look at mean and sample variance.

v

Or in Python:

y = []
for _ in xrange(10):
y.append (model.output (x, dropout=True))
y_mean = numpy.mean (y)
y_var = numpy.var (y)

'Friendly introduction given in yarin.co/blog
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http://yarin.co/blog

Uncertainty in deep learning

What would be the CO, concentration level in Mauna Loa,
Hawaii, in 20 years’ time?

Normal deep learning: Bayesian perspective:

What can we do with this?
Deep learning with small data e Interpretable Al ¢ Safe Al
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UNIVERSITY OF

XFORD

Human-in-the-loop Al for Galaxy Zoo morphology
classification

TASK TUTORIAL

Is the galaxy simply smooth and rounded, with
no sign of a disk?

»
-
-

plkIN, W) pUKIN, W)
pIKIN.D)  pikIN. D)

Features or Disk

% staroratifact

p(KIN, w)
]

NEED SOME HELP WITH THIS TASK?

PIKIN, W)
PUKIN, D)
A
7z

pUKIN, W)
PIKIN, D)

Figure 1. The Galaxy Zoo web interface as shown to volunteers.
This screenshot shows the first question in the decision tree: is
the galaxy smooth or featured?

_ plkin, ! PN, w) KIN, )
p(kIN, D)
=
=
&

PIKIN, W)
PIKIN.D)

with Lewis Smith [work done w. Chris Lintott, Zooniverse Citizen Science Project]



Interpretable Al
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with Adam Cobb [work done with NASA Goddard while at NASA FDL]
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) UNIVERSITY OF
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Uncertainties in computer vision

» Aleatoric uncertainty, capturing inherent noise in the data
» Epistemic uncertainty, capturing model’s lack of knowledge

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Episternic Uncertainty

with Alex Kendall



Safe Al

Informal settlement detection
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with Tim Rudner [work done with ESA while at FDL Europe]
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ML in Space (literally)

Flood detection, from space

A AIRBUS camaPULT

with Lewis Smith [work done with ESA while at FDL Europe]
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ML in Space (literally)

Flood detection, from space
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ELEMENTA' AIRBUS camaPULT

with Lewis Smith [work done with ESA while at FDL Europe]
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NIVERSITY OF

Flood detection, from space

How can we reduce the time from disaster to data?

1. How do we get data
to the ground more
quickly?

2. How can we
accelerate/automate
the image analysis
process?

AIRBUS caraPULT

Google Cloud (inteD Al @

with Lewis Smith [work done with ESA while at FDL Europe]
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ML in Space (literally)

Flood detection, from space

Why process onboard?

560 Mbps

d

COTS ground station (ISIS)

ENTA AIRBUS carapULT

with Lewis Smith [work done with ESA while at FDL Europe]
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JNIVERSITY OF

XFORD

Flood detection, from space

Project Proposal

e Demonstrate that low
resolution images from
CubeSats can be used to
provide useful flood
intelligence

e Perform flood segmentation
onboard satellite to reduce
downlinked data

e Deploy on ®Sat-1 in
2019/2020

Google Cloud (inteD Al ELEMENTA AIRBUS capULT

with Lewis Smith [work done with ESA while at FDL Europe]



) UNIVERSITY OF

Oxford Applied and Theoretical Machine Learning Group
http://oatml.ox.ac.uk

Researchers coming from academia (Oxford, Cam-
bridge, MILA, Yale, U of Toronto, U of Amsterdam, etc)

.. and industry (Google, DeepMind, Twitter, etc)
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